ANALYSIS AND PROOF OF THE RIEMANN HYPOTHESIS

Print ISSN: 2319-1023 | Online ISSN: 2582-5461 | Total Downloads : 11

Abstract

We propose a proof for the Riemann Hypothesis by dividing the Dirichlet eta function into a main term and a remainder term, focusing primarily on the behavior of the remainder in the critical strip \textit{(}$0<\sigma<1$ \textit{where }$s=\sigma+it$\textit{)}. Then, we express the Riemann zeta function using the same decomposition and show that its main term cannot vanish at the nontrivial zeros. Finally, we focus on the limit on the main terms as $\left\vert \lim k\rightarrow \mathbf{\infty}\text{ \ }\zeta_{k}(s_{0})/\zeta_{k}(1-s_{0})\right\vert $.

Keywords and Phrases

Riemann hypothesis, proof, the Dirichlet eta function, the remainder term of the Dirichlet eta function.

A.M.S. subject classification

Primary 11M26.

.....

Download PDF 11 Click here to Subscribe now