EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION FOR A NONLINEAR REACTION-DIFFUSION SYSTEM IN SPACES BY SOBOLEV
Print ISSN: 2319-1023 | Online ISSN: 2582-5461 | Total Downloads : 150
DOI: https://doi.org/10.56827/JRSMMS.2023.1002.5
Author :
Bailly Bal'e (Universite FHB, UFR de Mathematiques et Informatique Informatique. 22 BP 582, Abidjan 22. COTE DIVOIRE)
Gossan D. Pascal Gershom (Universite Nangui Abrogoua, UFR-SFA, departement de Mathematiques 22 BP 1709, Abidjan 22. COTE DIVOIRE)
Yoro Gozo (Universite Nangui Abrogoua, UFR-SFA, departement de Mathematiques 22 BP 1709, Abidjan 22. COTE DIVOIRE)
Abstract
In this article, we present a weak solution existence result for a system of equations involved in the mathematical modeling of the flow of an inhomogeneous viscous and incompressible fluid. For this, two results have been established. In the first result, the differentiability is according to Frechet. In the second result, the differentiability is understood in a weaker sense than that of Frechet.
Keywords and Phrases
Uniqueness and differentiability, compressible system.
A.M.S. subject classification
35D30, 35A01, 35A02.
.....
