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1. Introduction
Spectral graph theory investigates the spectral properties of graphs, focusing on

their structural and spectral attributes [9]. This field emerged from the application
of algebraic techniques to graph theory [5], particularly examining the eigenvalues
and eigenvectors of matrices associated with a graph, such as the adjacency ma-
trix (λ), and the Laplacian matrix (ϑ). Essam El Seidy computed the spectra of
fundamental graphs resulting from various graph operations [8]. Comprehending
the impact of these operations on the spectral properties of graphs is fundamental
in domains of network analysis.

The concept of fuzzy graphs [17], introduced by L.A. Zadeh in 1965, addresses
uncertainty in graph theory [10]. Kauffmann initially introduced fuzzy graphs [4],
and Rosenfeld [14] subsequently incorporated fuzzy relations into their framework.
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Building upon the seminal work of Yeh and Bang [16] in 1975, Samanta Pal, Rash-
manlou, and other researchers established numerous concepts within the realm of
fuzzy graphs. Nagoor Gani discussed the properties of Cartesian products and
vertex degrees in composition [12]. Nirmal et al. elaborated on vertex degrees in
fuzzy graphs, including tensor and normal products [12]. Moderson demonstrated
that the cartesian product and union of two fuzzy subgraphs satisfy necessary and
sufficient conditions [11]. D. Venugopalam extensively covered various operations
on fuzzy graphs [15]. Shovan Dogra identified different product categories on fuzzy
graphs and analyzed vertex degrees [7]. These operations extend from crisp graphs
[3] to fuzzy graphs (FGs), utilizing adjacency matrices (A) and Laplacian matrices
(L) of FGs.

The examination of spectral characteristics in fuzzy graphs frequently incorpo-
rates methods from graph theory, matrix theory, and fuzzy set theory. Compared
to classical graphs, fuzzy graphs produced by different graph operations and prod-
ucts may have more complicated spectral characteristics. Degrees of membership
(µi, µj) are introduced in fuzzy graphs, enabling a more flexible depiction of inter-
actions between vertices. Insights into the spectral characteristics of fuzzy graphs,
influenced by the structure of the original graphs, can be acquired through an
examination of the product procedures.

The interplay between spectral graph theory and fuzzy graph theory opens new
avenues for analyzing complex networks, especially in situations where uncertainty
and imprecision are inherent. The spectral properties of fuzzy graphs can reveal
underlying patterns and connections that are not immediately apparent in classical
graph representations.

In recent years, there has been a growing interest in exploring the spectral
properties of fuzzy graphs resulting from different graph operations, such as Carte-
sian products, tensor products, and normal products. Researchers have developed
various techniques to analyze these properties, providing valuable insights into the
behaviour of complex systems modelled by fuzzy graphs.

This paper is organized as follows: The authors provide the foundational con-
cepts and background information in Section 2. Section 3 derives the main results
relating eigenvalues of operated fuzzy graphs to the eigenvalues of original fuzzy
graphs. Additionally, the spectral features on fuzzy graphs in terms of their eigen-
values (λi) and (ηj) are illustrated with examples. The spectrum of a fuzzy graph is
demonstrated to be made up of the eigenvalues and eigenvectors of these matrices.
Section 4 summarizes the spectral properties for different fuzzy graph operations
and concludes the paper.
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2. Preliminary and Definitions

Definition 2.1. [10] A fuzzy graph G = (V, σ, µ) is a triple consisting of a non-
empty set V together with a pair of functions σ : V −→ [0, 1] is a fuzzy vertex set
and µ : V × V −→ [0, 1] is a fuzzy edge set such that µ(ij) ≤ σ(i) ∧ σ(j) for all
i, j ∈ V .

Definition 2.2. [1] For a square matrix M , the multiset of eigenvalues of M is

called the spectrum of M and is denoted by Γ (G) = {λ(m1)
1 , λ

(m2)
2 , . . . , λ

(mp)
p } where

each λi is a distinct eigenvalue of M with multiplicity mi, for all i = 1, 2, . . . , p.

Definition 2.3. [2] The adjacency matrix A of a fuzzy graph G = (V, σ, µ) is an
n×n matrix defined as A = [aij] where aij = µ(vi, vj). The eigenvalues are denoted
by λi : λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn of A.

Definition 2.4. [8] Let G1 = (σ1, µ1) and G2 = (σ2, µ2) be two fuzzy graphs
with underlying vertex sets V1 and V2 and edge sets E1 and E2 respectively. Then
Cartesian product of G1□G2 is a pair of functions (σ1□σ2, µ1□µ2) with underlying
vertex set V1□V2 = {(u1, v1) : u1 ∈ V1 and v1 ∈ V2} and underlying edge set
E1□E2 = {((u1, v1)(u2, v2)) : u1 = u2, v1v2 ∈ E2 or u1u2 ∈ E1, v1 = v2} with

(σ1□σ2)(u1, v1) = σ1(u1) ∧ σ2(u2), where u1 ∈ V1 and v1 ∈ V2

(µ1□µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧ µ2(v1v2), if u1 = u2 and v1v2 ∈ E2

= µ1(u1u2) ∧ σ2(v1) if u1u2 ∈ E1 and v1 = v2

Definition 2.5. [8] Let G1 = (σ1, µ1) and G2 = (σ2, µ2) be two fuzzy graphs
with underlying vertex sets V1 and V2 and edge sets E1 and E2 respectively. Then
Strong product of G1 ⊠G2 is a pair of functions (σ1 ⊠ σ2, µ1 ⊠ µ2) with underlying
vertex set V1 ⊠ V2 = {(u1, v1) : u1 ∈ V1 and v1 ∈ V2} and underlying edge set
E1 ⊠ E2 = {((u1, v1)(u2, v2)) : u1 = u2, v1v2 ∈ E2 or u1u2 ∈ E1, v1 = v2} with

(σ1 ⊠ σ2)(u1, v1) = σ1(u1) ∧ σ2(u2), where u1 ∈ V1 and v1 ∈ V2

(µ1 ⊠ µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧ µ2(v1v2), if u1 = u2 and v1v2 ∈ E2

= µ1(u1u2) ∧ σ2(v1) if u1u2 ∈ E1 and v1 = v2

(µ1 ⊠ µ2)((u1, v1)(u2, v2)) = µ1(u1u2) ∧ µ2(v1v2), if u1u2 ∈ E1 and v1v2 ∈ E2

Definition 2.6. [6] Let G1 = (σ1, µ1) and K2 be two fuzzy graphs with underlying
vertex sets V1 and V2 and edge sets E1 and E2 respectively. If G1 is bipartite, its
double is just the union of two disjoint copies. If G1 is connected and not bipartite,
then its double is connected and bipartite. If G1 has spectrum Φ, then G1 ⊗K2 has
spectrum Φ ∪ −Φ.
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Definition 2.7. [8] Let G1 = (σ1, µ1) and G2 = (σ2, µ2) be two fuzzy graphs
with underlying vertex sets V1 and V2 and edge sets E1 and E2 respectively. Then
Kronecker product of G1⊗G2 is a pair of functions (σ1⊗σ2, µ1⊗µ2) with underlying
vertex set V1 ⊗ V2 = {(u1, v1) : u1 ∈ V1 and v1 ∈ V2} and underlying edge set
E1 ⊗ E2 = {((u1, v1)(u2, v2)) : u1u2 ∈ E1, v1v2 ∈ E2} with

(σ1 ⊗ σ2)(u1, v1) = σ1(u1) ∧ σ2(u2), where u1 ∈ V1 and v1 ∈ V2

(µ1 ⊗ µ2)((u1, v1)(u2, v2)) = µ1(u1u2) ∧ µ2(v1v2), if u1u2 ∈ E1 and v1v2 ∈ E2

Definition 2.8. [13] Let G1 = (σ1, µ1) and G2 = (σ2, µ2) be two fuzzy graphs
with underlying vertex sets V1 and V2 and edge sets E1 and E2 respectively. Then
Lexicographic product of G1[G2] is a pair of functions defined by

(σ1 ◦ σ2)(u1, v1) = σ1(u1) ∧ σ2(u2), where u1 ∈ V1 and v1 ∈ V2

(µ1 ◦ µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧ µ2(v1, v2), if u1 = u2, (v1, v2) ∈ E2

= σ2(v1) ∧ µ1(u1, u2), if v1 = v2, (u1, u2) ∈ E1

= µ1(u1u2) ∧ σ2(v1) ∧ σ2(v2), if v1 ̸= v2 and (u1, u2) ∈ E1

3. Main Theorems

Theorem 3.1. Let λ1, λ2, . . . , λn be the eigenvalues of G1 and η1, η2, . . . , ηm be
the eigenvalues of G2. Then, the eigenvalues of G1□G2 are λi + ηj, for all i ∈
[1, n] and j ∈ [1,m].
Proof. Let A1 and A2 denote the fuzzy adjacency matrices of G1 and G2 respec-
tively. Then for every eigenvalue λ and every eigen vector x of A1 and for every
eigenvalue η and every eigen vector y of A2, A1x = λx and A2y = ηy.
From the definition of Cartesian product, it follows that

(A1 ⊗ Im + In ⊗ A2)(x⊗ y) = (A1 ⊗ Im)(x⊗ y) + (In ⊗ A2)(x⊗ y)

= A1x⊗ Imy + Inx⊗ A2y

= λx⊗ y + x⊗ ηy

= λ(x⊗ y) + η(x⊗ y)

= (λ+ η)(x⊗ y)

Thus, λi + ηj is the eigenvalue of G1□G2.

Example 3.2. ConsiderG1 and G2 as shown in Figure 3.1 having λi = {−0.5,−0.17, 0.6}
and ηj = {−0.3, 0.3} respectively.
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Figure 3.1. A fuzzy graph G1□G2

Then eigenvalue G1□G2 = {−0.8,−0.46,−0.01, 0.07, 0.2, 0.9} satisfies λi + ηj.

Theorem 3.3. Let λ1, λ2, . . . , λn be the eigenvalues of G1 and η1, η2, . . . , ηm be
the eigenvalues of G2. Then the eigenvalues of G1 ⊠ G2 is approximately equal to
(λi + 1)(ηj + 1)− 1 or λiηj + λi + ηj for all i ∈ [1, n] and j ∈ [1,m].
Proof. LetA1 and A2 denote the fuzzy adjacency matrices of fuzzy graphG1 and G2

respectively. Then for every eigenvalue λ and every eigen vector x of A1 and for
every eigenvalue η and every eigen vector y of A2, A1x = λx and A2y = ηy.
It follows that,

(((A1 + I)⊠ (A2 + I))− I)(x⊠ y) = ((A1 + I)⊠ (A2 + I))(x⊠ y)− (x⊠ y)

= (A1 + I)x⊠ (A2 + I)y − (x⊠ y)

= (A1x+ x)⊠ (A2y + y)− (x⊠ y)

= (λx+ x)⊠ (ηy + y)− (x⊠ y)

≃ (λ+ 1)x⊠ (η + 1)y − (x⊠ y)

≃ ((λ+ 1)(η + 1)− 1)(x⊠ y)

Thus, λiηj + λi + ηj is the eigenvalue of G1 ⊠G2.

Example 3.4. Consider G1 and G2 as shown in Figure 3.2 having λi = {−0.5, 0.5}
and ηj = {−0.3606, 0, 0.3606} for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Figure 3.2. A fuzzy graph G1 ⊠G2
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The eigenvalue of G1 ⊠G2 = {−0.53,−0.5,−0.34,−0.25, 0.50, 1.1} which approxi-
mately equals ((λ+ 1)(η + 1)− 1)(x⊠ y).

Theorem 3.5. For any λn eigenvalues of G1 and ηm eigenvalues of G2, the eigen-
values of G1 ⊗G2 results in 2(λiηj), for all i ∈ [1, n] and j ∈ [1,m].
Proof. Let A1 and A2 be any fuzzy adjacency matrices of G1 and G2 respectively.
For every eigenvalue λ and every eigen vector x of A1 and eigenvalue η, eigen vector
y of A2, A1x = λx and A2y = ηy. It follows that,

(A1 ⊗ A2)(x⊗ y) = A1x⊗ A2y

= λx⊗ ηy

= λη(x⊗ y)

2(A1 ⊗ A2)(x⊗ y) = 2(λη(x⊗ y))

Therefore, G1 ⊗G2 has the eigenvalue 2(λiηj).

Example 3.6. Consider G1 and G2 as shown in Figure 3.3 having λi = {−0.3, 0.3}
and ηj = {−0.5,−0.28, 0.81} for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The eigenvalue G1⊗G2 = {−0.5,−0.3,−0.18, 0.18, 0.3, 0.5} clearly satisfies 2(λiηj).

Figure 3.3. A fuzzy graph G1 ⊗G2

Theorem 3.7. Let G hold eigenvalues λi and for any complete fuzzy graph K2,
its bipartite double is a fuzzy graph G ⊗ K2 resulting in the fuzzy spectrum with
λi ∪ −λi.
Proof. Consider a fuzzy graph G, having V and E representing the vertex sets
and edgesets respectively. Then for each fuzzy vertex, σi of G two vertices σ

′
i and

σ
′′
i , and for each edge σiµj of G two edges σ

′
iµ

′′
j and σ

′′
i µ

′
j exists to form a bipartite

double G⊗K2.
Case 1. Suppose a fuzzy graph G is bipartite, then the resulting bipartite double



Operations on Spectral Fuzzy Graphs 179

graph is just the representation of union of fuzzy graphs of two disjoint copies of
G and K2.
Case 2. Suppose G is not bipartite but a connected fuzzy graph, then the double
is bipartite and also connected. If λi is the spectrum of G, then G ⊗ K2 has the
spectrum λi ∪ −λi.

Example 3.8. Consider G and K2 having λi = {−0.616(2), 0.016(2)} and K2 =
{−0.5, 0.5} for all 1 ≤ i ≤ n as shown in Figure 3.4 respectively.

Figure 3.4. A fuzzy graph G⊗K2

The eigenvalue G⊗K2 = {−1.1,−0.5,−0.3,−0.24, 0.24, 0.37, 0.5, 1.11} satisfies the
above theorem.

Theorem 3.9. Let λ1, λ2, . . . , λn be the eigenvalues of G1 and η1, η2, . . . , ηm be
the eigenvalues of G2 such that G2 is chosen to be a regular fuzzy graph. Then
the eigenvalues of G1[G2] are 2(λiσn + r2) where r2 is the degree of a regular fuzzy
graph and σn denotes nth vertex membership value of G2.
Proof. Let us denote the adjacency matrix of G1 as A1 and the adjacency matrix
of G2 as A2. Since G2 is chosen to be a regular fuzzy graph, A2 will have a
constant row sum which equals the degree r2 of the regular fuzzy graph. Let us
consider Lexicographic product G1[G2]. The adjacency matrix A1[2] of the product
is given by, A1[2] = A1 ◦ Im + In ◦ A2 where In is the identity matrix of size n× n
(corresponding to the vertices of G1) and Im is the identity matrix of size m ×m
(corresponding to the vertices of G2).
The eigenvalues of G1[G2] can be found by solving the characteristic equation:

det(A1[2] − λInm) = 0

where Inm is the identity matrix of size nm×nm. Given that λ1, λ2, . . . , λn are the
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eigenvalues of G1 and η1, η2, . . . , ηm are the eigenvalues of G2,

det(A1[2] − λInm) = det(A1 ◦ Im + In ◦ A2 − λInm)

= det(A1 ◦ Im − λIn ◦ Im + In ◦ A2 − λInm)

= det((A1 − λIn) ◦ Im + In ◦ (A2 − λIm))

= det(A1 − λIn)
m · det(A2 − λIm)

n

Since G2 is chosen to be a regular fuzzy graph, A2 will have eigenvalues r2 with
multiplicity m where r2 is the degree of G2. Thus, the eigenvalues of A2 are r2
repeated m times.
Now, Let us consider λi as an eigenvalue of A1 with multiplicity ki. Then, using
the above result, the eigenvalues of G1[G2] will be 2(λiσn+r2), each repeated ki ·m
times, where σn denotes nth the vertex membership value of G2.

Example 3.10. ConsiderG1 and G2 as shown in Figure 3.5 having λi = {−0.3, 0.3}
and ηj = {−0.2,−0.2, 0.4} for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Figure 3.5. A fuzzy graph G1[G2]

The eigenvalue G1[G2] = {−0.3,−0.2(3),−0.1352, 1.0352} satisfies 2(λiσn + r2).

4. Conclusion
The authors analyzed the various operations on fuzzy graphs including Carte-

sian product, Strong product, bipartite double, Kronecker product, and Lexico-
graphic product. These operations demonstrated to adhere the spectral fuzzy
properties accompanied by pertinent examples. Furthermore, the utility of these
properties in addressing the challenges encountered in protein structure networks
will be explored in forthcoming papers.
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