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Abstract: The minor and duality of a fuzzy graphic matroid are defined and also
explored their properties. The charcteristics of fuzzy graphic matroid like augu-
mentation, base exchange property, uniformity, submodularity, weak absorption,
strong absorption, weak elimination and induced circuit properties are discussed
with examples.
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1. Introduction
A graph is a structural representation of a set in which some pairs of objects are

related [1]. In 18th century, the basic ideas of graph theory introduced by Leonhard
Euler [2]. In 1847 G.R. Kirchoff developed the tree theory in networks for their
application.

Fuzzy graph theory is a branch of graph theory that incorporates fuzzy con-
cepts allowing degrees of membership for vertices and edges. In 1965, Zadeh [17]
introduced the concept of fuzzy sets laying the foundation for fuzzy logic and its
applications in various fields. Zadeh’s work paved the way for defining fuzzy graphs
where edges have fuzzy weights or memberships. In 1975, Rosenfeld [6] developed
the notion of fuzzy graphs and the concept of fuzzy adjacency matrices [3]. This
work established a formal framework for analyzing fuzzy graphs.
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A matroid is a combinatorial structure that provides a broader conceptual
framework encompassing the idea of linear independence. It serves as a unifying
bridge between graph theory and linear algebra [14]. In 1935, Whitney introduced
matroids as combinatorial abstraction of linear independence and provided two ax-
ioms for independence [15]. Also, defined any structure adhering to these axioms
to be matroids. The pioneering works in matroid theory done by Birkhoff in 1935
and MacLane in 1936. In 1950 W. T. Tutte provided a ground breaking character-
ization of matroids in terms of their independent sets, circuits and bases [13]. The
theory of graphic matroids introduced by Whitney and further studied by Tutte in
1954 and others [13]. In the 1970s and 1980s, there was a significant expansion of
matroid theory with the development of several fundamental concepts and results
[14].

Graphic matroids are a class of matroids that arise from graphs [10]. Specifi-
cally, given a graph G and its graphic matroid is constructed by considering the set
of edges as the ground set. A subset of edges is independent if it does not contain
any cycle of the graph. This construction establishes a correspondence between
graph theory and matroid theory illustrating how concepts from graph cycles and
connectivity can be captured and analyzed using the framework of matroids. The
theory of matroid minors introduced by Tutte in 1965 which provides a powerful
tool for analyzing the structure of matroids and establishing connections between
different classes of matroids.

In fuzzy matroids the elements can belong to sets with varying degrees of mem-
bership. In 1988, Goetschal and Voxman introduced the notion of fuzzy matroids
[7]. Fuzzy matroids deals with graphical and algebrical structures related to the
membership grades of a fuzzy graph. A new class of matroids from fuzzy graphs
was constructed by O. K. Sabana and K. Sameena in 2019 [8],[9]. From a fuzzy
graph G, subgraphs can be formed by deleting or contracting edges. The resulting
fuzzy graphs are the minors of G.

Fuzzy graphic matroids are a generalization of graphic matroids, incorporating
concepts from fuzzy graph theory. This framework extends traditional matroid
theory by integrating the flexibility of fuzzy logic and making it useful for appli-
cations involving uncertainty and imprecision in network structures [10]. In this
paper, the properties of fuzzy graphic matroids, minor and duality of fuzzy graphic
matroid are discussed.

This paper is organised as follows: Section 2 deals with the basic definition.
The definition of fuzzy graphic matroid is given and also discussed the properties of
fuzzy graphic matroids in section 3. The dual and minor of fuzzy graphic matroids
are discussed with examples in Section 4. Section 5 concludes the paper.
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2. Preliminaries

Definition 2.1. [11] Let G = (σ∗, µ∗) is a pair of functions with σ∗ and µ∗ where
σ∗ : V −→ [0, 1] is a fuzzy vertex set of G and µ∗ : V × V −→ [0, 1] is a fuzzy edge
set of G where µij ≤ min(µi, µj) for every µi, µj ∈ V . Then G = (σ∗, µ∗) is called
as a fuzzy graph with n vertices and m edges.

Definition 2.2. [12] A fuzzy subset of a non-empty set is a mapping σ : X → [0, 1]
which assigns to each element in X a degree of membership.

Definition 2.3. [5] Let I be a non-empty family of a finite subsets of E and the
pair M = (E, I) is called a matroid if it satisfies the following properties:

(i) ϕ ∈ I

(ii) If A ∈ I, B ⊂ A, then B ∈ I

(iii) If A,B ∈ I; |B| ≥ |A|, then there exists an e ∈ B − A such that A ∪ {e} ∈ I

The collection of basis uniquely determines the matroid. A basis (or base) of a
matroid refers to the maximal independent set within M, while a circuit of the
matroid corresponds to the minimal dependent set in M. The size of the maximal
independent set within the set E is defined to be the rank of a matroid and is
represented as r(I) [5].

Let I be a fuzzy subset on E is a function I : X −→ [0, 1]. The family of fuzzy set
on E is given by F (X). If P,Q ∈ F(E), then

(i) supp(P ) = {x ∈ E | P (x) > 0}, a crisp set

(ii) m(P ) = min{P (x) | x ∈ supp(P )}

(iii) P ∪Q = max{P (x), Q(x)}, x ∈ E

(iv) P ∩Q = min{P (x), Q(x)}, x ∈ E.

Note: For the sake of convenience, different notations are used here.

Definition 2.4. [7] [9] Let E be a finite set and let I ∈ F(FE) satisfying the
following conditions:

(i) ϕ ∈ I

(ii) P ⊂ Q and Q ∈ P, where P ⊂ Q,P (x) ≤ Q(x) forall x ∈ E

(iii) If P,Q ∈ I with |supp (P )| ≤ |supp (Q)|, there exists R ∈ I such that
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(a) P ⊂ R ⊆ P ∪Q

(b) m(R) = min {m(P ),m(Q)}.

Then FM = (E, I) is a fuzzy matroid.

Definition 2.5. [16] A graphic matroid is derived from graph G. It is defined on
the egde set of the graph G and it is denoted by M(G).

(i) A basis or a base of M(G) is the spanning trees of G.

(ii) A circuit of M(G) is the simple cycles in a graph G.

Definition 2.6. [4] The rank function of a graphic matroid M(G) defined on a
graph G = (V,E) is given by

r(M(G)) = n−K(V, F )

where n is the number of verticec and K(V, F ) is the number of connected compo-
nents.

3. Properties of Fuzzy Graphic Matroids

Definition 3.1. A fuzzy matroid is said to be fuzzy graphic matroid when it can
be isomorphically mapped to FM(G) for a given fuzzy graph G.

Definition 3.2. The spanning trees of a fuzzy graph G is defined to be the basis
or base of a fuzzy graphic matroid. It is denoted by B(FGM).

Definition 3.3. The minimal dependent edges of a fuzzy graph G that forms a
simple cycle is defined to be the circuit of a fuzzy graphic matroid. C(FGM).

Figure 3.1 A fuzzy graphic matroid derived from a fuzzy graph G
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From figure 3.1, Let E = {0.2/µ1, 0.3/µ2, 0.4/µ2, 0.1/µ4},
I = {{ϕ}, {0.2/µ1}, {0.3/µ2}, {0.4/µ3}, {0.1/µ4}, {0.2/µ1, 0.3/µ2}, {0.3/µ2, 0.4/µ3},
{0.4/µ3, 0.1/µ4}, {0.1/µ4, 0.2/µ1}, {0.2/µ1, 0.3/µ2, 0.4/µ3}, {0.3/µ2, 0.4/µ3, 0.1/µ4},
{0.4/µ3, 0.1/µ4, 0.2/µ1}
P and Q are the subset of edges of G. P ∪Q and P ∩Q ∈ I. The cardinality of P
and Q is 0.7 and 0.9. Therefore |P | ≤ |Q|. The rank function of FGM is 0.9.

Figure 3.2 A fuzzy graph G

Consider a fuzzy graph G. Let E be the set of edges of G and I be its independent
set of edges in G. P and Q are the subset of edges in I. B,C and R are bases,
circuits and rank of a fuzzy graphic matroid. The following are the properties
which are satisfied by a fuzzy graphic matroid.

Augmentation [I]. If P,Q ∈ I, with |Q| > |P | then P + {x} ∈ I for some
x ∈ Q− P .

Uniformity [U]. P ∈ I, then the maximal fuzzy subsets of P ∈ I have the same
size.

Base Exchange [B]. If B1,B2 ∈ B and x ∈ B1\B2 then there exist y ∈ B2\B1

such that (B1 − {x}) + {y} ∈ B.

Submodularity [R]. R(P ∩Q) + R(P ∪Q) ≤ R(P ) + R(Q) whenever P,Q ∈ E.

Weak absorption [A]. R(P+{x}) = R(P+{y}) implies R(P+{x}+{y}) = R(I)
whenever P ⊆ E and x, y ∈ E.

Strong absorption [A’]. If P,Q ∈ E and R(P + {x}) = R(P ) for all x ∈ B, then
R(P ∪Q) = R(P ).

Weak Elimination [C]. For distinct circuits C1,C1 ∈ C and {x} ∈ C1 ∩ C2 ,
there is another member of C contained in (C1 ∪ C2 − {x}).
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4. Minor and Dual of Fuzzy Graphic Matroids

Definition 4.1. The dual of fuzzy graphic matroid FGM is FGM∗ whose bases
are the complements of the bases FGM .

� The sub-bases S of FGM are the fuzzy set of edges containing a base.

� The hypobase H of FGM are the maximal fuzzy set of edges containing no
base.

� B∗, C∗ are the cobases and cocircuits of Fuzzy Graphic Matroid.

Definition 4.2. A minor of a fuzzy graphic matroid FGM is formed by two
operations:

� The restriction that deletes an edge µij of a fuzzy graph without changing the
independence or rank of the remaining subset of the edge set of G.

� The contraction that deletes an edge µij of a fuzzy graph by decreasing the
rank of every edge set it belongs to.

Lemma 4.3. The dual of the dual of a fuzzy graphic matroid FGM is a fuzzy
graphic matroid.

(FGM∗)∗ = FGM (1)

Proof. Let FGM be a fuzzy graphic matroid derived from a fuzzy graphG. Let FE

be the ground set of FGM then the dual FGM∗ has the same ground set but the
independent edges are different. A set of edges of a fuzzy graph G is independent
if and only if its complement forms a circuit in G. similarly, the complement of a
set of edges in FGM which forms a cycle corresponds to forest in FGM∗. Hence
the dual of the dual of fuzzy graphic matroid is fuzzy graphic matroid.

Theorem 4.4. Let FGM1 and FGM2 be two fuzzy graphic matroids with disjoint
ground set of edges then the dual of FGM1 ⊕ FGM2 is equal to FGM∗

1 ⊕ FGM∗
2.

Proof. If G1 and G2 is a fuzzy graph and Ei for all i = 1, 2 be the edge set of G1

and G2. Let FGM1 and FGM2 be the fuzzy graphic matroids derived from G1 and
G2. The families of bases of FGM∗

1 ⊕ FGM∗
2 and (FGM1 + FGM2)

∗ coincides.
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By the base exchange property of fuzzy graphic matroid

B((FGM1 + FGM2)
∗) = {B∗ | E\B∗ ∈ B(FGM1 + FGM2)} (2)

= {E\B | B ∈ B(FGM1 + FGM2)} (3)

= {E\(B1 ∪ B2) | B1 ∈ B(FGM1),B2 ∈ B(FGM2)} (4)

= {(E1\B1) ∪ (E2\B2) | B1 ∈ B(FGM1),B2 ∈ B(FGM2)}
(5)

= {B∗
1 ∪ B∗

2 | B∗
1 ∈ B∗

1(FGM∗
1 ),B∗

2 ∈ B∗
2(FGM∗

2 )} (6)

= B(FGM∗
1 + FGM∗

2 ) (7)

Theorem 4.5. A fuzzy graphic matroid FGM1 is a minor of a fuzzy graphic
matroid FGM2 if and only if FGM1∗ is a minor of FGM2∗.
Proof. Let FGM1 and FGM22 be a fuzzy graphic matroid isomorphically mapped
from a fuzzy graphs G1 and G2 respectively. The dual of FGM∗

1 and FGM∗
2 are

defined with same edge set but the independent edges are different. If FA is a set
of independent edges in FGM∗

1 if and only if complement of FA are the edge set of
G forming a circuit.
Case(i). If FGM1 is a minor of FGM2 then FGM∗

1 is a minor of FGM∗
2

Assume FGM1 is a minor of FGM2, then FGM1 is obtained from FGM2 by
contraction or deletion of edges in G2. Since FGM∗

1 is a dual of FGM1 that
corresponds to contraction of edges in the circuit of G1 which is equivalent to the
contraction of edges in G2 that forms the dual FGM∗

2 . Therefore FGM∗
1 is a minor

of FGM∗
2 .

Case (ii). If FGM∗
1 is a minor of FGM∗

2 then FGM1 is a minor of FGM2.
Assume FGM∗

1 is a minor of FGM∗
2 . From case (i) it is clear that FGM∗

1 and
FGM∗

2 are obtained by the contraction or deletion of edges in the circuits of G1 and
G2 respectively. Therefore FGM1 is a minor of a fuzzy graphic matroid FGM2.

Theorem 4.6. If P and Q be two disjoint fuzzy subsets of E of a fuzzy graphic
matroid FGM . The following holds:

(i) (E\P )\Q = E\(P ∪Q) = (E\Q)\P

(ii) (E/P )/Q = E/(P ∪Q) = (E/Q)/P

(iii) (E/P )\Q = (E\Q)/P

Proof. Proof of (i) Let G be a fuzzy graph E is the edge set of G. If P and Q
are the subset of edges of G. If P and Q is disjoint subsets of G then (E\P )\Q
,E\(P ∪ Q) and (E\Q)\P are equal by the definition of minor of fuzzy graphic
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matroid.
Proof of (ii) is obtained by using the property of dual of a fuzzy graphic matroid.
Proof of (iii) consider the rank function of fuzzy graphic matroid. If S be a subset
of E then S ⊆ E − (P ∪ Q) then the rank function of (E/P )\Q and (E\Q)/P are
equal.

R(E/P )\Q(S) = R(E/P )(S) (8)

= RE(S ∪ P )− R(E)(P ) (9)

= R(E\Q)(S ∪Q)− R(E\Q)(P ) (10)

= R(E\Q)/P (S). (11)

Lemma 4.7. Let G = (σ, µ) be a fuzzy graph and P be a subset of edges in G then
P ⊆ E. The following holds

(i) (E\P )∗ = E∗\P

(ii) (E/P )∗ = E∗/P

Figure 4.1 Duality and Minor of a fuzzy graphic matroid

Example 4.8. In Fig 4.1, E = {0.3/µ1, 0.2/µ2, 0.1/µ3}, I = {ϕ, {0.3/µ1}, {0.2/µ2},
{0.1/µ3}, {0.3/µ1, 0.2/µ2}, {0.2/µ2, 0.1/µ3}, {0.3/µ1, 0.1/µ3} are the independent
set of edges of G. P = {0.2/µ2, 0.1/µ3} and Q = {0.3/µ1, 0.2/µ2} are the sub-
set of edges of G. From the definition of duality and minor of FGM the conditions
(i) and (ii) is obvious.

Theorem 4.9. For a fuzzy graphic matroid FGM , an edge µ(x) ∈ E is a loop or
a co-loop if and only if E\{x} = E/{x}.
Proof. If x is loop in a fuzzy graph G then R(x) = 0 or Fr(x)+R((FGM)−{x}) =
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R(FGM) so by duality of the fuzzy graphic matroids FGM\{x} = FGM/{x}.
If R∗(x) = 0 then E is a co-loop of the fuzzy graphic matroid.

R∗(x) = |x| − R(FGM) + R(FGM)− {x} (12)

= 0 (13)

R(x) + R(FGM)− {x} = R(FGM) (14)

If x is a co-loop then R(x) =
∑

(µ(x)), µ(x) ∈ I.
Assume that x is not a loop then Fr(x) =

∑
(µ(x)) and R(x)+R((FGM)−{x}+

1) = R(FGM), which means that (FGM) − {x} is not a spanning tree if it does
not contain a basis. The set is not co-independent, and x is a co-loop.

5. Conclusion
The properties of fuzzy graphic matroids are explored and discussed the duality

and minor of fuzzy graphic matroids. The authors further proposed to work on
operations on fuzzy graphic matroids and its applications.
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