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Abstract: Cauchy’s residue theorem gives a relatively general form for a complex
integral along a simple closed contour. With the help of Cauchy’s residue theorem,
an appropriate closed contour can be chosen to calculate some abnormal definite
integrals that might be very complicated and difficult to solve by conventional
methods. This study focuses on four distinct types of definite integrals: integrals
involving sine and cosine functions, polynomial functions, exponential functions,
and logarithmic functions. The contours chosen are a sector of a circle that involves
one or several isolated singularities of the function. The residue at the isolated sin-
gularities of the function is then calculated. The value of the residues is substituted
in the formula deducted from Cauchy’s residue theorem. The integral along the
simple closed contour can be expressed in two parts, one along the real axis and
the other along the circle. This study demonstrates that Cauchy’s Residue Theo-
rem is superior to conventional real analysis methods for evaluating the integrals
of different types of complex functions.
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1. Introduction

Over the years, numerous mathematicians have contributed to the continuous
development of the residue theorem. The residue theorem was developed by sev-
eral notable mathematicians, including Weierstrass, Cauchy, Laurent, Riemann,
and Mittag-Leffler. Cauchy first presented it in the early 19th century as a compo-
nent of his work on complex analysis. However, German mathematician Bernhard
Riemann did not fully develop and properly prove the residue theorem until the
late 19th century. Riemann’s proof of the theorem was based on the concept of
Laurent series expansions of complex functions, which enable the expression of a
function as the sum of positive and negative powers of z [4]

In complex analysis, the residue theorem is an effective tool that makes it
possible to assess specific contour integrals. The residue theorem has easy-to-
understand the integral of complex functions. The value of the integral of f(z)
around C is equal to 2πi times the sum of the residues of f(z) at each of the
singular points inside C if f(z) is a function that is analytic everywhere inside and
on a closed contourC with the exception of isolated singularities at z1, z2, z3, · · · , zk
[8].

The Residue Theorem simplifies evaluating integrals by extending them to the
complex plane and has many applications in mathematics, physics, and engineer-
ing [1]. Real integrals can be transformed into contour integrals on the real-axis
in the complex plane, using a one-to-one correspondence between real-valued and
complex-valued functions. In this study a closed contour is created by defining a
contour on the real axis and a half-circle in the upper or halfplane [3]. In view of
the background information mentioned above, no study has been conducted using a
specific, simple method to find the integral of complex functions. Moreover, math-
ematicians are still actively researching the retention number theorem, which is a
basic discovery in the field with numerous significant applications and extensions
of the residue theorem for complex function integrals. Therefore, this study focuses
on how to evaluating proper integrals involving sine and cosines functions, ratio-

nal function of the form
∞∫

−∞
f(z)dz, rational function of the form

∞∫
−∞

f(x)sinmxdx

or
∞∫

−∞
f(x)cosmxdx and improper integral involving logarithm function using the

Residue Theorems.

Theorem 1.1. (Cauchy Residue Theorem) Let f(z) be an analytic inside and
on a simple closed contour C expect at finite number of singularities z1, z2, z3, · · · ,
zn inside C at which the residues are β1, β2, β3, · · · ,βn respectively of f(z), then
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∫
C

f(z)dz = 2πi
n∑

k=1

βk [2,3]

Proof. Letus suppose that c1, c2, c3, · · · , cn be the small circles with center at
z1, z2, z3, · · · , zn respectively and radii so small such that they lie entirely within
positively oriented simple closed contour C and having no common parts, then by
extension of Cauchy Gorsat’s Theorem we have∫

C

f(z)dz −
n∑

k=1

∫
ck

f(z)dz = 0

⇒
∫
C

f(z)dz =
n∑

k=1

∫
ck

f(z)dz (1)

Also, by the definition of residue, we have∫
ck

f(z)dz = 2πiRes
z=zk

f(z), for k = 1, 2, 3, · · · , n. (2)

Now, from equations (1) and (2), we have∫
C

f(z)dz =
n∑

k=1

∫
ck

f(z)dz = 2πiRes
z=zk

f(z)

If we suppose that Res
z=zk

f(z) = βk for k = 1, 2, 3, · · · , n., then we have∫
C

f(z)dz = 2πi
n∑

k=1

βk for k = 1, 2, 3, · · · , n.

2. Applications of Cauchy’s Residue Theorem
The process of evaluating integrals would be as simple as finding the residue(s),

adding them up, and multiplying by 2πi If the Residue Theorem’s criteria are sat-
isfied [3]. Although the Residue Theorem can only be used to evaluate specific
integrals of rational functions, it can be extended to a wider range of situations.
The Residue Theorems acknowledged in this study will only be used to demonstrate
the strength and applicability of the Residue Theorems in integral evaluation. Ev-
ery Residue Theorem can be used to evaluate a particular kind of integral that is
commonly encountered. The applications are introduced with a concrete example
of their application, which is followed by a demonstration of the related theorems[2].

Example 2.1. Find the integral of f(z) = 1
(z2+1)3

with C : |z| = 2 [2].
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Solution. Let f(z) = 1
(z2+1)3

, Then the singular points of f(z) are z = i and z = −i

where both singular points of order three lie inside the given contour C : |z| = 2.
Now, the residue of f(z) at z = i is

β1 = lim
z→i

1
(3−1)!

d2

dz2
[(z − i)3f(z)] = lim

z→i

1
2!

d2

dz2

[
(z − i)3 1

(z2+1)3

]
= lim

z→i

1
2!

d2

dz2
[(z + i)−3] =

3
16i

. Similarly, the residue of f(z) at z = −i is β2 =
−3
16i

.
Therefore,

∫
C

1
(z2+1)3

= 2πi (β1 + β2) = 0

Figure 1

2.1. Proper Integrals Involving sine and cosines Functions

The following rules give an easy way to find the proper integrals of a function

involving sinθ and cosθ functions

(
2π∫
0

F (sinθ, cosθ) dθ

)
[2, 3, 5].

1. Put z = eiθ, (0 ≤ θ ≤ 2π), then dθ = dz
iz

2. Put sinθ = 1
2i

(
z − 1

z

)
and cosθ = 1

2

(
z + 1

z

)
in the given functions of integral.

3. Write the relation
2π∫
0

F (sinθ, cosθ) dθ =
∫
C
F
(

1
2i

(
z − 1

z

)
, 1
2

(
z + 1

z

))
=

∫
C

f(z),

where C is the unit circle.

4. Calculate the residues of f(z) inside the unit circle C by finding poles.

5. Finally,we use Cauchy Residue Theorem such that
∫
C
f(z)dz = 2πi

n∑
k=1

Res
z=zk

f(z).

Example 2.2. Find the integral of
2π∫
0

dθ
3−2cosθ+sinθ

[5].
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Solution. Since,

I =

2π∫
0

dθ

3− 2cosθ + sinθ
(3)

Let z = eiθ, where θ varies from 0 to 2π, then z traces the unit circle with center
origin in positive direction. Also, dθ = dz

iz

Again, put sinθ = 1
2i

(
z − 1

z

)
and cosθ = 1

2

(
z + 1

z

)
in equation (3), then we get

2π∫
0

dθ

3− 2cosθ + sinθ
=

∫
C

1

3−
(
z + 1

z

)
+ 1

2i(z− 1
z )

dz

iz

=

∫
C

dz
iz

6iz+2iz2−2i+z2−1
2iz

=

∫
C

2dz

z2 (1− 2i) + 6iz − (1 + 2i)

=

∫
C

2 (1 + 2i) dz

z2 (1− 2i) (1 + 2i) + 6iz (1 + 2i)− (1 + 2i)2

=

∫
C

2
5
(1 + 2i) dz

z2 + 6
5
i (1 + 2i) z − 1

5
(1 + 2i)2

=

∫
C

f(z)dz

where, f(z) = z2 + 6
5
i (1 + 2i) z − 1

5
(1 + 2i)2.

Figure 2
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Now, the pole of ϕ(z) can be obtain by z2 + 6
5
i (1 + 2i) z − 1

5
(1 + 2i)2 = 0 .

Thus, z =
−6i
5

(1+2i)± 4i
5
(1+2i)

2
. Hence, the poles of f(z) are Let α = 2

5
− i

5
and

β = 2 − i. Since, both poles are simple where α lies within contour C whereas β
does not lie within C. (see in figure 2)
Here, the residue of f(z) at z = α is

Res
z=α

f(z) = lim
z→α

(z − α) f(z) = lim
z→α

(z − α)
2
5
(1 + 2i)

(z − α) (z − β)
=

2
5
(1 + 2i)

(α− β)

=
(1 + 2i)

2 (−2 + i)

Now, by Cauchy Residue Theorem, we have

2π∫
0

dθ

3− 2cosθ + sinθ
=

∫
C

f(z)dz = 2πi× Sum Residue of f(z) = 2πi
(1 + 2i)

2 (−2 + i)
= π

Hence,

2π∫
0

dθ

3− 2cosθ + sinθ
= π

2.2. Evaluation of Integral of the form
∞∫

−∞
f(x)dx, where f(z) is Rational

Function Having no Poles in Real Axis
The following rules give an easy way to find the improper integrals of the form

∞∫
−∞

f(x)dx having no poles in real axis [2]:

1. First of all, we consider the integral
∫
C

f(z)dz, where C is called counter

consisting upper half plane of semi circle Γ of large radius and real axis from
−R to R including all poles of f(z).

2. Calculate all the poles of f(z) and select the poles which lie inside C.

3. Apply the Cauchy Residue Theorem:
∫
C

f(z)dz = 2πi
∑

R+, where
∑

R+

is the sum of residue in the upper half plane. ⇒
R∫

−R

f(x)dx +
∫
Γ

f(z)dz =

2πi
∑

R+
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4. We make
∫
Γ

f(z)dz → 0 as R → ∞, then lim
R→∞

R∫
−R

f(x)dx = 2πi
∑

R+.

5. Finally, we get
∞∫

−∞
f(x)dx = 2πi

∑
R+.

Example 2.3. Find the integral of
∞∫

−∞

dx
(1+x2)2

[2].

Solution. Let us suppose that
∫
C

f(z)dz =
∫
C

dz
(1+z2)2

, where C is the closed contour

consisting of upper half large semi-circle Γ together with real axis from x = −R to

x = R, then
∫
C

f(z) =
R∫

−R

f(x)dx+
∫
Γ

f(z)dz

Now, the pole of f(z) can be obtain by (1 + z2)
2
= 0 ⇒ z = ±i. Hence, f(z)

has poles at at z = ±i of order two, but only the pole z = i of f(z) lies within C,
so that

Figure 3

Res
z=i

f(z) = lim
z→i

1

(2− 1)!

d

dz

[
(z − i)2

1

(1 + z2)2

]
= lim

z→i

d

dz

[
(z − i)2

1

(z − i)2 (z + i)2

]
= lim

z→i

d

dz

[
1

(z + i)2

]
= lim

z→i
−2 (2 + i)−3 =

1

4i
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Now, by Cauchy Residue Theorem we have∫
C

f(z)dz = 2πi
∑

R+.

⇒
∫
C

f(z) =

R∫
−R

f(x)dx+

∫
Γ

f(z)dz =
π

2
(4)

Here,

∣∣∣∣∫
Γ

f(z)dz

∣∣∣∣ ≤ ∫
Γ

|f(z)dz| =
∫
Γ

|f(z)| =
∫
Γ

|f(z)||dz| =
∫
Γ

| 1
(1+z2)2

||dz|

Put, Z = Reiθ ⇒ dz = Rieiθdθ, ⇒ |dz| = |Rieiθdθ| = Rdθ, and |z| = R, then

|
∫
Γ

f(z)dz| ≤
π∫
0

Rdθ
(1+R2)2

≤
π∫
0

R
(R2−1)

→ 0 as R → ∞.

Hence, the equation (4) becomes

lim
R→∞

R∫
−R

f(x)dx =
π

2

⇒
∞∫

−∞

f(x)dx =

∞∫
−∞

dx

(1 + x2)2
=

π

2

2.3. The Integrals of the Form
∞∫

−∞
f(x)sinmxdx or

∞∫
−∞

f(x)cosmxdx, where

f(x) is Rational Fraction
Now, we consider

∫
C

f(z)eimzdz, where C is called counter consisting upper half

plane of semi circle Γ of large radius and real axis from −R to R including all poles
of f(z) and eimx = cosmx + i sinmx. All of the procedure is similar to the form

of
∞∫

−∞
f(x)dx.

Theorem 2.1. (Jodern Lemma). Suppose that f(z) is analytic at all points in
upper half plane y ≥ 0. Let Γ denote any semi-circle |z| = R, and for all points
z on Γ there is a positive constant MR such that |f(z)| ≤ MR and MR → 0 as
R → ∞, then lim

R→0

∫
Γ

f(z)eimzdz = 0, where m > 0 [2, 3].

Proof. Let us suppose that f(z) has no singularity with on Γ for sufficiently large
value of radius R. Let z = Reiθ, then dz = Rieiθdθ. ⇒ |dz| = Rdθ, (0 ≤ θ ≤ π).
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Here,∣∣∣∣∣∣
∫
Γ

f(z)eimzdz

∣∣∣∣∣∣ ≤
∫
Γ

|f(z)||eimz||dz| ≤ MR

π∫
0

|eimz|Rdθ = RMR

π∫
0

|eimReiθ |dθ

= RMR

π∫
0

|eimR(cosθ+isinθ)|dθ = RMR

π∫
0

|eimRcosθ+i2mRsinθ|dθ

= RMR

π∫
0

|eimRcosθ−mRsinθ|dθ = RMR

π∫
0

|eimRcosθe−mRsinθ|dθ

= RMR

π∫
0

|cosmRcosθ + isinmRcosθ||e−mRsinθ|dθ

≤ RMR

π∫
0

|e−mRsinθ|dθ < RMR
π

mR
[By Jordan Inequality]

=
πMR

m
→ 0asR → ∞

Thus,

∣∣∣∣∫
Γ

f(z)eimzdz

∣∣∣∣ → 0 as R → ∞. Hence, lim
R→∞

∫
Γ

f(z)eimzdz = 0, where m > 0.

Example 2.4. Find the integral of
∞∫

−∞

sinmx
x2+4

dx [2, 3, 5].

Solution. Let us suppose that
∫
C

f(z)dz =
∫
C

eimz

(z2+4)
dz =

∞∫
−∞

sinmz
z2+4

dz, where C is

the closed contour consisting upper half semi circle Γ of large radius R with real
axis from −R to R, then we have

∫
C

f(z)dz =

R∫
−R

f(x)dx+

∫
Γ

f(z)dz (5)

and f(z) = sinmx
x2+4

Now, the poles of f(z) can be obtained by z2 + 4 = 0. ⇒ z = ±2i, which are
simple poles, but only the pole z = 2i of f(z) lies within the contour C, so that,
the Residue of f(z) is
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Res
z=2i

f(z) = lim
z→2i

[(z − 2i) f(z)] = lim
z→2i

[
(z − 2i)

eimz

(z2 + 4)

]
= lim

z→2i

[
(z − 2i)

eimz

(z − 2i) (z + 2i)

]
= lim

z→2i

[
eimz

z + 2i

]
=

e−2m

4i

Thus, Res
z=2i

f(z) = e−2m

4i

Now, by Cauchy Residue Theorem, we have∫
C

f(z)dz = 2πi · e
−2m

4i
=

πe−2m

2
⇒

∫
C

f(z)dz =
πe−2m

2

⇒
R∫

−R

f(x)dx+

∫
Γ

f(z)dz =
πe−2m

2

⇒ lim
R→∞

R∫
−R

f(x)dx+ lim
R→∞

∫
Γ

f(z)dz =
πe−2m

2
(6)

Since, by Jordan Lemma, we have lim
R→∞

∫
Γ

f(z)dz = 0, so that

∞∫
−∞

eimx

(x2 + 4)
dx =

πe−2m

2
⇒

∞∫
−∞

cosmx

(x2 + 4)
dx+ i

∞∫
−∞

sinmx

(x2 + 4)
dx =

πe−2m

2
+ i0 (7)

Now, comparing real and imaginary parts of equation (7), then we have

∞∫
−∞

sinmx

(x2 + 4)
dx = 0

2.4. Improper Integrals Involving Logarithm Function
The following rules give an easy way to find improper integrals of a function

involving logarithm functions [5, 7].

Put x=z. Consider the integral
∫
C

f(z)dz, where f(z) = (logz)2

z2+1
, and the con-

tour C consists of positive oriented semi-circle Γ given by |z| = R described up-
per part of the real axis. The segment AB onx-axis from −R to −r, and the
segment ED onx-axis from r to R, take R → ∞, and r → 0. In addition,
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Figure 4

the pole at z = 0 is surrounded by the negatively
orientated semi-circle Γ1. Here, the line of inte-
gration, z = 0, is a pole on the x-axis. Since we
cannot integrate through a singularity, we have ad-
justed the contour by indenting the path at z = 0,
and as a result, we have taken the semi-circle Γ1.
Thus, the contour C = Γ + AB + Γ1 + ED.

Example 2.5. Evaluate
∞∫

−∞

(logx)2

x2+1
dx [5, 6].

Solution. Let us suppose that
∫
C

f(z), where f(z) = (logz)2

z2+1
, and C is the contour

of the figure 4. Now, the poles of f(z) can be obtained by z2 + 1 = 0. ⇒ z = ±i,
which are simple poles, but only the pole z = i of f(z) lies within the contour C,
so the Residue of f(z) is

Res
z=i

f(z) = lim
z→i

[(z − i) f(z)] = lim
z→i

[
(z − i)

(logz)2

z2 + 1

]

= lim
z→i

[
(z − i)

(logz)2

(z − i) (z + i)

]
= lim

z→i

[
(logz)2

z + i

]

=
(logi)2

2i
=

[log (0 + i)]2

2i
=

1

2i

[
1

2
log

(
02 + 12

)
+ itan−1

(
1

0

)]2
=

1

2i

[
1

2
log (1) + itan−1 (∞)

]2
=

1

2i

[
0 + i

π

2

]2
=

iπ2

8

⇒ Res
z=i

f(z) =
iπ2

8

Now, by Cauchy Residue Theorem, we have

∫
C

f(z)dz = 2πi · iπ
2

8
=

−π3

4

⇒
∫
C

f(z)dz =
−π3

4
⇒

−r∫
−R

f(z)dz +

∫
Γ1

f(z)dz +

R∫
r

f(z)dz +

∫
Γ

f(z)dz =
−π3

4
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⇒
−r∫

−R

(log(z))2

z2 + 1
dz +

∫
Γ1

(logz)2

z2 + 1
dz +

R∫
r

(logz)2

z2 + 1
dx+

∫
Γ

(logz)2

z2 + 1
dz =

−π3

4
(8)

Now, the variable z = −x in segment AB at x-axis, then we have
log(z) = log(−x) = logx+ log(−1) = logx+ log(eiπ), and dz = −dx.
Therefore,

−r∫
−R

(log(z))2

z2 + 1
dz = −

−r∫
−R

(log(−x))2

x2 + 1
dx =

R∫
r

[logx+ πi]2

x2 + 1
dx (9)

Again, the variable z = x in segment ED at x-axis, then we have

R∫
r

(log(z))2

z2 + 1
dz =

R∫
r

(log(x))2

x2 + 1
dx (10)

Thus, from equations (8), (9), and (10), we have

R∫
r

(logx+ πi)2

x2 + 1
dx+

∫
Γ1

(logz)2

z2 + 1
dz +

R∫
r

(logx)2

x2 + 1
dx+

∫
Γ

(logz)2

z2 + 1
dz =

−π3

4

⇒ lim
R→∞,
r→0

R∫
r

(logx+ πi)2

x2 + 1
dx+ lim

R→∞,
r→0

∫
Γ1

(logz)2

z2 + 1
dz + lim

R→∞,
r→0

R∫
r

(logx)2

x2 + 1
dx (11)

+ lim
R→∞,
r→0

∫
Γ

(logz)2

z2 + 1
dz =

−π3

4

⇒
∞∫
0

(logx+ πi)2

x2 + 1
dx+

∞∫
0

(logx)2

x2 + 1
dx =

−π3

4

⇒
∞∫
0

[(logx)2 + 2πilogx− π2]
2

x2 + 1
dx+

∞∫
0

(logx)2

x2 + 1
dx =

−π3

4

⇒
∞∫
0

(logx)2

x2 + 1
dx+ 2πi

∞∫
0

logx

x2 + 1
dx− π2

∞∫
0

dx

x2 + 1
+

∞∫
0

(logx)2

x2 + 1
dx =

−π3

4

⇒ 2

∞∫
0

(logx)2

x2 + 1
dx+ 2πi

∞∫
0

logx

x2 + 1
dx− π2

∞∫
0

dx

x2 + 1
=

−π3

4
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⇒ 2

∞∫
0

(logx)2

x2 + 1
dx+ 2πi

∞∫
0

logx

x2 + 1
dx− π2

(
tan−1x

)∞
0

=
−π3

4

⇒ 2

∞∫
0

(logx)2

x2 + 1
dx+ 2πi

∞∫
0

logx

x2 + 1
dx− π2

(π
2

)
=

−π3

4

⇒
∞∫
0

(logx)2

x2 + 1
dx+ 2πi

∞∫
0

logx

x2 + 1
dx =

π3

8
+ 0i (12)

Comparing real and imaginary parts of the equation (12), then we have

∞∫
0

(logx)2

x2 + 1
dx =

π3

8
(13)

Moreover, we have

∞∫
−∞

(logx)2

x2 + 1
dx = 2

∞∫
0

(logx)2

x2 + 1
dx (14)

Hence, from equations (13), and (14), we have

∞∫
−∞

(logx)2

x2 + 1
dx =

π3

4

3. Conclusion
In conclusion, this study has demonstrated how effectively Cauchy’s Residue

Theorem supports complex integrals along simple closed contours. By carefully
selecting simple closed contours, specifically upper semi-circle containing isolated
singularities, this study has effectively addressed the problem of evaluating anoma-
lous definite integrals, which are frequently complex and difficult to solve using
traditional methods.

The study focuses on four primary categories of definite integrals: sine and

cosines functions, rational function of the form
∞∫

−∞
f(z)dz, rational function of the

form
∞∫

−∞
f(x)sinmxdx or

∞∫
−∞

f(x)cosmxdx and improper integral involving loga-

rithm function. The residues at the singularities could be computed since the
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selected contours effectively enclosed them. After then, the integrals were simpli-
fied and assessed using these residues, which are essential parts in the application
of Cauchy’s Residue Theorem.

Furthermore, this study proved that using Cauchy’s residual theorem has a
clear advantage over traditional real analysis techniques. The method’s efficiency
stemmed from its ability to represent the integral along a simple closed contour as
the sum of integrals along the real axis and the circle. This not only simplified the
evaluation process but also provided an in-depth understanding of the behavior of
the integral.

In essence, the results of this study demonstrate how effective Cauchy’s Residue
Theorem is at addressing a wide range of definite integrals involving various func-
tions. This study’s methodology brings up new possibilities for solving difficult
mathematical problems that would otherwise be difficult or probably unsolvable
when utilizing conventional real analysis methods.
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