J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 11, No. 2 (2024), pp. 89-102 DOI: 10.56827/JRSMMS.2024.1102.6 ISSN (Online):

ISSN (Online): 2582-5461 ISSN (Print): 2319-1023

A NEW TYPE OF REGULARITY IN FUZZY MINIMAL SPACE

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, INDIA E-mail : anjanabhattacharyya@hotmail.com

(Received: May 07, 2024 Accepted: Jun. 12, 2024 Published: Jun. 30, 2024)

Abstract: This paper deals with a new type of open-like set in fuzzy minimal space [2], viz., fuzzy m- α -preopen set taking fuzzy m- α -open set [3] as a basic tool. Afterwards, we introduce an idempotent operator, viz., fuzzy m- α -preclosure operator. With the help of this operator we introduce and study two new types of functions, viz., fuzzy (m, m_1) - α -precontinuous function and fuzzy (m, m_1) - α -preirresolute function. It is shown that fuzzy (m, m_1) - α -preirresolute function implies fuzzy (m, m_1) - α -precontinuous function, but reverse implication is not necessarily true, in general. Moreover, we introduce fuzzy m- α -precedular space in which the reverse implication holds.

Keywords and Phrases: Fuzzy *m*-open set, fuzzy *m*- α -preopen set, fuzzy (m, m_1) - α -precontinuous function, fuzzy (m, m_1) - α -preirresolute function, fuzzy *m*- α - pre-regular space.

2020 Mathematics Subject Classification: 54A40, 03E72.

1. Introduction

In [8], L.A. Zadeh introduced fuzzy set as follows : A fuzzy set A is a mapping from a non-empty set X into the closed interval [0, 1], i.e., $A \in I^X$. In 1968, C.L. Chang introduced fuzzy topology [5]. Afterwards, Alimohammady and Roohi introduced a more general version of fuzzy topology by introducing fuzzy minimal structure as follows : A family \mathcal{M} of fuzzy sets in a non-empty set X is said to be a fuzzy minimal structure on X if $\alpha 1_X \in \mathcal{M}$ for every $\alpha \in [0, 1]$ [1]. However a more general version of it (in the sense of Chang) is introduced in [4, 6] as follows : A family \mathcal{F} of fuzzy sets in a non-empty set X is a fuzzy minimal structure on X if $0_X \in \mathcal{F}$ and $1_X \in \mathcal{F}$. In this paper, we use the notion of fuzzy minimal structure in the sense of Chang. In [2], we introduced fuzzy minimal space (fuzzy *m*-space, for short) as follows : Let X be a non-empty set and $m \subset I^X$. Then (X, m) is called fuzzy *m*-space if $0_X \in m$ and $1_X \in m$. The members of *m* are called fuzzy *m*-open sets and the complement of a fuzzy *m*-open set is called fuzzy *m*-closed set [2].

2. Preliminary

Throughout this paper, (X, m) or simply by X we shall mean a fuzzy minimal space (fuzzy *m*-space, for short). The support [8] of a fuzzy set A, denoted by suppA or A_0 and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t \ (0 < t \leq 1)$ will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [8] of a fuzzy set A in X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A, B in X, $A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [8] while AqB means A is quasicoincident (q-coincident, for short) [7] with B, i.e., there exists $x \in X$ such that A(x) + B(x) > 1. The negation of these two statements will be denoted by $A \not \leq B$ and A $A \not B$ respectively. For a fuzzy set A and a fuzzy point x_{α} in X, $x_{\alpha} \in A$ means $A(x) \geq \alpha$. A fuzzy set A in a fuzzy m-space (X, m) is called a fuzzy m-nbd of a fuzzy point x_{α} in X if there exists a fuzzy m-open set U in X such that $x_{\alpha} \in U \leq A$ [2]. If, in addition, A is fuzzy m-open, then A is called a fuzzy m-open nbd of x_{α} [2]. A fuzzy set A in a fuzzy m-space (X, m) is called a fuzzy m-q-nbd of a fuzzy point x_{α} in X if there exists a fuzzy *m*-open set U in X such that $x_{\alpha}qU \leq A$ [2]. If, in addition, A is fuzzy m-open, then A is called a fuzzy m-open q-nbd of $x_{\alpha}[2]$.

3. Fuzzy m- α -Preopen Set : Some Properties

Using fuzzy m- α -open set as a basic tool, here we introduce fuzzy m- α -preopen set, the class of which is strictly larger than that of fuzzy m-open as well as fuzzy m- α -open sets. Afterwards, we introduce fuzzy m- α -preclosure operator which is an idempotent operator.

We first recall some definitions from [2, 3] for ready references.

Definition 3.1. [2] Let X be a non-empty set and $m \in I^X$ an m-structure on X. For $A \in I^X$, the m-closure of A and m-interior of A are defined as follows :

$$mclA = \bigwedge \{F : A \le F, 1_X \setminus F \in m\}$$

$$mintA = \bigvee \{D : D \le A, D \in m\}$$

It can be observed that a given fuzzy minimal structure on $X, A \in I^X$ does not imply that $mintA \in m$ and mclA is fuzzy *m*-closed. But if *m* satisfies *M*-condition (i.e., *m* is closed under arbitrary union), then $mintA \in m$ and mclA is fuzzy *m*closed.

Proposition 3.2. [2] Let X be a non-empty set and m, an m-structure on X. Then for any $A \in I^X$, a fuzzy point $x_{\alpha} \in mclA$ if and only if for any $U \in m$ with $x_{\alpha}qU$, UqA.

Lemma 3.3. [2] Let X be a non empty set and m, an m-structure on X. For $A, B \in I^X$, the following hold :

(i) $A \leq B$ which implies that (a) mint $A \leq mintB$, (b) $mclA \leq mclB$.

(ii) (a) $mcl_0X = 0_X$, $mcl_1X = 1_X$, (b) $mint_0X = 0_X$, $mint_1X = 1_X$.

(iii) $mintA \le A \le mclA$.

(iv) (a) mclA = A if $1_X \setminus A \in m$, (b) mintA = A, if $A \in m$.

(v) (a) $mcl(1_X \setminus A) = 1_X \setminus mintA$, (b) $mint(1_X \setminus A) = 1_X \setminus mclA$.

(vi) (a) mcl(mclA) = mclA, (b) mint(mintA) = mintA.

(vii) (a) $mcl(A \land B) \leq mclA \land mclB$, (b) $mint(A \lor B) \geq mintA \lor mintB$.

Definition 3.4. [3] Let (X, m) be a fuzzy m-space and $A \in I^X$. Then A is called fuzzy m- α -open [3] if $A \leq mint(mcl(mintA))$.

The complement of fuzzy m- α -open set is called fuzzy m- α -closed [3].

The union (intersection) of all fuzzy m- α -open (resp., fuzzy m- α -closed) sets contained in (resp., containing) a fuzzy set A is called fuzzy m- α -interior [3] (resp., fuzzy m- α -closure [3]) of A denoted by $m\alpha intA$ (resp., $m\alpha clA$).

The collection of all fuzzy m- α -open (resp., fuzzy m- α -closed) sets in a fuzzy m-space X is denoted by $Fm\alpha O(X)$ (resp., $Fm\alpha C(X)$).

Proposition 3.5. [3] Let (X,m) be a fuzzy m-space and $A \in I^X$. Then a fuzzy point $x_{\alpha} \in m\alpha clA$ if and only if for every fuzzy m- α -open set U in X, $x_{\alpha}qU$, UqA, *i.e.*, for every fuzzy m- α -open q-nbd U of x_{α} , UqA.

Result 3.6. [3] Let (X, m) be a fuzzy *m*-space and $A, B \in I^X$. Then the following statements hold :

(i) $A \leq B$ which implies that (a) $m\alpha intA \leq m\alpha intB$, (b) $m\alpha clA \leq m\alpha clB$.

(*ii*) (*a*) $m\alpha cl_{0X} = 0_X$, $m\alpha cl_{1X} = 1_X$, (*b*) $m\alpha int_{0X} = 0_X$, $m\alpha int_{1X} = 1_X$.

(iii) $m\alpha intA \leq A \leq m\alpha clA$.

(iv) (a) $m\alpha clA = A$ if $A \in Fm\alpha C(X)$, (b) $m\alpha intA = A$, if $A \in Fm\alpha O(X)$.

(v) (a) $m\alpha cl(1_X \setminus A) = 1_X \setminus m\alpha intA$, (b) $m\alpha int(1_X \setminus A) = 1_X \setminus m\alpha clA$.

(vi) (a) $m\alpha cl(m\alpha clA) = m\alpha clA$, (b) $m\alpha int(m\alpha intA) = m\alpha intA$.

(vii) (a) $m\alpha cl(A \land B) \leq m\alpha clA \land m\alpha clB$, (b) $m\alpha int(A \lor B) \geq m\alpha intA \lor m\alpha intB$, (viii) (a) $m\alpha cl(A \lor B) \geq m\alpha clA \lor m\alpha clB$, (b) $m\alpha cl(A \land B) \leq m\alpha intA \land m\alpha intB$.

Definition 3.7. A fuzzy set A in a fuzzy m-space (X,m) is called fuzzy m- α -preopen if $A \leq m\alpha int(mclA)$. The complement of this set is called fuzzy m- α -preclosed set.

The collection of fuzzy m- α -preopen (resp., fuzzy m- α -preclosed) sets in (X, m) is denoted by $Fm\alpha PO(X)$ (resp., $Fm\alpha PC(X)$).

The union (resp., intersection) of all fuzzy m- α -preopen (resp., fuzzy m- α -preclosed) sets contained in (containing) a fuzzy set A is called fuzzy m- α -preinterior (resp., fuzzy m- α -preclosure) of A, denoted by $m\alpha pintA$ (resp., $m\alpha pclA$).

Result 3.8. Union of two fuzzy m- α -preopen sets in a fuzzy m-space X is also so. **Proof.** Let $A, B \in Fm\alpha PO(X)$. Then $A \leq m\alpha int(mclA), B \leq m\alpha int(mclB)$. Now $m\alpha int(mcl(A \lor B)) = m\alpha int(mclA \lor mclB) \geq m\alpha int(mclA) \lor m\alpha int(mclB)$ $\geq A \lor B$.

Remark 3.9. Intersection of two fuzzy m- α -preopen sets need not be so, follows from the next example.

Example 3.10. Let $X = \{a, b\}, m = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.6. Then (X, m) is a fuzzy *m*-space. Consider two fuzzy sets U, V defined by U(a) = 0.4, U(b) = 0.5, V(a) = 0.6, V(b) = 0.4. Then clearly $U, V \in Fm\alpha PO(X)$. Let $W = U \bigwedge V$. Then W(a) = W(b) = 0.4. Now $m\alpha int(mclW) \not\geq W \Rightarrow W \notin Fm\alpha PO(X)$.

Remark 3.11. Fuzzy *m*-open and fuzzy *m*- α -open sets are fuzzy *m*- α -preopen, but not conversely follow from the next example.

Example 3.12. Consider Example 3.10. Here $U \in Fm\alpha PO(X)$. But $U \notin m$, $U \notin Fm\alpha O(X)$.

Definition 3.13. A fuzzy set A in a fuzzy m-space (X, m) is called fuzzy m- α -pre neighbourhood (fuzzy m- α -pre nbd, for short) of a fuzzy point x_{α} if there exists a fuzzy m- α -preopen set U in X such that $x_{\alpha} \in U \leq A$. If, in addition, A is fuzzy m- α -preopen, then A is called fuzzy m- α -preopen nbd of x_{α} .

Definition 3.14. A fuzzy set A in a fuzzy m-space (X, m) is called fuzzy m- α -pre quasi neighbourhood (fuzzy m- α -pre q-nbd, for short) of a fuzzy point x_{α} if there exists a fuzzy m- α -preopen set U in X such that $x_{\alpha}qU \leq A$. If, in addition, A is fuzzy m- α -preopen, then A is called fuzzy m- α -preopen q-nbd of x_{α} .

Remark 3.15. Since a fuzzy m-open set is fuzzy m- α -preopen, we can conclude

that

(i) fuzzy m-nbd (resp., fuzzy m-open nbd) of a fuzzy point x_{α} is a fuzzy m- α -pre nbd (resp., fuzzy m- α -preopen nbd) of x_{α} ,

(ii) fuzzy m-q-nbd (resp., fuzzy m-open q-nbd) of a fuzzy point x_{α} is a fuzzy m- α -pre q-nbd (resp., fuzzy m- α -preopen q-nbd) of x_{α} .

But the reverse implications are not necessarily true follow from the following example.

Example 3.16. Let $X = \{a, b\}$, $m = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.6. Then (X, m) is a fuzzy *m*-space. Consider two fuzzy sets B, C defined by B(a) = 0.4, B(b) = 0.5, C(a) = 0.6, C(b) = 0.4. Then $B, C \in Fm\alpha O(X)$. Consider two fuzzy points $a_{0.3}$ and $a_{0.45}$. Now $a_{0.3} \in B \leq B \Rightarrow B$ is a fuzzy *m*- α -pre nbd as well as fuzzy *m*- α -preopen nbd of $a_{0.3}$. But there does not exist any fuzzy *m*-open set U in (X, m) such that $a_{0.3} \in U \leq B$. So B is not a fuzzy *m*-nbd and fuzzy *m*-open nbd of $a_{0.3}$.

Next $a_{0.45}qC \leq C \Rightarrow C$ is a fuzzy m- α -pre q-nbd as well as fuzzy m- α -preopen q-nbd of $a_{0.45}$. But there does not exist a fuzzy m-open set U in X with $a_{0.45}qU \leq C \Rightarrow C$ is not a fuzzy m-q-nbd and fuzzy m-open q-nbd of $a_{0.45}$.

Theorem 3.17. For any fuzzy set A in a fuzzy m-space (X, m), $x_t \in m\alpha pclA$ if and only if every fuzzy m- α -preopen q-nbd U of x_t , UqA.

Proof. Let $x_t \in m\alpha pclA$ for any fuzzy set A in a fuzzy m-space (X, m). Let $U \in Fm\alpha PO(X)$ with x_tqU . Then $U(x) + t > 1 \Rightarrow x_t \notin 1_X \setminus U \in Fm\alpha PC(X)$. Then by definition, $A \not\leq 1_X \setminus U \Rightarrow$ there exists $y \in X$ such that $A(y) > 1 - U(y) \Rightarrow A(y) + U(y) > 1 \Rightarrow UqA$.

Conversely, let the given condition hold. Let $U \in Fm\alpha PC(X)$ with $A \leq U$... (1). We have to show that $x_t \in U$, i.e., $U(x) \geq t$. If possible, let U(x) < t. Then $1 - U(x) > 1 - t \Rightarrow x_t q(1_X \setminus U)$ where $1_X \setminus U \in Fm\alpha PO(X)$. By hypothesis, $(1_X \setminus U)qA \Rightarrow$ there exists $y \in X$ such that $1 - U(y) + A(y) > 1 \Rightarrow A(y) > U(y)$, contradicts (1).

Theorem 3.18. $m\alpha pcl(m\alpha pclA) = m\alpha pclA$ for any fuzzy set A in a fuzzy mspace (X, m).

Proof. Let $A \in I^X$. Then $A \leq m\alpha pclA \Rightarrow m\alpha pclA \leq m\alpha pcl(m\alpha pclA) \dots$ (1). Conversely, let $x_t \in m\alpha pcl(m\alpha pclA)$. If possible, let $x_t \notin m\alpha pclA$. Then there exists $U \in Fm\alpha PO(X)$,

$$x_t q U, U \not q A...(2)$$

But as $x_t \in m\alpha pcl(m\alpha pclA)$, $Uq(m\alpha pclA) \Rightarrow$ there exists $y \in X$ such that $U(y) + (m\alpha pclA)(y) > 1 \Rightarrow U(y) + s > 1$ where $s = (m\alpha pclA)(y)$. Then $y_s \in m\alpha pclA$

and $y_s qU$ where $U \in Fm\alpha PO(X)$. Then by definition, UqA, contradicts (2). So

 $m\alpha pcl(m\alpha pclA) \leq m\alpha pclA...(3)$

Combining (1) and (3), we get the result.

4. Fuzzy (m, m_1) - α -Precontinuous Function: Some Characterizations

In this section a new type of function is introduced and studied, the class of which is strictly larger than that of fuzzy (m, m_1) -continuous function [3].

Definition 4.1. A function $f : (X, m) \to (Y, m_1)$ is said to be fuzzy (m, m_1) - α -precontinuous if for each fuzzy point x_t in X and every fuzzy m_1 -nbd V of $f(x_t)$ in Y, $mcl(f^{-1}(V))$ is a fuzzy m- α -nbd of x_t in X.

Theorem 4.2. For a function $f : (X,m) \to (Y,m_1)$ where m, m_1 satisfy M-condition, the following statements are equivalent :

(a) f is fuzzy (m, m_1) - α -precontinuous,

(b) $f^{-1}(B) \leq m\alpha int(mcl(f^{-1}(B)))$, for all fuzzy m_1 -open set B of Y,

(c) $f(m\alpha clA) \leq m_1 cl(f(A))$, for all fuzzy m-open set A in X.

Proof. (a) \Rightarrow (b). Let *B* be any fuzzy m_1 -open set in *Y* and $x_t \in f^{-1}(B)$. Then $f(x_t) \in B \Rightarrow B$ is a fuzzy m_1 -nbd of $f(x_t)$ in *Y*. By (a), $mcl(f^{-1}(B))$ is a fuzzy m- α -nbd of x_t in *X*. So $x_t \in m\alpha int(mcl(f^{-1}(B)))$. Since x_t is taken arbitrarily, $f^{-1}(B) \leq m\alpha int(mcl(f^{-1}(B)))$.

(b) \Rightarrow (a). Let x_t be a fuzzy point in X and B be a fuzzy m_1 -nbd of $f(x_t)$ in Y. Then $x_t \in f^{-1}(B) \leq maint(mcl(f^{-1}(B)))$ (by (b)) $\leq mcl(f^{-1}(B))$. So $mcl(f^{-1}(B))$ is a fuzzy m- α -nbd of x_t in X.

(b) \Rightarrow (c). Let A be a fuzzy m-open set in X. Then $1_Y \setminus m_1 cl(f(A))$ is a fuzzy m_1 -open set in Y (as m_1 satisfies M-condition). By (b), $f^{-1}(1_Y \setminus m_1 cl(f(A))) \leq m\alpha int(mcl(f^{-1}(1_Y \setminus m_1 cl(f(A))))) = m\alpha int(mcl(1_X \setminus f^{-1}(m_1 cl(f(A))))) \leq m\alpha int(mcl(1_X \setminus f^{-1}(f(A))))) \leq m\alpha int(mcl(1_X \setminus A)) = m\alpha int(1_X \setminus A) = 1_X \setminus m\alpha clA$. Then $m\alpha clA \leq 1_X \setminus f^{-1}(1_Y \setminus m_1 cl(f(A))) = f^{-1}(m_1 cl(f(A)))$. So $f(m\alpha clA) \leq m_1 cl(f(A))$.

(c) \Rightarrow (b). Let *B* be any fuzzy m_1 -open set in *Y*. Then $mint(f^{-1}(1_Y \setminus B))$ is a fuzzy *m*-open set in *X* (as *m* satisfies *M*-condition). By (c), $f(m\alpha cl(mint(f^{-1}(1_Y \setminus B)))) \leq m_1 cl(f(mint(f^{-1}(1_Y \setminus B)))) \leq m_1 cl(f(f^{-1}(1_Y \setminus B))) \leq m_1 cl(1_Y \setminus B) = 1_Y \setminus B$ (as m_1 satisfies *M*-condition) $\Rightarrow B \leq 1_Y \setminus f(m\alpha cl(mint(f^{-1}(1_Y \setminus B))))$. Then $f^{-1}(B) \leq f^{-1}(1_Y \setminus f(m\alpha cl(mint(f^{-1}(1_Y \setminus B))))) = 1_X \setminus f^{-1}(f(m\alpha cl(mint(f^{-1}(1_Y \setminus B))))) \leq 1_X \setminus m\alpha cl(mint(f^{-1}(1_Y \setminus B)))) = 1_X \setminus m\alpha cl(mint(1_X \setminus f^{-1}(B))) = m\alpha int(mcl(f^{-1}(B))).$

Note 4.3. It is clear from above theorem that the inverse image under fuzzy

 (m, m_1) - α -precontinuous function of any fuzzy m_1 -open set is fuzzy m- α -preopen.

Theorem 4.4. For a function $f : (X,m) \to (Y,m_1)$ where m_1 satisfies *M*-condition, the following statements are equivalent :

(a) f is fuzzy (m, m_1) - α -precontinuous,

(b) $f^{-1}(B) \leq m\alpha int(mcl(f^{-1}(B)))$, for all fuzzy m_1 -open set B of Y,

(c) for each fuzzy point x_t in X and each fuzzy m_1 -open nbd V of $f(x_t)$ in Y, there exists $U \in Fm\alpha PO(X)$ containing x_t such that $f(U) \leq V$,

(d) $f^{-1}(F) \in Fm\alpha PC(X)$, for all fuzzy m_1 -closed sets F in Y,

(e) for each fuzzy point x_t in X, the inverse image under f of every fuzzy m_1 -nbd of $f(x_t)$ is a fuzzy m- α -pre nbd of x_t in X,

(f) $f(m\alpha pclA) \leq m_1 cl(f(A))$, for all fuzzy set A in X,

(g) $m\alpha pcl(f^{-1}(B)) \leq f^{-1}(m_1 clB)$, for all fuzzy set B in Y,

(h) $f^{-1}(m_1 int B) \leq m \alpha pint(f^{-1}(B))$, for all fuzzy set B in Y.

Proof. (a) \Leftrightarrow (b). Follows from Theorem 4.2 (a) \Leftrightarrow (b).

(b) \Rightarrow (c). Let x_t be a fuzzy point in X and V be a fuzzy open m_1 -nbd of $f(x_t)$ in Y. By (b), $f^{-1}(V) \leq m\alpha int(mcl(f^{-1}(V))) \dots (1)$. Now $f(x_t) \in V \Rightarrow x_t \in f^{-1}(V)$ (= U, say). Then $x_t \in U$ and by (1), $U(=f^{-1}(V)) \in Fm\alpha PO(X)$ and $f(U) = f(f^{-1}(V)) \leq V$.

(c) \Rightarrow (b). Let V be a fuzzy m_1 -open set in Y and let $x_t \in f^{-1}(V)$. Then $f(x_t) \in V \Rightarrow V$ is a fuzzy m_1 -open nbd of $f(x_t)$ in Y. By (c), there exists $U \in Fm\alpha PO(X)$ containing x_t such that $f(U) \leq V$. Then $x_t \in U \leq f^{-1}(V)$. Now $U \leq m\alpha int(mclU)$. Then $U \leq m\alpha int(mclU) \leq m\alpha int(mcl(f^{-1}(V))) \Rightarrow x_t \in U \leq m\alpha int(mcl(f^{-1}(V)))$. Since x_t is taken arbitrarily, $f^{-1}(V) \leq m\alpha int(mcl(f^{-1}(V)))$. (b) \Leftrightarrow (d). Obvious.

(b) \Rightarrow (e). Let W be a fuzzy m_1 -nbd of $f(x_t)$ in Y. Then there exists a fuzzy m_1 open set V in Y such that $f(x_t) \in V \leq W \Rightarrow V$ is a fuzzy m_1 -open nbd of $f(x_t)$ in Y. Then by (b), $f^{-1}(V) \in Fm\alpha PO(X)$ and $x_t \in f^{-1}(V) \leq f^{-1}(W) \Rightarrow f^{-1}(W)$ is a fuzzy m- α -pre nbd of x_t in X.

(e) \Rightarrow (b). Let V be a fuzzy m_1 -open set in Y and $x_t \in f^{-1}(V)$. Then $f(x_t) \in V$. Then V is a fuzzy m_1 -open nbd of $f(x_t)$ in Y. By (e), there exists $U \in Fm\alpha PO(X)$ containing x_t such that $U \leq f^{-1}(V) \Rightarrow x_t \in U \leq m\alpha int(mclU) \leq m\alpha int(mcl(f^{-1}(V)))$. Since x_t is taken arbitrarily, $f^{-1}(V) \leq m\alpha int(mcl(f^{-1}(V)))$. (d) \Rightarrow (f). Let $A \in I^X$. Then $m_1 cl(f(A))$ is a fuzzy m_1 -closed set in Y (as m_1 satisfies M-condition). By (d), $f^{-1}(m_1 cl(f(A))) \in Fm\alpha PC(X)$ containing A. Therefore, $m\alpha pclA \leq m\alpha pcl(f^{-1}(m_1cl(f(A)))) = f^{-1}(m_1cl(f(A))) \Rightarrow f(m\alpha pclA) \leq m_1 cl(f(A))$.

(f) \Rightarrow (d). Let *B* be a fuzzy m_1 -closed set in *Y*. Then $f^{-1}(B) \in I^X$. By (f), $f(m\alpha pcl(f^{-1}(B))) \leq m_1 cl(f(f^{-1}(B))) \leq m_1 clB = B$ (as m_1 satisfies *M*-condition)

$$\begin{split} &\Rightarrow m\alpha pcl(f^{-1}(B)) \leq f^{-1}(B) \Rightarrow f^{-1}(B) \in Fm\alpha PC(X). \\ (f) \Rightarrow (g). \text{ Let } B \in I^Y. \text{ Then } f^{-1}(B) \in I^X. \text{ By } (f), \ f(m\alpha pcl(f^{-1}(B))) \leq \\ &m_1cl(f(f^{-1}(B))) \leq m_1clB \Rightarrow m\alpha pcl(f^{-1}(B)) \leq f^{-1}(m_1clB). \\ (g) \Rightarrow (f). \text{ Let } A \in I^X. \text{ Let } B = f(A). \text{ Then } B \in I^Y. \text{ By } (g), \ m\alpha pcl(f^{-1}(f(A))) \leq \\ &f^{-1}(m_1cl(f(A))) \Rightarrow m\alpha pclA \leq f^{-1}(m_1cl(f(A))) \Rightarrow f(m\alpha pclA) \leq m_1cl(f(A)). \\ (b) \Rightarrow (h). \text{ Let } B \in I^Y. \text{ Then } m_1intB \text{ is a fuzzy } m_1\text{-open set in } Y \text{ (as } m_1 \text{ satisfies } M\text{-condition}). \text{ By } (b), \ f^{-1}(m_1intB) \leq m\alpha int(mcl(f^{-1}(m_1intB))) \Rightarrow \\ &f^{-1}(m_1intB) \in Fm\alpha PO(X) \Rightarrow f^{-1}(m_1intB) = m\alpha pint(f^{-1}(m_1intB)) \leq m\alpha pint \\ (f^{-1}(B)). \end{split}$$

(h) \Rightarrow (b). Let A be any fuzzy m_1 -open set in Y. Then $f^{-1}(A) = f^{-1}(m_1 intA) \le m\alpha pint(f^{-1}(A))$ (by (h)) $\Rightarrow f^{-1}(A) \in Fm\alpha PO(X)$.

Theorem 4.5. A function $f : (X, m) \to (Y, m_1)$ is fuzzy (m, m_1) - α -precontinuous if and only if for each fuzzy point x_t in X and each fuzzy m_1 -open q-nbd V of $f(x_t)$ in Y, there exists a fuzzy m- α -pre q-nbd W of x_t in X such that $f(W) \leq V$.

Proof. Let f be fuzzy (m, m_1) - α -precontinuous function and x_t be a fuzzy point in X and V be a fuzzy m_1 -open q-nbd of $f(x_t)$ in Y. Then $f(x_t)qV$. Let f(x) = y. Then $V(y) + t > 1 \Rightarrow V(y) > 1 - t \Rightarrow V(y) > \beta > 1 - t$, for some real number β . Then V is a fuzzy m_1 -open nbd of y_β . By Theorem 4.4 (a) \Rightarrow (c), there exists $W \in Fm\alpha PO(X)$ containing x_β , i.e., $W(x) \ge \beta$ such that $f(W) \le V$. Then $W(x) \ge \beta > 1 - t \Rightarrow x_t qW$ and $f(W) \le V$.

Conversely, let the given condition hold and let V be a fuzzy m_1 -open set in Y. Put $W = f^{-1}(V)$. If $W = 0_X$, then we are done. Suppose $W \neq 0_X$. Then for any $x \in W_0$, let y = f(x). Then $W(x) = [f^{-1}(V)](x) = V(f(x)) = V(y)$. Let us choose $m \in \mathcal{N}$ where \mathcal{N} is the set of all natural numbers such that $1/m \leq W(x)$. Put $\alpha_n = 1 + 1/n - W(x)$, for all $n \in \mathcal{N}$. Then for $n \in \mathcal{N}$ and $n \geq m, 1/n \leq 1/m \Rightarrow 1 + 1/n \leq 1 + 1/m \Rightarrow \alpha_n = 1 + 1/n - W(x) \leq 1 + 1/m - W(x) \leq 1$. Again $\alpha_n > 0$, for all $n \in \mathcal{N} \Rightarrow 0 < \alpha_n \leq 1$ so that $V(y) + \alpha_n > 1 \Rightarrow y_{\alpha_n} qV \Rightarrow V$ is a fuzzy m_1 -open q-nbd of y_{α_n} . By the given condition, there exists $U_n^x \in Fm\alpha PO(X)$ such that $x_{\alpha_n} qU_n^x$ and $f(U_n^x) \leq V$, for all $n \geq m$. Let $U^x = \bigvee \{U_n^x : n \in \mathcal{N}, n \geq m\}$. Then $U^x \in Fm\alpha PO(X)$ (by Result 3.8) and $f(U^x) \leq V$. Again $n \geq m \Rightarrow U_n^x(x) + \alpha_n > 1 \Rightarrow U_n^x(x) + 1 + 1/n - W(x) > 1 \Rightarrow U_n^x(x) > W(x) - 1/n \Rightarrow U_n^x(x) \geq W(x)$, for each $x \in W_0$. Then $W \leq U_n^x$, for all $n \geq m$ and for all $x \in W_0 \Rightarrow W \leq U^x$, for all $x \in W_0 \Rightarrow W \leq \bigvee_{x \in W_0} U^x = U$ (say) ... (1) and $f(U^x) \leq V$, for all

 $x \in W_0 \Rightarrow f(U) \leq V \Rightarrow U \leq f^{-1}(f(U)) \leq f^{-1}(V) = W \dots$ (2). By (1) and (2), $U = W = f^{-1}(V) \Rightarrow f^{-1}(V) \in Fm\alpha PO(X)$. Hence by Theorem 4.2, f is fuzzy (m, m_1) - α -precontinuous function. **Remark 4.6.** Composition of two fuzzy (m, m_1) - α -precontinuous functions need not be so, follows from the following example.

Example 4.7. Let $X = \{a, b\}, m_1 = \{0_X, 1_X, A\}, m_2 = \{0_X, 1_X\}, m_3 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.4. Then $(X, m_1), (X, m_2)$ and (X, m_3) are fuzzy *m*-spaces. Consider two identity functions $i_1 : (X, m_1) \rightarrow (X, m_2)$ and $i_2 : (X, m_2) \rightarrow (X, m_3)$. Clearly i_1 and i_2 are fuzzy $(m_1, m_2) - \alpha$ -precontinuous and fuzzy $(m_2, m_3) - \alpha$ -precontinuous functions. Now $B \in m_3$. $(i_2 \circ i_1)^{-1}(B) = B \not\leq m_1 \alpha int(m_1 cl B) = 0_X \Rightarrow B \notin Fm_1 \alpha PO(X) \Rightarrow i_2 \circ i_1$ is not fuzzy $(m_1, m_3) - \alpha$ -precontinuous function.

Let us now recall the following definitions from [3] for ready references.

Definition 4.8. [3] A function $f : (X,m) \to (Y,m_1)$ is called fuzzy (m,m_1) continuous function if the inverse image of every fuzzy m_1 -open set in Y is fuzzy m-open set in X.

Note 4.9. It is clear from above definition that fuzzy (m, m_1) -continuous function is fuzzy (m, m_1) - α -precontinuous. But the converse is not necessarily true follows from the next example.

Example 4.10. Let $X = \{a, b\}$, $m_1 = \{0_X, 1_X\}$, $m_2 = \{0_X, 1_X, A\}$ where A(a) = 0.5 = A(b). Then (X, m_1) and (X, m_2) are fuzzy *m*-spaces. Consider the identity function $i : (X, m_1) \to (X, m_2)$. Now $A \in m_2, i^{-1}(A) = A \notin m_1$. Clearly *i* is not fuzzy (m_1, m_2) -continuous function. Now every fuzzy set in (X, m_1) is fuzzy m_1 - α -preopen in $(X, m_1) \Rightarrow i$ is fuzzy (m_1, m_2) - α -precontinuous function.

5. Fuzzy (m, m_1) - α -Preirresolute Function: Some Properties

In this section we introduce a new type of function, viz., fuzzy (m, m_1) - α -preirresolute function, the class of which is coarser than that of fuzzy (m, m_1) - α -precontinuous function.

Definition 5.1. A function $f : (X,m) \to (Y,m_1)$ is called fuzzy (m,m_1) - α -preirresolute if the inverse image of every fuzzy m_1 - α -preopen set in Y is fuzzy m- α -preopen in X.

Theorem 5.2. For a function $f : (X,m) \to (Y,m_1)$ where m_1 satisfies *M*-condition, the following statements are equivalent :

(a) f is fuzzy (m, m_1) - α -preirresolute,

(b) for each fuzzy point x_t in X and each fuzzy m_1 - α -preopen nbd V of $f(x_t)$ in Y, there exists a fuzzy m- α -preopen nbd U of x_t in X and $f(U) \leq V$,

(c) $f^{-1}(F) \in Fm\alpha PC(X)$, for all $F \in Fm_1 \alpha PC(Y)$,

(d) for each fuzzy point x_t in X, the inverse image under f of every fuzzy m_1 - α -

preopen nbd of $f(x_t)$ is a fuzzy m- α -preopen nbd of x_t in X, (e) $f(m\alpha pclA) \leq m_1 \alpha pcl(f(A))$, for all $A \in I^X$, (f) $m\alpha pcl(f^{-1}(B)) \leq f^{-1}(m_1 \alpha pclB)$, for all $B \in I^Y$, (g) $f^{-1}(m_1 \alpha pintB) \leq m\alpha pint(f^{-1}(B))$, for all $B \in I^Y$. **Proof.** The proof is similar to that of Theorem 4.4 and hence is omitted.

From. The proof is similar to that of Theorem 4.4 and hence is omitted.

Theorem 5.3. A function $f : (X, m) \to (Y, m_1)$ is fuzzy (m, m_1) - α -preirresolute if and only if for each fuzzy point x_t in X and corresponding to any fuzzy m_1 - α preopen q-nbd V of $f(x_t)$ in Y, there exists a fuzzy m- α -preopen q-nbd W of x_t in X such that $f(W) \leq V$.

Proof. The proof is similar to that of Theorem 4.5 and hence is omitted.

Remark 5.4. Clearly composition of two fuzzy (m, m_1) - α -preirresolute functions is fuzzy (m, m_1) - α -preirresolute.

Theorem 5.5. If $f : (X,m) \to (Y,m_1)$ is fuzzy (m,m_1) - α -preirresolute and $g : (Y,m_1) \to (Z,m_2)$ is fuzzy (m_1,m_2) - α -precontinuous (resp. fuzzy (m_1,m_2) -continuous), then $g \circ f : (X,m) \to (Z,m_2)$ is fuzzy (m,m_2) - α -precontinuous. **Proof.** Obvious.

Remark 5.6. Every fuzzy (m, m_1) - α -preirresolute function is fuzzy (m, m_1) - α -precontinuous, but the converse is not true, in general, follows from the following example.

Example 5.7. Fuzzy (m, m_1) - α -precontinuous function $\not\Rightarrow$ fuzzy (m, m_1) - α - preirresolute function.

Let $X = \{a, b\}, m = \{0_X, 1_X, A\}, m_1 = \{0_X, 1_X\}$ where A(a) = 0.5, A(b) = 0.6. Then (X, m) and (X, m_1) are fuzzy *m*-spaces. Consider the identity function $i : (X, m) \to (X, m_1)$. Clearly *i* is fuzzy (m, m_1) - α -precontinuous function. Now every fuzzy set in (X, m_1) is fuzzy m_1 - α -preopen set in (X, m_1) . Consider the fuzzy set *B* defined by B(a) = B(b) = 0.4. Then $B \in Fm_1 \alpha PO(X)$. Now $i^{-1}(B) = B \not\leq m\alpha int(mclB) = 0_X \Rightarrow B \notin Fm\alpha PO(X) \Rightarrow i$ is not fuzzy (m, m_1) - α -preirresolute function.

6. Fuzzy m- α -Preregular Space

In this section we introduce fuzzy m- α -preregular space in which space fuzzy m- α -preopen set and fuzzy m-open set coincide.

Definition 6.1. A fuzzy m-space (X, m) is said to be fuzzy m- α -preregular if for each fuzzy m- α -preclosed set F in X and each fuzzy point x_t in X with $x_tq(1_X \setminus F)$, there exist a fuzzy m-open set U in X and a fuzzy m- α -preopen set V in X such that x_tqU , $F \leq V$ and U $\not qV$. **Theorem 6.2.** For a fuzzy m-space (X, m) where m satisfies M-condition, the following statements are equivalent:

(a) X is fuzzy m- α -preregular,

(b) for each fuzzy point x_t in X and each fuzzy m- α -preopen set U in X with $x_t qU$, there exists a fuzzy m-open set V in X such that $x_t qV \leq m\alpha pclV \leq U$,

(c) for each fuzzy m- α -preclosed set F in X, $\bigcap \{mclV : F \leq V, V \in Fm\alpha PO(X)\} = F$,

(d) for each fuzzy set G in X and each fuzzy m- α -preopen set U in X such that GqU, there exists a fuzzy m-open set V in X such that GqV and $m\alpha pclV \leq U$.

Proof. (a) \Rightarrow (b). Let x_t be a fuzzy point in X and U, a fuzzy m- α -preopen set in X with $x_t q U$. Then $x_t \notin 1_X \setminus U \in Fm\alpha PC(X)$. By (a), there exist a fuzzy m-open set V and a fuzzy m- α -preopen set W in X such that $x_t q V$, $1_X \setminus U \leq W$, $V \not q W$. Then $x_t q V \leq 1_X \setminus W \leq U \Rightarrow x_t q V \leq m\alpha pcl V \leq m\alpha pcl(1_X \setminus W) = 1_X \setminus W \leq U$.

(b) \Rightarrow (a). Let F be a fuzzy m- α -preclosed set in X and x_t be a fuzzy point in X with $x_t \notin F$. Then $x_t q(1_X \setminus F) \in Fm\alpha PO(X)$. By (b), there exists a fuzzy m-open set V in X such that $x_t qV \leq m\alpha pclV \leq 1_X \setminus F$. Put $U = 1_X \setminus m\alpha pclV$. Then $U \in Fm\alpha PO(X)$ and $x_t qV$, $F \leq U$ and $U \notin V$.

(b) \Rightarrow (c). Let F be fuzzy m- α -preclosed set in X. Then $F \leq \bigwedge \{mclV : F \leq V, V \in Fm\alpha PO(X)\}.$

Conversely, let $x_t \notin F \in Fm\alpha PC(X)$. Then $F(x) < t \Rightarrow x_tq(1_X \setminus F)$ where $1_X \setminus F \in Fm\alpha PO(X)$. By (b), there exists a fuzzy *m*-open set *U* in *X* such that $x_tqU \leq m\alpha pclU \leq 1_X \setminus F$. Put $V = 1_X \setminus m\alpha pclU$. Then $F \leq V$ and $U \not AV \Rightarrow x_t \notin mclV \Rightarrow \bigwedge \{mclV : F \leq V, V \in Fm\alpha PO(X)\} \leq F$.

(c) \Rightarrow (b). Let V be any fuzzy m- α -preopen set in X and x_t be any fuzzy point in X with x_tqV . Then $V(x) + t > 1 \Rightarrow x_t \notin (1_X \setminus V)$ where $1_X \setminus V \in Fm\alpha PC(X)$. By (c), there exists $G \in Fm\alpha PO(X)$ such that $1_X \setminus V \leq G$ and $x_t \notin mclG$. Then there exists a fuzzy m-open set U in X with x_tqU , $U \not/qG \Rightarrow U \leq 1_X \setminus G \leq V$ $\Rightarrow x_tqU \leq m\alpha pclU \leq m\alpha pcl(1_X \setminus G) = 1_X \setminus G \leq V$.

(c) \Rightarrow (d). Let G be any fuzzy set in X and U be any fuzzy m- α -preopen set in X with GqU. Then there exists $x \in X$ such that G(x) + U(x) > 1. Let G(x) = t. Then $x_tqU \Rightarrow x_t \notin 1_X \setminus U$ where $1_X \setminus U \in Fm\alpha PC(X)$. By (c), there exists $W \in Fm\alpha PO(X)$ such that $1_X \setminus U \leq W$ and $x_t \notin mclW \Rightarrow (mclW)(x) < t \Rightarrow x_tq(1_X \setminus mclW)$. Let $V = 1_X \setminus mclW$. Then V is fuzzy m-open set in X (as m satisfies M-condition) and $V(x) + t > 1 \Rightarrow V(x) + G(x) > 1 \Rightarrow VqG$ and $m\alpha pclV = m\alpha pcl(1_X \setminus mclV) \leq m\alpha pcl(1_X \setminus W) = 1_X \setminus W \leq U$. (d) \Rightarrow (b). Obvious.

Note 6.3. It is clear from Theorem 6.2 that in a fuzzy m- α -precedular space, every fuzzy m- α -preclosed set is fuzzy m-closed and hence every fuzzy m- α -precopen set

is fuzzy *m*-open. As a result, in a fuzzy *m*- α -preregular space, the collection of all fuzzy *m*-closed (resp., fuzzy *m*-open) sets and fuzzy *m*- α -preclosed (resp., fuzzy *m*- α -preopen) sets coincide.

Theorem 6.4. If $f : (X,m) \to (Y,m_1)$ is fuzzy (m,m_1) - α -precontinuous function where Y is fuzzy m- α -preregular space, then f is fuzzy (m,m_1) - α -preirresolute function.

Proof. Let x_t be a fuzzy point in X and V be any fuzzy m_1 - α -preopen q-nbd of $f(x_t)$ in Y where Y is fuzzy m- α -preregular space. By Theorem 6.2 (a) \Rightarrow (b), there exists a fuzzy m_1 -open set W in Y such that $f(x_t)qW \leq m_1\alpha pclW \leq V$. Since f is fuzzy (m, m_1) - α -precontinuous function, by Theorem 4.5, there exists $U \in Fm\alpha PO(X)$ with x_tqU and $f(U) \leq W \leq V$. By Theorem 5.3, f is fuzzy (m, m_1) - α -preirresolute function.

Let us now recall following definitions from [3] for ready references.

Definition 6.5. [3] A collection \mathcal{U} of fuzzy sets in a fuzzy minimal space (X, m) is said to be a fuzzy cover of X if $\bigcup \mathcal{U} = 1_X$. If, in addition, every member of \mathcal{U} is fuzzy m-open, then \mathcal{U} is called a fuzzy m-open cover of X.

Definition 6.6. [3] A fuzzy cover \mathcal{U} of a fuzzy minimal space (X, m) is said to have a finite subcover \mathcal{U}_0 if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such that $\bigcup \mathcal{U}_0 = 1_X$.

Definition 6.7. [3] A fuzzy m-space (X, m) is said to be fuzzy almost m-compact if every fuzzy m-open cover \mathcal{U} of X has a finite proximate subcover, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{mclU : U \in \mathcal{U}_0\}$ is again a fuzzy cover of X.

Theorem 6.8. If $f : (X, m) \to (Y, m_1)$ is a fuzzy (m, m_1) - α -precontinuous, surjective function and X is fuzzy m- α -preregular and fuzzy almost m-compact space, then Y is fuzzy almost m_1 -compact space, where m_1 satisfies M-condition.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy m_1 -open cover of Y. Then as f is fuzzy (m, m_1) - α -precontinuous function, $\mathcal{V} = \{f^{-1}(U_{\alpha}) : \alpha \in \Lambda\}$ is a fuzzy cover of X by fuzzy m- α -preopen and hence by fuzzy m-open sets of X as X is fuzzy m- α -preregular space (by Note 6.3). Since X is fuzzy almost m-compact, there are

finitely many members
$$U_1, U_2, ..., U_n$$
 of \mathcal{U} such that $\bigcup_{i=1}^n mcl(f^{-1}(U_i)) = 1_X$. Since X is fuzzy m - α -preregular, by Note 6.3, $mclA = m\alpha pclA$ for all $A \in I^X$. So $1_X = \bigcup_{i=1}^n m\alpha pcl(f^{-1}(U_i)) \Rightarrow 1_Y = f(\bigcup_{i=1}^n m\alpha pcl(f^{-1}(U_i))) = \bigcup_{i=1}^n f(m\alpha pcl(f^{-1}(U_i))) \leq I_Y$

 $\bigcup_{i=1}^{n} m_1 cl(f(f^{-1}(U_i))) \text{ (by Theorem 4.4 (a)} \Rightarrow (f)) \leq \bigcup_{i=1}^{n} m_1 cl(U_i) \Rightarrow \bigcup_{i=1}^{n} m_1 cl(U_i) = 1_Y \Rightarrow Y \text{ is fuzzy almost } m_1\text{-compact space.}$

References

- Alimohammady, M. and Roohi, M., Fuzzy minimal structure and fuzzy minimal vector spaces, Chaos, Solitons and Fractals, 27 (2006), 599-605.
- [2] Bhattacharyya, Anjana, Fuzzy upper and lower *M*-continuous multifunctions, Vasile Alecsandri University of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, 21 (2) (2015), 125-144.
- [3] Bhattacharyya, Anjana, Several concepts of continuity in fuzzy *m*-space, Annals of Fuzzy Mathematics and Informatics, 13 (2) (2017), 5-21.
- [4] Brescan, M., On quasi-irresolute function in fuzzy minimal structures, BULET-INUL Universității Petrol - Gaze din Ploiești, Seria Matematică-Informatică-Fizică, Vol. LXII, (No. 1) (2010), 19-25.
- [5] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [6] Nematollahi, M. J. and Roohi, M., Fuzzy minimal structures and fuzzy minimal subspaces, Italian Journal of Pure and Applied Mathematics 27 (2010), 147-156.
- [7] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl. 76 (1980), 571-599.
- [8] Zadeh, L. A., Fuzzy Sets, Inform. Control, 8 (1965), 338-353.

This page intentionally left blank.