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Abstract: In this paper, we study large classes of nonlinear systems that admit
a transfer function completely described by their input-output behavior. Our ob-
jective is to identify and analyze the aforementioned classes, which exhibit unique
characteristics related to separable systems. We aim to fit certain examples of
automata/dynamical systems with new concepts. We observe that for a Discrete
System or Automaton, the state set forms a group. Furthermore, there exists a
natural near-ring for Separable Systems. Some substructures of this near-ring are
generated by id. and a map from state set Q to itself if the state set Q is an abelian
structure. It is interesting to note that Separable Systems themselves form a near-
ring with respect to parallel and series connections. We discuss certain results and
provide examples to validate separable systems and the outcomes. This paper of-
fers a theoretical and practical overview of dynamical systems in our daily lives.
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1. Introduction

A near-ring is precisely what is required to adequately describe the endomor-
phism formation of various mathematical structures. The initial step towards
studying near-rings was axiomatic research conducted by L. E. Dickson in 1905.
He revealed the existence of “fields with only one distributive law.” Progress in the
advancement of near-rings has naturally followed. Researchers such as Zassenhaus
and Wielandt, who studied “near-fields” and “abstract near-rings,” as well as schol-
ars like Frohlich, Blackett, and Betsch, significantly developed the theory. Authors
such as Beidleman and Clay have also contributed to its growth. Extensive research
is currently underway on near-rings and dynamical systems, where system theory
holds another level of importance [9]. The most famous near-ringers, including G.
F. Pliz, W. M. I. Holecombe, J. L. Casti, G. Hofer, R. Lidl, K. C. Chowdhury,
H. K. Saikia, et al., have conducted considerable work (approximately 1970-2000)
on various aspects of near-rings, encompassing chain conditions, automata, reach-
ability, feedback systems, etc. [19], [13]. In the period 2005-2012, mathematicians
such as O. Moreno, D. Bollman, M. Alicia, Guangwa Xu, Yi Ming, Sangfa Y, Y.
Feng, Ming Cao, etc., conducted extensive work on linear automata, near-rings,
finite fields, etc. [22], [23]. Moreover, recently, authors like T. Boykett, G. Wendt,
K. Srinivas, S. Raju, G. Koppe, H. Toutoungi, etc., have related their works to
radical in automata, near-rings, regular semi-near-rings, generative recurrent neu-
ral networks, etc. (2014-2019) [14].
Dynamical systems emerge across a broad spectrum of physical, biological, and
social contexts. However, progress in fields such as control theory, signal and im-
age processing, data mining, mobile networks, robotics, nano-computing, etc., has
historically lagged due to the underutilization of automata’s full potential, creating
a gap in technological advancements compared to other spheres of life. To address
this disparity, the research fields of dynamical systems, near-rings, and automata
have played pivotal roles.

An automaton, or non-linear discrete dynamical system, is a system whose
states are drawn from a defined set. It receives either a single or a series of in-
puts—such as energy, information, or materials—from its environment and adjusts
its state accordingly. These adjustments occur without direct human interven-
tion, making an automaton a self-operating machine. Synonymous with ‘robot,’
examples include automatic watches, packing machines, printing machines, ATMs,
etc.

In recent decades, due to its widespread significance across diverse areas includ-
ing Electrical Engineering, Linguistics, Philosophy, Biology, Mathematics, Com-
puter Science, etc., researchers have increasingly turned their attention to this field
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[1], [17]. Dynamical systems, near-rings, reachability, etc., are highly captivating
topics. Near-ring theory finds extensive applications across various subject areas,
including digital computing, sequential machines, graph theory, and combinatorics.

This paper offers readers a comprehensive understanding and development of
near-ring theory, automata, transfer functions, series and parallel connections,
reachability, feedback systems linked to graph theory, automata rings, automata
theory in number theory, genetic structures, etc. [4], [5], [10], [20]. Recently, A.
Permatasari, et al. [18], M. Dutta, et al. [6], [7] and I. Jones, et al. [12] did related
works.

2. Preliminaries

In this section, we present some fundamental definitions in automata that are
utilized in the following sections.

Definition 2.1. Automata
The abstract definition of automata given by Gunter F. Pilz [10] is a quintuple which
is described as follows : An Automaton is a system of the type

∑
= (Q,A,B, F,G),

where Q is a set of states, A is a set of inputs, B is a set of outputs, F : Q×A → Q
and G : Q× A → B are functions usually known as State transition function and
Output function respectively. The definition of automation is usually known as
“local description” of

∑
. If instead of a single input, a series of input signals it

reveals the “global description” of the system. This leads up to a consistent input
sequence of the type (ai ∈ Z). Sometimes it may be called a Discrete, Dynamical,
Time-invariant system.

Definition 2.2. Ring of Formal Power Series
Let R be a ring and R[[x]] = {(ai) = (a0, a1, a2, . . . . . . . . . . . . .) : ai ∈ R} and observe
[2] that with usual operations described as (ai) + (bi) = (ai + bi) , (ai) · (bi) = (ci)
where ci =

∑
j+k=i ajbk is called Ring of Formal Power Series.

Note: An arbitrary element of the ring of formal power series of the type:
∑∞

i=0 aix
i

Definition 2.3. Linear System∑
= (Q,A,B, F,G) is called Linear [10], [22], [23] if Q,A,B are vector spaces over

some field K and F,G are linear maps on the product space Q×A. In this case F
and G can be decomposed into linear functions α : Q → Q, β : A → Q, γ : Q → B
and δ : A → B, such that F (q, a) = α (q) + β (a) , G (q, a) = γ (q) + δ (a) hold for
all (q, a) ∈ Q× A.

Definition 2.4. Separable System
A system

∑
(as in definition above) is called Separable [10], [19] if Q,A,B are

groups (written additively, but not necessarily abelian) and if there are maps α :
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Q → Q, γ : Q → B and two homomorphisms β : A → Q, δ : A → B such that
F (q, a) = α (q) + β (a) , G (q, a) = γ (q) + δ (a) ,∀q ∈ Q, a ∈ A. We then denote∑

by (Q,A,B, α, β, γ, δ) or simply by (α, β, γ, δ).
∑

is called zero-symmetric if
α (0) = γ (0) = 0.

Definition 2.5. Near-Rings
An algebraic system (N,+, •) consisting of a non empty set N and two binary
operations “ + ” and “ • ” is called a Near-rings [19] if (N,+) is a group (not
necessarily abelian), (N, •) is a semi group and

(
n

′
+ n

′′)
n = n

′
n + n

′′
n holds

for all n, n
′
, n

′′ ∈ N , N is said to be zero symmetric if n0 = 0, ∀n ∈ N . So a
ring, is a Near-ring with (N,+) abelian and n

(
n

′
+ n

′′)
= nn

′
+ nn

′′
holds for all

n, n
′
, n

′′ ∈ N .

Definition 2.6. Let X be any set containing 0 (a special element). L (X) be the
set [10] of all sequence (xi)i∈Z where for some k ∈ Z, xi = 0, ∀i < k, i.e. L (X) =
{(....xi......) : xi ∈ X and xk = 0 for i < k} = {(0, 0, ....xk, xk+1......) : xk+i, 0 ∈ X}.

We now go through the routine work and observe the following.

Observation 1: If (A,+) (A ≡ inputset) is a group then (L (A) ,+) is a group
w.r.t. “ + ” such that (ai) + (bi) = (ai + bi) [21].

Notation 1: AZ is the set of all maps from Z to A i.e. AZ = {f : Z → A}.
Observation 2: L (A) is isomorphic to a subgroup of AZ and in the sense that
L (A) is a subgroup of AZ.
Now we see how these two maps F and G can be decomposed into four maps
α, β, γ, δ inheriting the linear character, though it appears that the linearity has
not played any role. In other words, such types of decompositions are possible not
only for linear systems; it is true even if the maps under discussion are not linear.
This fact leads us to the notion that can be interpreted as a separable system.

3. Main Works

In this section, we present certain examples of automata/discrete dynamical
systems with new concepts. Before delving into a detailed discussion of our objec-
tives, we would like to elucidate our motivation through the use of some examples
based on our observations.

Example 3.1. Compound interest problem as an example of dynamical
system:

We can show that the compound interest problem is a case of a dynamical
system. Consider the set Q the states as a collection P of possible capitals, A
the set of inputs as the set of Y years, B the set of outputs as the set I of re-
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spective interest, the transition function F as the amount A : P × Y → P such

that A (p, n) = p
(
1 +

r

100

)n
,∀p ∈ P, n ∈ Y, r ∈ I, and output function G as the

compound interest B : P × Y → I such that B (p, n) = A (p, n)− P .
There are some aspects to study regarding this kind of problems in terms of dy-
namical systems.

Example 3.2. Consider Q = A = B = (R,+) , F (q, a) = q2 + sin q + 3a,
G (q, a) = eq − 1 + πa. Then (Q,A,B, α, β, γ, δ) is a separable systems.
Since Q = A = B = (R,+) are groups (written additively, but not necessarily
abelian) and there are two maps α : Q → Q defined by α (q) = q2 + sin q and
γ : Q → B defined by γ (q) = eq − 1 and two homomorphisms β : A → Q defined
by β (a) = 3a and δ : A → B by δ (a) = πa hold, ∀q ∈ Q and a ∈ A.
The system is non-linear.
Since F (r (q1, a1) + s (q2, a2)) = F ((rq1, ra1) + (sq2, sa2))
= F (rq1 + sq2, ra1 + sa2) = (rq1 + sq2)

2 + sin (rq1 + sq2) + 3 (ra1 + sa2)
= r2q21 + 2rq1sq2 + s2q22 + sin (rq1) cos (sq2) + cos (rq1) sin (sq2) + 3ra1 + 3sa2.
rF (q1, a1) + sF (q2, a2) = r (q21 + sin q1 + 3a1) + s (q22 + sin q2 + 3a2)
= rq21 + r sin q1 + 3ra1 + sq22 + s sin q2 + 3sa2, where r, s are any two scalars.
Therefore F (r (q1, a1) + s (q2, a2)) ̸= rF (q1, a1)+sF (q2, a2) , q1, q2 ∈ Q, a1, a2 ∈ A.
This example shows the zero symmetric property, Since α (0) = 02 + sin 0 = 0,
γ (0) = e0 − 1 = 0.

Example 3.3. Consider Q = B = (R,+), A = ({f |f : R → R, f is a continuous
function },+),

F : Q × A → Q defined by F (q, a) = log (1− q) +
∫ k

0
a (x) dx, k is a fixed

constant, G : Q × A → B defined by G (q, a) = Sin−1q +
∫ k

−k
a (x) dx. Then

(Q,A,B, α, β, γ, δ) is a separable systems. Since Q = B = (R,+) , A = ({f |f :
R → R, f is a continuous function},+) are groups and there are two maps α : Q →
Q defined by α (q) = log (1− q) and γ : Q → B defined by γ (q) = Sin−1q and two

homomorphisms β : A → Q defined by β (a) =
∫ k

0
a (x) dx,∀a ∈ A. Since a1, a2 ∈

A, then β (a1 + a2) =
∫ k

0
(a1 + a2) (x) dx =

∫ k

0
(a1 (x) + a2 (x)) dx =

∫ k

0
a1 (x) dx+∫ k

0
a2 (x) dx = β (a1) + β (a2) and δ : A → B by δ (a) =

∫ k

−k
a (x) dx,∀a ∈ A. Since

a1, a2 ∈ A, then δ (a1 + a2) =
∫ k

−k
(a1 + a2) (x) dx =

∫ k

−k
(a1 (x) + a2 (x)) dx =∫ k

−k
a1 (x) dx+

∫ k

−k
a2 (x) dx = δ (a1) + δ (a2).

The system is non-linear.
Since F ((q1, a1) + (q2, a2)) = F (q1 + q2, a1 + a2) = log (1− (q1 + q2))+

∫ k

0
(a1 + a2)

(x) dx = log (1− q1 − q2) +
∫ k

0
a1 (x) dx +

∫ k

0
a2 (x) dx. F (q1, a1) + F (q2, a2) =
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log (1− q1) +
∫ k

0
a1 (x) dx + log (1− q2) +

∫ k

0
a2 (x) dx = log ((1− q1) (1− q2)) +∫ k

0
a1 (x) dx +

∫ k

0
a2 (x) dx = log (1− q1 − q2 + q1q2) +

∫ k

0
a1 (x) dx +

∫ k

0
a2 (x) dx.

So F ((q1, a1) + (q2, a2)) ̸= F (q1, a1) + F (q2, a2). Again, G ((q1, a1) + (q2, a2)) =

G (q1 + q2, a1 + a2) = Sin−1 (q1 + q2) +
∫ k

−K
(a1 + a2) (x) dx = Sin−1 (q1 + q2) +∫ k

−k
a1 (x) dx +

∫ k

−k
a2 (x) dx. G (q1, a1) + G (q2, a2) = Sin−1 (q1) +

∫ k

−k
a1 (x) dx +

Sin−1 (q2) +
∫ k

−k
a2 (x) dx = Sin−1 (q1) + Sin−1 (q2) +

∫ k

−k
a1 (x) dx+

∫ k

−k
a2 (x) dx.

So, G ((q1, a1) + (q2, a2)) ̸= G (q1, a1) +G (q2, a2).

Example 3.4. ConsiderQ = A = (R2,+) , B = (R3,+) , F : Q×A → Q defined by
F ((q1, q2) , (a1, a2)) = (q1 + q2 + 3a1 + 4a2, q

2
1 + a1) = ((q1 + q2, q

2
1) , (3a1 + 4a2, a1)) ,

G : Q× A → B defined by G ((q1, q2) , (a1, a2)) = (q1 + a1 + a2 + 1, q2 + 1, 0)
= (q1 + 1, q2 + 1, 0) + (a1 + a2, 0, 0), Then (Q,A,B, α, β, γ, δ) is a separable sys-
tems.

Since Q = A = (R2,+) , B = (R3,+) are groups and there are two maps α :
Q → Q defined by α (q1, q2) = (q1 + q2, q

2
1) , γ : Q → B defined by γ (q1, q2) =

(q1 + 1, q2 + 1, 0) and two homomorphisms β : A → Q defined by β (a1, a2) =
(3a1 + 4a2, a1) hold, ∀ (a1, a2) , (b1, b2) ∈ A
Since
β ((a1, a2) + (b1, b2)) = β ((a1 + b1) , (a2 + b2)) = (3 (a1 + b1) + 4 (a2 + b2) , (a1 + b1))
= (3a1 + 4a2 + 3b1 + 4b2, a1 + b1) = (3a1 + 4a2, a1) + (3b1 + 4b2, b1)
= β (a1, a2) + β (b1, b2).
δ : A → B by δ (a1, a2) = (a1 + a2, 0, 0) hold, ∀ (a1, a2) ∈ A.
Since δ ((a1, a2) + (b1, b2)) = δ ((a1 + b1) , (a2 + b2)) = (a1 + b1 + a2 + b2, 0, 0)
= (a1 + a2 + b1 + b2, 0, 0) = (a1 + a2, 0, 0) + (b1 + b2, 0, 0) = δ (a1, a2) + δ (b1, b2).
The Separable system is non-linear. Since
F ((0, 1, ) , (0, 2)) = (0 + 1 + 3.0 + 4.2, 02 + 0)
= (9, 0) , F ((1, 0) , (2, 0)) = (1 + 0 + 3.2 + 4.0, 12 + 2) = (7, 3)
F (((0, 1) , (0, 2)) + ((1, 0) , (2, 0))) = F ((0, 1) + (1, 0) , (0, 2) + (2, 0))
= F ((0 + 1, 1 + 0) , (0 + 2, 2 + 0))
= F ((1, 1, ) , (2, 2)) = (1 + 1 + 3.2 + 4.2, 12 + 2) = (16, 3).
So, F (((0, 1) , (0, 2)) + ((1, 0) , (2, 0))) ̸= F ((0, 1) , (0, 2)) + F ((1, 0) , (2, 0)).
Similarly, G (((0, 1) , (0, 2)) + ((1, 0) , (2, 0))) ̸= G ((0, 1) , (0, 2)) +G ((1, 0) , (2, 0)).

Example 3.5. Consider Q = A = B = (C,+) , F : Q × A → Q defined by
F (q, a) = (q + 1) + ā, where ā = x − iy is a complex conjugate of a = x + iy ∈
A,G : Q × A → B defined by G (q, a) = q2 + 3a. Then (Q,A,B, α, β, γ, δ) is a
separable systems.

Since, Q = A = B = (C,+) are groups and there are two maps α : Q → Q
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defined by α (q) = q + 1 and γ : Q → B defined by γ (q) = q2 and two homo-
morphisms β : A → Q defined by β (a) = ā,∀a ∈ A. Since a1, a2 ∈ A. Then
β (a1 + a2) = β (x1 + iy1 + x2 + iy2)
= β ((x1 + x2) + i (y1 + y2)) = (x1 + x2)− i (y1 + y2)
= x1 − iy1 + x2 − iy2 = β (a1) + β (a2),
and δ : A → B by δ (a) = 3a,∀a ∈ A. Since, a1, a2 ∈ A,
Then δ (a1 + a2) = δ (x1 + iy1 + x2 + iy2) = δ ((x1 + x2) + i (y1 + y2))
= 3{(x1 + x2) + i (y1 + y2)} = 3 (x1 + iy1) + 3 (x2 + iy2) = δ (a1) + δ (a2) .
The separable system is non-linear. F ((q1, a1) + (q2, a2)) = F (q1 + q2, a1 + a2)
= q1 + q2 + 1 + a1 + a2 = q1 + q2 + 1 + a1 + a2,
F (q1, a1) + F (q2, a2) = q1 + 1 + a1 + q2 + 1 + a2 = q1 + q2 + 2 + a1 ++a2
So, F ((q1, a1) + (q2, a2)) ̸= F (q1, a1) + F (q2, a2).
Similarly, G ((q1, a1) + (q2, a2)) ̸= G (q1, a1) +G (q2, a2).

Example 3.6. Consider Q = (R,+) , A = B = (Z,+) , F : Q× A → Q defined by
F (q, a) = q3 + 3a,G : Q × A → B defined by G (q, a) = [q] + a,where [q] denote
the greatest integer ≤ q. Then (Q,A,B, α, β, γ, δ) is a separable systems.

Since Q = (R,+) , A = B = (Z,+) are groups and there are two maps α : Q → Q
defined by α (q) = q3 and γ : Q → B defined by γ (q) = [q] and two homo-
morphisms β : A → Q defined by β (a) = 3a,∀a ∈ A. Since a1, a2 ∈ A, then
β (a1 + a2) = 3 (a1 + a2) = 3a1 + 3a2 = β (a1) + β (a2)
and δ : A → B by δ (a) = a,∀a ∈ A. Since, a1, a2 ∈ A, then δ (a1 + a2) = a1+a2 =
δ (a1) + δ (a2).
The separable system is non-linear. Let q1 = 3.6, q2 = 3.7, a1 = 4, a2 = 5,
G ((q1, a1) + (q2, a2)) = G (q1 + q2, a1 + a2) = G (3.6 + 3.7, 4 + 5) = G (7.3, 9) =
[7.3] + 9 = 7 + 9 = 16.
G (q1, a1)+G (q2, a2) = G (3.6, 4)+G (3.7, 5) = [3.6]+4+[3.7]+5 = 3+4+3+5 = 15.
So, G ((q1, a1) + (q2, a2)) ̸= G (q1, a1) +G (q2, a2).
Similarly, F ((q1, a1) + (q2, a2)) ̸= F (q1, a1) + F (q2, a2).

Example 3.7. Consider Q = (Z2,+2) , A = (Z,+) , B = (Z3,+) , F : Q× A → Q

defined by F (q, a) =1+

{
[0] ,if a is even

[1] ,if a is odd
,∀a ∈ A

G : Q× A → B defined by G (q, a) = 2 + a ( mod 3) , ∀a ∈ A.
Then (Q,A,B, α, β, γ, δ) is a separable systems.
Since, Q = (Z2,+2) , A = (Z,+) , B = (Z3,+3) are groups and there are two maps
α : Q → Q defined by α (q) = 1,∀q ∈ Z and γ : Q → B defined by γ (q) = 2 and
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two homomorphisms β : A → Q defined by β (a) =

{
[0] ,if a is even

[1] ,if a is odd
,∀a ∈ A.

Since, a1, a2 ∈ A if a1 + a2 is even, then β (a1 + a2) = [0] = β (a1) + β (a2),
if a1 + a2 is odd, then β (a1 + a2) = [1] = β (a1) + β (a2)
and δ : A → B by δ (a) = a ( mod 3) ,∀a ∈ A,∵ a1, a2 ∈ A.
Then δ (a1 + a2) = (a1 + a2) ( mod 3)
= [a1 ( mod 3) + a2 ( mod 3)] ( mod 3) = δ (a1) + δ (a2).
The separable system is non-linear. Since, α, γ are non-linear.
α (1 + 1) = α (2) = 1,
but α (1) + α (1) = 1 + 1 = 0, So α (1 + 1) ̸= α (1) + α (1).
Similarly, γ (1 + 1) = γ (2) = 2, but γ (1) + γ (1) = 1, So γ (1 + 1) ̸= γ (1) + γ (1).

Definition 3.1. Extension
The map α : Q → Q i.e. Q → α (q) ,∀q ∈ Q,Q ⊆ α (Q) can be extended [10]
to a map α

′
: L (Q) → L (Q) defined by α

′ (∑
i≥k qiz

i
)
=
∑

i≥k α
′
(qi) z

i. Also,

we can extend a map β to a map β
′
: L (A) → L (Q) defined by β

′ (∑
i≥k aiz

i
)
=∑

i≥k β
′
(ai) z

i and so on.

Proposition 3.1. For a separable system
∑

= (Q,A,B, α, β, γ, δ) the map
−α

′
+ z̄ : L (Q) → L (Q) is always bijective. Also −α

′
+ z̄ is zero symmetric

iff α
′
is zero symmetric. In these, z bar is shift to the left operator [10].

Theorem 3.1. In a separable system
∑

= (Q,A,B, α, β, γ, δ) the following rela-
tions hold, if the first non-zero input arrives at time k ∈ Z in which the system is
in state 0. [10]

(i)
∑

i≥k qiz
i =

(
−α

′
+ z̄
)−1

β
′ (∑

i≥k aiz
i
)
,

(ii)
∑

i≥k biz
i = {γ′ (−α

′
+ z̄
)−1

β
′
+ δ

′}
(∑

i≥k aiz
i
)
.

Definition 3.2. In a separable system
∑

= (α, β, γ, δ), the function,

f∑ = γ
′ (−α

′
+ z̄
)−1

β
′
+ δ

′
: L (A) → L (B) is called the transfer function of

∑
.

If α
′
, γ

′
are zero-symmetric then f∑ is zero-symmetric [10].

f∑ Completely characterizes the input-output behavior of
∑

if
∑

starts in state 0.
If
∑

starts in state q ̸= 0 which is reachable from 0 by means of an input sequence
a1, a2, a3, .....ar. We simply start at time k− r and then in state 0. Since it doesn’t
make much sense to start from non-reachable states, f∑ “characterizes”

∑
itself.

We call zero-symmetric if this applies to f∑.

Definition 3.3. Series and Parallel connection
Two systems

∑
1 = (Q1, A1, B1, F1, G1) and

∑
2 = (Q2, A2, B2, F2, G2) are con-

nected. The series connection
∑

1 ‡
∑

2 requires B1 = A2. Then
∑

1 ‡
∑

2 =
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(Q1 ×Q2, A1, B2, F,G) with F ((q1, q2) , a) = (F1 (q1, a) , F2 (q2, G1 (q1, a))) and
G ((q1, q2) , a) = G2 (q2, G1 (q1, a)).
The parallel connections

∑
1 ∥
∑

2 works with A1 = A2 = A,B1 = B2 = B and gives∑
1 ∥
∑

2 =
(
Q1 ×Q2, A,B, F

′
, G

′)
with F

′
((q1, q2) , a) = (F1 (q1, a) , F2 (q2, a)) and

G
′
((q1, q2) , a) = G1 (q1, a) +G2 (q2, a). [10], [15].

Proposition 3.2. If
∑

1 and
∑

2 are separable systems, then
∑

1 ‡
∑

2 and
∑

1 ∥
∑

2

(if the output groups are abelian) are also separable systems. If
∑

1 and
∑

2 are
zero-symmetric, then

∑
1 ‡
∑

2 and
∑

1 ∥
∑

2 are also zero-symmetric. [10], [15].
Proof. Given that

∑
i = (Qi, Ai, Bi, Fi, Gi) , (i = 1, 2) are separable. So we have

Qi, Ai, Bi are groups, there are maps αi : Qi → Qi, γi : Qi → Bi and two homomor-
phisms βi : Ai → Qi, δi : Ai → Bi,∀qi ∈ Qi, a ∈ Ai, i = 1, 2. such that Fi (qi, ai) =
αi (qi)+βi (ai) , Gi (qi, ai) = γi (qi)+δi (ai),

∑
1 ‡
∑

2 = (Q1 ×Q2, A1, B2, F,G) with
F ((q1, q2) , a) = (F1 (q1, a) , F2 (q2, G1 (q1, a))) andG ((q1, q2) , a) = G2 (q2, G1 (q1, a))
is a separable system. Since Q1 × Q2, A1, B2 are groups (not necessarily abelian),
there are maps
α : Q1 ×Q2 → Q1 ×Q2, γ : Q1 ×Q2 → B2.
Also, F ((q1, q2) , a) = (F1 (q1, a) , F2 (q2, G1 (q1, a)))
= (α1 (q1) + β1 (a) , α2 (q2) + β2 (G1 (q1, a))) , (∵

∑
1 and

∑
2 are separable sys-

tems.)
= (α1 (q1) + β1 (a) , α2 (q2) + β2 (γ1 (q1) + δ1 (a))) , (∵

∑
1 is a separable systems.)

= (α1 (q1) + β1 (a) , α2 (q2) + β2 (γ1 (q1)) + β2 (δ1 (a))) , (∵ β2 is a homomorphism in∑
2)

= (α1 (q1) , α2 (q2) + β2γ1 (q1)) + (β1 (a) , β2 (δ1 (a))),
and G ((q1, q2) , a) = G2 (q2, G1 (q1, a))
= γ2 (q2) + δ2 (G1 (q1, a)) , (∵

∑
2 is a separable systems.)

= γ2 (q2) + δ2 (γ1 (q1) + δ1 (a)) , (∵
∑

1 is a separable systems.)
=γ2 (q2) + δ2 (γ1 (q1)) + δ2 (δ1 (a)) , (∵ δ2 is a homomorphism. )
Also β : A1 → Q1 ×Q2 defined by β (a) = (β1 (a) , β2δ1 (a)) is a homomorphism.
Since ∀a, b ∈ A1, β (a+ b) = (β1 (a+ b) , β2δ1 (a+ b))
= (β1 (a) + β1 (b) , β2δ1 (a) + β2δ1 (b)) , (∵ β1, β2 are homomorphism )
=(β1 (a) , β2δ1 (a)) + (β1 (b) , β2δ1 (b)) = β (a) + β (b)
δ : A1 → B2 defined by δ (a) = δ2δ1 (a) is a homomorphism.
Since, ∀a, b ∈ A1, δ (a+ b) = δ2δ1 (a+ b) = δ2 (δ1 (a) + δ1 (b)) , (∵ δ1 is a homomor-
phism in

∑
1 )

=δ2δ1 (a) + δ2δ1 (b), (Since, δ2 is a homomorphism in
∑

2)=δ (a) + δ (b). Hence∑
1 ‡
∑

2 forms a separable system. Again∑
1 ∥
∑

2 =
(
Q1 ×Q2, A,B, F

′
, G

′)
with F

′
((q1, q2) , a) = (F1 (q1, a) , F2 (q2, a))
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and G
′
((q1, q2) , a) = G1 (q1, a) +G2 (q2, a) is a separable system.

Since, F
′
((q1, q2) , a) = (F1 (q1, a) , F2 (q2, a))

= (α1 (q1) + β1 (a) , α2 (q2) + β2 (a)) = (α1 (q1) , α2 (q2)) + (β1 (a) , β2 (a)) and
G

′
((q1, q2) , a) = G1 (q1, a) +G2 (q2, a) = γ1 (q1) + δ1 (a) + γ2 (q2) + δ2 (a)

= (γ1 (q1) + γ2 (q2)) + (δ1 + δ2) (a), [If B is abelian].
Therefore

∑
1 ∥
∑

2 forms a separable system.∑
i = (Qi, Ai, Bi, Fi, Gi) , (i = 1, 2) are zero-symmetric then we have

αi (0) = 0, γi (0) = 0. So,
∑

1 ‡
∑

2 and
∑

1 ∥
∑

2 are also zero-symmetric. As
α : Q1 ×Q2 → Q1 ×Q2, So α (0, 0) = (α1 (0) , α2 (0)) = (0, 0) , γ : Q1 ×Q2 → B2.
So γ (0, 0) = γ1 (0) = 0.

Example 3.8. We verify the above result with an example
We consider

∑
1 = (Q1, A1, B1, F1, G1) = (R,Z,Z, F1, G1) whereQ1 = (R,+) , A1 =

(Z,+) , B1 = (Z,+) , F1 : Q1 × A1 → Q1, i.e. F1 : R × Z → R defined by
F1 (q1, a1) = q31 + 3a1, G1 : Q1 × A1 → B1, i.e.G1 : R × Z → Z defined by
G1 (q1, a1) = [q1] + a1,Where [q1] denote the greatest integer ≤ q1,
Then (Q1, A1, B1, α, β, γ, δ) is a separable systems.
Again, we consider,

∑
2 = (Q2, A2, B2, F2, G2) = (Z2,Z,Z3, F2, G2) where Q2 =

(Z2,+) , A2 = (Z,+) , B2 = (Z3,+3) , F2 : Q2 × A2 → Q2, i.e.F2 : Z2 × Z → Z2

defined by F2 (q2, a2) =1+

{
[0] ,if a2 is even

[1] ,if a2 is odd
∀a2 ∈ A2 and G2 : Q2 × A2 →

B2, i.e. G2 : Z2 × Z → Z3 defined by G2 (q2, a2) = 2 + a2 (mod3). Then
(Q2, A2, B2, α, β, γ, δ) is a separable systems.
Now, consider

∑
1 ‡
∑

2 = (Q1 ×Q2, A1, B2, F,G) = (R× Z2,Z,Z3, F,G) ,
F : (Q1 ×Q2)× A1 → Q1 ×Q2, i.e.F : (R× Z2)× Z → R× Z2 with
F ((q1, q2) , a) = (F1 (q1, a) , F2 (q2, G1 (q1, a))) = (q31 + 3a1, F2 (q2, [q1] + a1))

= (q31 + 3a1, 1+

{
[0] ,if [q1] + a1 is even

[1] ,if [q1] + a1 is odd

and G : (Q1 ×Q2)× A1 → B2, i.e. G : (R× Z2)× Z → Z3 with G ((q1, q2) , a1) =
G2 (q2, G1 (q1, a1))
= G2 (q2, [q1] + a1) = 2+([q1] + a1) (mod3). Then

∑
1 ‡
∑

2 = (Q1 ×Q2, A1, B2, F,G) =
(R× Z2,Z,Z3, F,G) is a separable system. Since Q1 × Q2 = (R× Z2,+2) , A1 =
(Z,+) , B2 = (Z3,+3) are groups (not necessarily abelian), there are maps α :
Q1 × Q2 → Q1 × Q2 i.e. α : R × Z2 → R × Z2 defined by α (q1, q2) = (q31, 1) , γ :
Q1 ×Q2 → B2 i.e. γ : R× Z2 → Z3 defined by γ (q1, q2) = 2
and two homomorphisms β : A1 → Q1 ×Q2 i.e. β : Z → R× Z2



Some aspects of Non-linear Dynamical systems Carrying Near-ring Structure 73

by β (a1) =

(
3a1,

{
[0] ,if [q1] + a1 is even

[1] ,if [q1] + a1 is odd

)
.

Since a1, a2 ∈ Z if a1 + a2 is even, then β (a1 + a2) = (3 (a1 + a2) , 0; if [q1] is even
) =(3a1, 0; if [q1] is even ) + (3a2, 0; if [q1] is even ) = β (a1) + β (a2),
If a1 + a2 is odd Then β (a1 + a2) = (3 (a1 + a2) , 1; if [q1] is odd) = (3a1, 1; if [q1]
is odd)+(3a2, 1; if [q1] is odd ) = β (a1) + β (a2),
and δ : A1 → B2 i.e. δ : Z → Z3 by δ (a1) = ([q1] + a1) ( mod 3) ,∀a1 ∈ Z. Since
a1, a2 ∈ A = Z Then δ (a1 + a2) = ([q1] + (a1 + a2)) ( mod 3)
= ([q1] + a1) ( mod 3) + ([q1] + a2) ( mod 3) = δ (a1) + δ (a2)
Again, consider

∑
1 = (Q1, A1, B1, F1, G1) = (Z2,Z,Z3, F1, G1) where

Q1 = (Z2,+2) , A1 = (Z,+) , B1 = (Z3,+3) , F1 : Q1 × A1 → Q1, i.e.F1 : Z2 × Z →
Z2

defined by F1 ((q1, a1)) = 1 +

{
[0] ,if a1 is even

[1] ,if a1 is odd
,

G1 : Q1 × A1 → B1, i.e.G1 : Z2 × Z → Z3 defined by G1 (q1, a1) = 2 + a1 (mod3),
Then (Q1, A1, B1, α, β, γ, δ) is a separable systems.
And consider

∑
2 = (Q2, A2, B2, F2, G2) = (Z,Z,Z3, F2, G2) whereQ2 = (Z,+) , A2 =

(Z,+) , B2 = (Z3,+3) , F2 : Q2 × A2 → Q2, i.e.F2 : Z × Z → Z defined by
F2 ((q2, a2)) = q22 + a2,∀a2 ∈ A2

and G2 : Q2×A2 → B2, i.e. G2 : Z×Z → Z3 defined by G2 (q2, a2) = q2+a2m,m =
δ (1), Then (Q2, A2, B2, α, β, γ, δ) is a separable systems.
Consider

∑
1 ∥
∑

2 =
(
Q1 ×Q2, A,B, F

′
, G

′)
, F

′
: (Q1 ×Q2)× A → Q1 ×Q2,

i.e. F
′
: (Z2 × Z)× Z → Z2 × Z with F

′
((q1, q2) , a) = (F1 (q1, a) , F2 (q2, a))

=

(
1 +

{
[0] ,if a is even

[1] ,if a is odd
, q22 + a

)
,∀a ∈ A and G

′
: (Q1 ×Q2)×A → B, i.e.G

′
:

(Z2 × Z)×Z → Z3 with G
′
((q1, q2) , a) = G1 (q1, a)+G2 (q2, a) = 2+a (mod3)+q2+

am,m = δ (1). Then
∑

1 ∥
∑

2 =
(
Q1 ×Q2, A,B, F

′
, G

′)
=
(
Z2 × Z,Z,Z3, F

′
, G

′)
is a separable system. Since Q1×Q2 = (Z2 × Z,+2) , A = (Z,+) , B = (Z3,+3) are
groups and there are two maps α : Q1 ×Q2 → Q1 ×Q2 i.e. α : Z2 × Z → Z2 × Z
defined by α (q1, q) = (1, q2) , γ : Q1 × Q2 → B2 i.e. γ : Z2 × Z → Z3 defined by
γ (q1, q) = 2 + q and two homomorphisms β : A → Q1 ×Q2 i.e. β : Z → Z2 × Z

by β (a) =

({
[0] ,if a is even

[1] ,if a is odd
, a

)
Since a1, a2 ∈ Z if a1 + a2 is even, Then β (a1 + a2) = ([0], a1 + a2) = ([0], a1) +
([0], a2) = β (a1) + β (a2),
If a1 + a2 is odd Then β (a1 + a2) = ([1], a1 + a2) = ([1], a1) + ([1], a2) = β (a1) +
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β (a2),
and δ : A → B i.e. δ : Z → Z3 by δ (a) = a (mod3) + am, where m =
δ (1). Since a1, a2 ∈ A = Z, then δ (a1 + a2) = (a1 + a2) (mod3) + (a1 + a2)m =
(a1) (mod3) + (a2) (mod3) + (a1 + a2) δ (1) = a1 (mod3) + a1δ (1) + a2 (mod3) +
a2δ (1) = a1 (mod3) + a1m+ a2 (mod3) + a2m = δ (a1) + δ (a2) ,m = δ (1).

Theorem 3.2. If
∑

1 and
∑

2 are separable [10] then
(i) f∑

1 ∥
∑

2
= f∑

1
+ f∑

2
,(if the output groups are abelian)

(ii) f∑
1 ‡

∑
2
= f∑

1
◦ f∑

2
.

Proof. From above proposition, we have,
(
−α

′
+ z̄
)−1

(qk, qk+1, qk+2, ........)

=
(
0, α

′
(0) + qk, α

′ (
α

′
0 + qk

)
+ qk+1, ......

)
where the first 0 appears at time k.

(i) Let
∑

1 ∥
∑

2 = (α, β, γ, δ) where α, β, γ, δ is given as in the lines preceding
above proposition.
Now, f∑

1 ∥
∑

2
(ak, ak+1, ........) =

(
γ (−α + z̄)−1 β + δ

)
(ak, ak+1, ........)

=
(
γ (−α + z̄)−1 β (ak, ak+1, ........)

)
+ (δ (ak, ak+1, ........))

=
(
γ (−α + z̄)−1 ((β1 (ak) , β2 (ak)) , (β1 (ak+1) , β2 (ak+1)) , ......)

)
+

((δ1 + δ2) (ak, ak+1, ........))
(If B is abelian then δ1 + δ2 is a homomorphism.)
=
(
γ (−α + z̄)−1 ((β1 (ak) , β2 (ak)) , (β1 (ak+1) , β2 (ak+1)) , ....)

)
+(δ1 (ak) , δ1 (ak+1) , .......) + (δ2 (ak) , δ2 (ak+1) , .......)
= γ (0, α (0) + (β1 (ak) , β2 (ak)) , α (α (0) + (β1 (ak+1) , β2 (ak+1))))
+ ((β1 (ak+1) , β2 (ak+1)) , .......)+((δ1 (ak) , δ1 (ak+1) , .......) + (δ2 (ak) , δ2 (ak+1) , .......))
= γ ((0, 0) , (α1 (0) , α2 (0)) + (β1 (ak) , β2 (ak)) , α ((α1 (0) , α2 (0)) + (β1 (ak) , β2 (ak)))
+ ((β1 (ak+1) , β2 (ak+1)) , .....+((δ1 (ak) , δ1 (ak+1) , .......) + (δ2 (ak) , δ2 (ak+1) , .......))
= γ ((0, 0) , (α1 (0) , α2 (0)) + (β1 (ak) , β2 (ak)) , α ((α1 (0) + β1 (ak)) , (α2 (0) , β2 (ak)))
+ (β1 (ak+1) , β2 (ak+1)) , .....)+((δ1 (ak) , δ1 (ak+1) , .......) + (δ2 (ak) , δ2 (ak+1) , .......))
= γ ((0, 0) , (α1 (0) + β1 (ak) , (α2 (0) + β2 (ak))) , ......)+
((δ1 (ak) , δ1 (ak+1) , .....) + (δ2 (ak) , δ2 (ak+1) , .....))
=(γ1 (0) + γ2 (0) , γ1 (α1 (0) + β1 (ak)) + γ2 (α2 (0) + β2 (ak)) ......)
+ ((δ1 (ak) , δ1 (ak+1) , .....) + (δ2 (ak) , δ2 (ak+1) , .....))
= (γ1 (0) + δ1 (ak) , γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1) , .....)
+ (γ2 (0) + δ2 (ak) , γ2 (α2 (0) + β2 (ak)) + δ2 (ak+1) , .....)
= (γ1 (0) , γ1 (α1 (0) + β1 (ak)) , ......) + (δ1 (ak) , δ1 (ak+1) , ....)
+ (γ2 (0) , γ2 (α2 (0) + β2 (ak)) , ......)
+ (δ2 (ak) , δ2 (ak+1) , ....)
= γ1(0, α1(0)+β1(ak), ...)+δ1(ak, ak+1, ...)+γ2(0, α2(0)+β2(ak), ...)+δ2(ak, ak+1, ...)
= γ1 (−α1 + z̄)−1 (β1 (ak) , β1 (ak+1) , ....) + (δ1 (ak) , δ1 (ak+1) , ....)
+γ2 (−α2 + z̄)−1 (β2 (ak) , β2 (ak+1) , ....) + (δ2 (ak) , δ2 (ak+1) , ....)
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= γ1 (−α1 + z̄)−1 β1 (ak, ak+1, ....) + δ1 (ak, ak+1, ....)
+γ2 (−α2 + z̄)−1 β2 (ak, ak+1, ....) + δ2 (ak, ak+1, ....)
=
(
γ1 (−α1 + z̄)−1 β1 + δ1

)
(ak, ak+1, ....)

+
(
γ2 (−α2 + z̄)−1 β2 + δ2

)
(ak, ak+1, ....)

= f∑
1
(ak, ak+1, ....) + f∑

2
(ak, ak+1, ....)

=
(
f∑

1
+ f∑

2

)
(ak, ak+1, ....).

(ii) Let
∑

1 ‡
∑

2 by the maps ᾱ, β̄, γ̄, δ̄ as indicated before proposition .
f∑

1 ‡
∑

2
(ak, ak+1, ........) =

(
γ̄ (−ᾱ + z̄)−1 β̄ + δ̄

)
(ak, ak+1, ........)

=
(
γ̄ (−ᾱ + z̄)−1 β̄ (ak, ak+1, ........)

)
+
(
δ̄ (ak, ak+1, ........)

)
= γ̄ (−ᾱ + z̄)−1 (β̄ (ak) , β̄ (ak+1) , ......

)
+
(
δ̄ (ak) , δ̄ (ak+1) , ......

)
= γ̄ (−ᾱ + z̄)−1 ((β1 (ak) , β2δ1 (ak)) , (β1 (ak+1) , β2δ1 (ak+1)) , .......)
+ (δ2δ1 (ak) , δ2δ1 (ak+1) , .....)
= γ̄(0, ᾱ(0) + (β1(ak), β2δ1(ak)), ᾱ(ᾱ0 + (β1(ak), β2δ1(ak))
+(β1(ak+1), β2δ1(ak+1)), ...... +(δ2δ1(ak), δ2δ1(ak+1), .....)
= γ̄ ((0, 0) , (α1 (0) , α2 (0)) + (β1 (ak) , β2δ1 (ak)) , .......)+(δ2δ1 (ak) , δ2δ1 (ak+1) , .....)
= (γ2 (0) + δ2γ1 (0) , γ2 (α2 (0) + β2γ1 (0) + β2δ1 (ak)) + δ2γ1 (α1 (0) + β1 (ak)) , ......)
+ (δ2δ1 (ak) , δ2δ1 (ak+1) , .....) = (γ2(0) + δ2γ1(0) + δ2δ1(ak), γ2(α2(0) + β2γ1(0) +
β2δ1(ak)) + δ2γ1(α1(0) + β1(ak)) +δ2δ1 (ak+1) , ...)
= (γ2(0)+ δ2(γ1(0)+ δ1(ak)), γ2(α2(0)+ β2(γ1(0)+ δ1(ak))) + δ2(γ1(α1(0)+ β1(ak))
+δ1 (ak+1)) , ...)
= (γ2 (0) , γ2 (α2 (0) + β2 (γ1 (0) + δ1 (ak)) , ......)
+ (δ2 (γ1 (0) + δ1 (ak)) , δ2 (γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1)) , ...)
= γ2(0, α2(0) + β2(γ1(0) + δ1(ak)), α2(α20 + (β2(γ1(0)
+δ1(ak)))) + γ1(α1(0) + β1(ak)) + δ1(ak+1), ...)
+ (δ2 (γ1 (0) + δ1 (ak)) , δ2 (γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1)) , ...)
= γ2 (−α2 + z̄)−1 (β2 (γ1 (0) + δ1 (ak)) , β2 (γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1)) , ...)
+ (δ2 (γ1 (0) + δ1 (ak)) , δ2 (γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1)) , ...)
= γ2 (−α2 + z̄)−1 β2 (γ1 (0) + δ1 (ak)) , γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1) , ....)
+ (δ2 (γ1 (0) + δ1 (ak) , γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1) , ...)
=
(
γ2 (−α2 + z̄)−1 β2 + δ2

)
(γ1 (0) + δ1 (ak) , γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1) , ...)

= f∑
2
(γ1 (0) + δ1 (ak) , γ1 (α1 (0) + β1 (ak)) + δ1 (ak+1) , ...)

= f∑
2
(γ1 (0) , γ1 (α1 (0) + β1 (ak)) , .....) + (δ1 (ak) δ1 (ak+1) , ...))

= f∑
2
(γ1 (0, α1 (0) + β1 (ak) , .....) + (δ1 (ak) δ1 (ak+1) , ...))

= f∑
2
(γ1(0, α1(0) + β1(ak), α1(α10 + β1(ak)) + β1(ak+1), ....) + (δ1(ak)δ1(ak+1), ...))

= f∑
2
(γ1(−α1 + z̄)−1(β1(ak), β1(ak+1), ...) + (δ1(ak)δ1(ak+1), ...))

= f∑
2

(
γ1 (−α1 + z̄)−1 β1 (ak, ak+1, ....) + δ1 (ak, ak+1, ...)

)
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= f∑
2

((
γ1 (−α1 + z̄)−1 β1 + δ1

)
(ak, ak+1, ...)

)
= f∑

2

(
f∑

1
(ak, ak+1, ...)

)
=
(
f∑

2
◦ f∑

1

)
(ak, ak+1, ...).

Theorem 3.3. Separable systems itself form a near-ring by means of series/parallel
connections of these systems [10].

4. Discussion and Future works
In this article, we review some fundamental definitions of automata. Addition-

ally, we discuss examples that meet all the conditions outlined in the provided defi-
nitions. Unlike the case with significant classes of linear dynamical systems, which
form rings with respect to parallel and series connections, nonlinear systems exhibit
a near-ring structure. Consequently, one can anticipate results regarding the sta-
bilization of nonlinear dynamical systems. This study will guide us in addressing
questions in automata/dynamical system theory, such as feedbacks, reachability,
and invertibility [10]. In this paper, we examine the compound interest problem
as a practical example of a dynamical system. However, much work remains to
be done in exploring the compound interest problem within the framework of dy-
namical systems. Additionally, our efforts could be expanded beyond the study of
near-rings to encompass various areas of computer science, such as system theory,
coding theory, rubber sheet geometry, and more [3], [8], [11], [16].

5. Conclusion
In this paper, we have examined a broad class of nonlinear systems that allow

for a transfer function entirely described by their input-output behavior, featuring
unique characteristics related to automata/separable systems. Moving forward, we
aim to delve into various aspects of near-rings, such as structure theory and radical
theory, in our future work.
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