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1. Introduction
Throughout this paper, we assume that |q| < 1 and use the standard product

notation

(a; q)0 := 1, (a; q)n :=
n−1∏
j=0

(1− aqj) and (a; q)∞ :=
∞∏
n=0

(1− aqn).



56 J. of Ramanujan Society of Mathematics and Mathematical Sciences

For convenience, we sometimes use the multiple q-shifted factorial notation, which
is defined as

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

The celebrated Ramanujan–Göllnitz–Gordon continued fraction is defined as

G(q) =
q1/2

1 + q +

q2

1 + q3 +

q4

1 + q5 +

q6

1 + q7 + . . . . (1)

An interesting product representation of G(q) is recorded in [14]

G(q) = q
1
2
(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

. (2)

The famous Göllnitz–Gordon functions S(q) and T (q) are defined by

S(q) :=
∞∑
n=0

(−q; q2)n
(q2; q2)n

qn
2

=
1

(q; q8)∞(q4; q8)∞(q7; q8)∞
(3)

and

T (q) :=
∞∑
n=0

(−q; q2)n
(q2; q2)n

qn
2+2n =

1

(q3; q8)∞(q4; q8)∞(q5; q8)∞
, (4)

where the two equalities on the right-hand of (3) and (4) are the celebrated Göllnitz–
Gordon identities. It is noted that

G(q) = q1/2
S(q)

T (q)
. (5)

Without any knowledge of Ramanujan’s work, Göllnitz [11] and Gordon [12] redis-
covered and proved (2) independently. Later Andrews [2] proved (2) as a corollary
of a more general result.
On page 299 of his second notebook [14], Ramanujan recorded the two identities,

1

G(q)
−G(q) =

(−q2; q4)2∞(q4; q4)∞(q4; q8)∞
q1/2(q8; q8)∞

(6)

and

1

G(q)
+G(q) =

(−q; q2)2∞(q2; q2)∞(q4; q8)∞
q1/2(q8; q8)∞

. (7)
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The identities (6) and (7) were first proved by B. C. Berndt [4] and then rediscovered
by Chan and Huang [10].

We consider partitions studied by Göllnitz and Gordon. Let GG denote the set
of Göllnitz–Gordon partitions, which are those partitions satisfying λi − λi+2 ≥ 2,
with strict inequality if either part is even. Furthermore, let GGt denote those
partitions in GG with all parts at least t. A direct combinatorial argument shows
that

fGG(x; q) :=
∑
λ∈GG

xl(λ)q|λ| =
∑
n≥0

xnqn
2
(−q; q2)n

(q2; q2)n
. (8)

Furthermore, if the sum is instead taken over partitions λ ∈ GGt and t is odd,
it is clear that the resulting generating function is fGG(xq

t−1; q). The Göllnitz–
Gordon identities, which were independently proven in [11, 12], then state that for
t = 1 or 3, we have the following product formulas:

fGGt
(1; q) =

1

(qt, q4, q8−t; q8)∞
. (9)

Andrews et al. [3] investigated new double summation hypergeometric q−series
representations for several families of partitions and further explored the role of
double series in combinatorial partition identities by introducing the following gen-
eral family:

R(s, t, l, u, v, w) :=
∞∑
n=0

qs(
n
2)+tnr(l, u, v, w;n), (10)

where

r(l, u, v, w;n) :=

[nu ]∑
j=0

(−1)j
quv(

j
2)+(w−ul)j

(q; q)n−uj(quv; quv)j
. (11)

To illustrate this notation, we note that the double series associated to the partition
identities described above may be written as

R(2, t, 0, 2, 2, 2) = fGG(q
t−1; q). (12)

The following interesting special cases of (10) are recalled [3, p. 106]

R(2, 1, 1, 1, 2, 2) = (−q; q2)∞; (13)

R(2, 2, 1, 1, 2, 2) = (−q2; q2)∞; (14)

R(m,m, 1, 1, 1, 2) =
(q2m; q2m)∞
(qm; q2m)∞

. (15)
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In [6], Chaudhary et al. have established the combinatorial partition identities
for the identities (6) and (7) using (13) - (15). In [5, 7, 8, 9] Chaudhary et al. have
established the several identities between q- product identities and combinatorial
partition identities. Recently, Srivastava et al. [15, 16], continued fraction identities
and combinatorial partition identities.
Surekha [17] and Vanitha [18] studied two continued fractions I1(q) and I2(q) of
order sixteen, which are defined as follows:

I1(q) :=
q1/2(q3, q13; q16)∞
(q5, q11; q16)∞

=
q1/2(1− q3)

(1− q4) +

q4(1− q)(1− q7)

(1− q4)(1 + q8) + . . . (16)

and

I2(q) :=
q3/2(q, q15; q16)∞
(q7, q9; q16)∞

=
q3/2(1− q)

(1− q4) +

q4(1− q3)(1− q5)

(1− q4)(1 + q8) + . . . . (17)

The continued fractions (16) and (17), are a special case of fascinating continued
fraction identity recorded by Ramanujan in his second notebook [1, 14].

Park [20], studied the continued fractions I1(q) and I2(q) by using the theory
of modular functions. He proved the modularities of I1(q) and I2(q). Further, he
proved that 2(I1(q)

2 + 1/I1(q)
2) and 2(I2(q)

2 + 1/I2(q)
2) are algebraic integers for

certain imaginary quadratic quantity q. In [13], S. Rajkhowa and N. Saikia have
established the theta function identities, explicit values, partition-theoretic results
and some matching coefficients of the continued fractions I1(q) and I2(q). Recently,
Vanitha, Chaudhary and Bulkhali [19] have proved many new identities associated
with Ramanujan’s continued fraction of order sixteen and Ramanujan–Göllnitz–
Gordon continued fraction. We further established several new Eisenstein series
identities associated with Ramanujan’s continued fraction of order sixteen.

The main purpose of this paper is to establish six new identities which depict
interrelationships between Eisenstein series identities, Göllnitz–Gordon identities
and combinatorial partition identities.

2. Preliminaries
For our purpose, here we recall some known results. Vanitha, Chaudhary and

Bulkhali [19] presented the following Eisenstein series identities for the continued
fractions of order sixteen:

∞∑
n=1

n≡1 (mod 2)

q3n + q5n

1− q16n
−

∞∑
n=1

n≡1 (mod 2)

q11n + q13n

1− q16n
=

η4(32τ)

η2(16τ)

(
I1(q

2) +
1

I1(q2)

)
, (18)
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∞∑
n=1

n≡1 (mod 2)

qn + q7n

1− q16n
−

∞∑
n=1

n≡1 (mod 2)

q9n + q15n

1− q16n
=

η4(32τ)

η2(16τ)

(
I2(q

2) +
1

I2(q2)

)
, (19)

∞∑
n=1

n(qn − q7n − q9n + q15n)

1− q16n
=

q(q16; q16)2∞(q8; q8)2∞(q6, q10; q16)∞
(q, q7, q9, q15; q16)2∞

, (20)

∞∑
n=1

n(q3n − q5n − q11n + q13n)

1− q16n
=

q3(q16; q16)2∞(q8; q8)2∞(q2, q14; q16)∞
(q3, q5, q11, q13; q16)2∞

, (21)

∞∑
n=1

(n
3

) qn − q7n − q9n + q15n

1− q16n

=
q(q8; q8)2∞(q48; q48)∞(q6, q10; q16)∞(q, q7, q9, q15; q16)∞

(q16; q16)∞(q3, q21, q27, q45; q48)∞
, (22)

and
∞∑
n=1

(n
3

) q3n − q5n − q11n + q13n

1− q16n

=
q3(q8; q8)2∞(q48; q48)∞(q2, q14; q16)∞(q3, q5, q11, q13; q16)∞

(q16; q16)∞(q9, q15, q33, q39; q48)∞
. (23)

where, η(τ) = q1/24f(−q) where q = e2πiτ , Imτ > 0, and η(τ) is the

Dedekind-eta function and
(

.
p

)
, p− prime denote the Legendre symbol modulo p.

3. Main Results
Here, we present six interrelationships between Eisenstein series identities, Göllnitz–

Gordon identities and combinatorial partition identities.

Theorem 3.1. Each of the following identities holds true:
∞∑
n=1

n≡1 (mod 2)

q3n + q5n

1− q16n
−

∞∑
n=1

n≡1 (mod 2)

q11n + q13n

1− q16n
= q4 R(16, 16, 1, 1, 1, 2)

(
I1(q

2) +
1

I1(q2)

)
(24)

and
∞∑
n=1

n≡1 (mod 2)

qn + q7n

1− q16n
−

∞∑
n=1

n≡1 (mod 2)

q9n + q15n

1− q16n
= q4 R(16, 16, 1, 1, 1, 2)

(
I2(q

2) +
1

I2(q2)

)
.

(25)
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Proof. First of all, in order to prove the assertion (24), we apply the identity (15)
(with m = 16) in (18), after using little algebra, we are led to the desire identity
(24). Proof of (25) is similar to the proof of (24), so we omit.
We thus have completed our proof of the Theorem (3.1).

Theorem 3.2. Each of the following identities holds true:

∞∑
n=1

n(qn − q7n − q9n + q15n)

1− q16n

= q fGG1(1; q
2) R(8, 8, 1, 1, 1, 2)

(q2; q2)∞(q8; q8)3∞(q8; q16)∞
(q4; q4)∞(q, q7, q9, q15; q16)2∞

, (26)

∞∑
n=1

n(q3n − q5n − q11n + q13n)

1− q16n

= q3 fGG2(1; q
2) R(8, 8, 1, 1, 1, 2)

(q2; q2)∞(q8; q8)3∞(q8; q16)∞
(q4; q4)∞(q3, q5, q11, q13; q16)2∞

, (27)

∞∑
n=1

(n
3

) qn − q7n − q9n + q15n

1− q16n

=
q fGG1(1; q

2)

R(8, 8, 1, 1, 1, 2)

(q2; q2)∞(q8; q8)2∞(q48; q48)∞(q, q7, q9, q15; q16)∞
(q4; q4)∞(q3, q21, q27, q45; q48)∞

(28)

and

∞∑
n=1

(n
3

) q3n − q5n − q11n + q13n

1− q16n

=
q3 fGG2(1; q

2)

R(8, 8, 1, 1, 1, 2)

(q2; q2)∞(q8; q8)2∞(q48; q48)∞(q3, q5, q11, q13; q16)∞
(q4; q4)∞(q9, q15, q33, q39; q48)∞

. (29)

Proof. First of all, in order to prove the assertion (26), we use the identities of
(15) (with m = 8) and (9) (with q = q2; t = 1) in (20), by arranging the power of
suitable terms and further using little algebra, we obtain the desire identity (26).
Proof of (27) is similar to the proof of (26), so we omit.
Further, we prove our next assertion (28), using the identities of (15) (m = 8) and
(9) (with q = q2; t = 1) in (22), by arranging the power of suitable terms and
applying little algebra, we obtain the desire identity (28).
Proof of (29) is similar to the proof of (28), so we omit.
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We thus have completed our proof of the Theorem 3.2.

4. Concluding Remarks

Recently, Vanitha, Chaudhary and Bulkhali [19] established relations between
Eisenstein series identities and continued fractions of order sixteen. In present
article, authors developed six interrelationships between Eisenstein series identities,
Göllnitz–Gordon identities and combinatorial partition identities.
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