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Abstract: In this paper, we study the quenching phenomenon related to the ω-
diffusion equation on graphs with a potential and a singular source

ut(x, t) = ∆ωu(x, t) + b(x)(1− u(x, t))−p,

where ∆ω is called the discrete weighted Laplacian operator. Under some ap-
propriate hypotheses, we prove the existence and uniqueness of the local solution
via Banach fixed point theorem. We also show that the solution of the problem
quenches in a finite time and that the time-derivative blows up at the quenching
time. Moreover, we estimate the quenching time and the quenching rate. Finally,
we verify our results through some numerical examples.
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1. Introduction and Definitions

In this paper, we study the quenching properties on the graph G(V,E, ω) of the
following problem :

ut(x, t) = ∆ωu(x, t) + b(x)(1− u(x, t))−p, (x, t) ∈ S × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂S × (0, T ),

u(x, 0) = u0(x), x ∈ V,

(1)

where p is a positive real. Following [18] V is the set of nodes (or vertices) of the
graph G(V,E, ω). In this work, we suppose that the graph G is simple (i.e. without
loops), finite, connected, undirected and weighted graph. Moreover, the set of
vertices can be split into two disjoint subsets S and ∂S such that V = S∪∂S. The
subsets S and ∂S of V are called the interior and the boundary of V , respectively.
Moreover, ω : V × V → R+ denotes the weighted function, which such as :

(i) ω(x, x) = 0 for any x ∈ V,

(ii) ω(x, y) = ω(y, x) for any x, y ∈ V ,

(iii) ω(x, y) > 0 if and only if {x, y} ∈ E,

where E is the set of edge of the graph G. The discrete weighted Laplacian operator
∆ω is defined as follows :

∆ωu(x, t) =
∑
y∈V

ω(x, y)(u(y, t)− u(x, t)), (x, t) ∈ V × [0, T ),

and
∑
y∈V

ω(x, y) = h(x).

Now, let us state the basic assumptions in this work :

� the initial data u0 : V → [0, 1) is a nontrivial function such as

∆ωu0(x) + b(x)(1− u0(x, t))
−p ≥ 0,

� the potential b ∈ C(V ) is a nonnegative function, such as

min
x∈S

b(x) > max
x∈S

h(x).
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Here [0, T ) is the maximum time interval on which the solution u of (1) exists and
satisfies

∥u(·, t)∥∞ < 1, where ∥u(·, t)∥∞ = max
x∈S

u(x, t).

When T is finite, we say that the solution u quenches in finite time, namely

lim
t→T−

∥u(·, t)∥∞ = 1

and T is called the quenching time of the solution u.
In our problem we have singular heat source, b(x)(1−u(x, t))−p. The main goal

of this paper is to study the quenching of the above problem and then to derive
the quenching rate estimates. This mathematical problem can be considered as a
model of heat diffusion (or energy) through networks which flows is influenced by
proportional reactive forces to the power of its potential.

It should be added that the diffusion equations on graphs have been introduced
as mathematical models of heat flowing (or energy) through an electric network or
as models of informations on networks or vibration of molecules. For this reason,
the study of ω-diffusion equation of the form ut(x, t) = ∆ωu(x, t) has attracted
many researchers attention in recent years (see [1, 4, 6, 9, 11, 16, 17, 21, 23] and the
references cited therein). On the other hand, the long time behavior (extinction and
positivity) of solutions to evolution Laplace equation with absorption on networks
is studied in papers [5, 10, 19]. Yun-Sung Chung et al [3] considered the following
problem 

ut = ∆ωu− uq in S × (0,∞),

u = 0 on ∂S × [0,∞),

u(x, 0) = u0(x) ≥ 0, x ∈ S.

(2)

They proved that a nontrivial solution becomes extinct in finite time if 0 < q < 1,
while it remains positive for q ≥ 1. In [12] Liu et al replaced the reaction term
−u−q by λuq − up. They discussed of the quenching of the solution to the problem
according to the parameters p, q and λ. Furthermore, Qiao Xin et al in [18]
considered the following ω-diffusion equation with a reaction term

u(x, t) = ∆ωu(x, t) + up(x, t), (x, t) ∈ S × (0,∞),

u(x, t) = 0, (x, t) ∈ ∂S × (0,∞),

u(x, 0) = u0(x), x ∈ V.

(3)

They proved that if p ≤ 1, every solution is global. They also obtained that if
p > 1, the nonnegative and nontrivial solution blows up in finite time and that the
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blow-up rate on L∞-norm only depends on p, under some suitable conditions. For
more details about the study of ω-diffusion equation on graphs, we refer to [11, 16,
17, 20]. Moreover, in the continuous case, solutions of diffusion equations which
quench in a finite time have been the subject of many authors investigations [7, 8,
13-15]. In particular, Boni et al [2] studied the reaction-diffusion equation (1) on
a continuous domain Ω ⊂ Rn, defined as follows :

ut(x, t) = Lu(x, t) + r(x)(b− u(x, t))−p, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(4)

where r(x) is a nonnegative potential and L, an elliptic operator defined by

Lu =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
.

The authors have given some conditions under which the solution of the above
problem quenches in a finite time and estimated its quenching time. Moreover,
D. Xiaoqiang et al [15] are interested in the asymptotic behavior of the quenching
time of a similar problem.

Our work has also been motivated by the paper of Yun-Sung Chung et al in
[5]. They have considered the problem (3) in the case where the reaction term up

is replaced by −uq with q > 1. They proved that a nontrivial solution becomes
extinct in finite time if 0 < q < 1, while it remains positive for q ≥ 1. For papers
concerning other ω-diffusion equations, we also refer readers to [16], [22].

Motivated by the above researches, we study problem (1) on graphs. By us-
ing the Banach fixed point theorem, we prove the local existence of the solution.
Then, we construct the comparison principle and use it to study the quenching
and quenching rate. Finally, we give several numerical experiments to illustrate
our results.

The rest of the paper is organized as follows. In Section 2, we consider the
local existence of the solution of the problem (1). In section 3, we prove that the
solution u of problem (1) quenches in a finite time and estimate its upper bound.
On the other hand, we estimate the quenching rate and prove that ut blows up at
quenching time. In Section 4, we give some numerical experiments to illustrate our
analysis.



Some Quenching Problems for ω-diffusion Equations on Graphs ... 43

2. Local existence
In this section, we prove the existence of local solution for problem (1) via

Banach fixed point theorem. Since 0 ≤ u0(x) < 1, we can choose 0 < α < 1 such

that 0 ≤ u0(x) <
α

2
. We also consider the Banach space defined as follows :

Xt0 = {u ∈ C(V × [0, t0];R) | 0 ≤ u(x, t) ≤ α, u(x, t) ≡ 0, for any x ∈ ∂S} ,

with the norm

∥u∥Xt0
= max

t∈[0,t0]
max
x∈S

|u(x, t)|,

where t0 > 0 is a fixed constant.
Now, let’s define the nonlinear operator Tu0 by

Tu0 [u](x, t) =

{
u0(x) +

∫ t

0
∆ωu(x, τ)dτ +

∫ t

0
b(x)(1− u(x, τ)−p)dτ, x ∈ S, t ∈ [0, t0],

0, x ∈ ∂S, t ∈ [0, t0].

In the following, under some appropriate conditions, we present the properties of
the nonlinear operator Tu0 and the local existence result of solution of the problem
(1).

Lemma 1. The nonlinear operator Tu0 is well defined, mapping Xt0 into Xt0 and
verifies the following properties :

� For any u, v ∈ Xt0, 0 ≤ u0(x), v0(x) <
α

2
, there exists a positive constant

C which only depends on h(x), p, ∥u∥Xt0
, ∥v∥Xt0

such that

∥Tu0 [u]− Tv0 [v]∥Xt0
≤ ∥u0 − v0∥∞ + Ct0∥u− v∥Xt0

. (5)

� The mapping Tu0 is strictly contractive.

Proof.
Step 1. We prove that Tu0 maps Xt0 into Xt0 . By definition of Tu0 , it is easy to
check that Tu0 [u](x, ·) is continuous mapping on [0, t0] for any x ∈ V . Now, we
show that 0 ≤ Tu0 [u](x, t) ≤ α for any u ∈ Xt0 . For this, we consider u ∈ Xt0 . We
consider t0 > 0 such that :

t0 ≤
α/2

αmax
x∈S

h(x) + max
x∈S

b(x)(1− α)−p .
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By the definition of the discrete Laplacian operator and the nonnegative of the
weighted function ω(x, y), we have :

Tu0 [u](x, t) = u0(x) +

∫ t

0

∑
y∈V

ω(x, y)(u(y, τ)− u(x, τ))dτ +

∫ t

0
b(x)(1− u(x, τ))−pdτ

≤ α

2
+

∫ t

0

∑
y∈V

ω(x, y)u(y, τ)dτ +

∫ t

0
b(x)(1− u(x, τ))−pdτ

≤ α

2
+

∫ t

0
αmax

x∈S
h(x)dτ +

∫ t

0
max
x∈S

b(x)(1− α)−pdτ

≤ α

2
+

(
αmax

x∈S
h(x) + max

x∈S
b(x)(1− α)−p

)
t0

≤ α.

Since min
x∈S

b(x) > max
x∈S

h(x), we obtain

Tu0 [u](x, t) = u0(x) +

∫ t

0

∑
y∈V

ω(x, y)(u(y, τ)− u(x, τ))dτ +

∫ t

0
b(x)(1− u(x, τ))−pdτ

≥ −
∫ t

0

∑
y∈V

ω(x, y)u(x, τ)dτ +

∫ t

0
b(x)dτ

≥
(
−αmax

x∈S
h(x) + min

x∈S
b(x)

)
t

≥ 0.

Therefore, the nonlinear operator Tu0 maps Xt0 to Xt0 .
Step 2. Since, the function s 7→ (1− s)−p is locally Lipschitz continuous on [0, α],
for any (x, t) ∈ S × [0, t0], u0(x), v0(x) ∈ C(V ) and u(x, t), v(x, t) ∈ Xt0 , we get :

|Tu0 [u](x, t)− Tv0 [v](x, t)| ≤ ∥u0 − v0∥∞ +

∫ t

0

|∆ω(u(x, τ)− v(x, τ))|dτ

+

∫ t

0

|b(x)||(1− u(x, τ))−p − (1− v(x, τ))−p|dτ

≤ ∥u0 − v0∥∞ + Ct∥u− v∥Xt0
,

where C = 2maxx∈S |h(x)|+ p(1− η)−p−1, with η = max
{
∥u∥Xt0

, ∥v∥Xt0

}
.

Step 3. Now, we prove that Tu0 is strictly contractive in the ballB
(
u0, 2∥u0∥L∞(V )

)
.

For any u, v ∈ B
(
u0, 2∥u0∥L∞(V )

)
, we have

∥u∥Xt0
≤ 3∥u0∥L∞(V ), ∥v∥Xt0

≤ 3∥u0∥L∞(V ).
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Thus, we get
∥Tu0 [u]− Tu0 [v]∥Xt0

≤ C2t0∥u− v∥Xt0
,

where C2 only depends on ω, u0 and p. Taking t0 small enough such that C2t0 < 1,
we obtain the desired results.

By the Banach fixed point theorem and the Lemma 1, we can prove the existence
and the uniqueness of solution u to (1) in the time interval [0, t0]. Thus, if ∥u∥Xt0

<
1, taking initial data u(x, t0), we can extend the solution to some interval [0, t1],
where t1 > t0. We repeat the above processing until limt→T− u(x, t) = 1.

3. Quenching, quenching rate and blow-up of time-derivative
In this section, we investigate the quenching phenomenon of the solution of

(1). We also study the blow-up of the time-derivative of its solution under some
appropriate assumptions and estimate the time of quenching.
Now, we give some auxiliary results for the problem (1).

Definition 2. We say that v is an upper solution of (1) if

vt(x, t)−∆ωv(x, t)− b(x)(1− v(x, t))−p ≥ 0, (x, t) ∈ S × (0, T ),

v(x, t) ≥ 0, (x, t) ∈ ∂S × (0, T ),

v0(x) ≥ u0(x), x ∈ V.

On the other hand, we say that v is a lower solution of (1) if these inequalities are
reversed.

The following lemma is a discrete form of the maximum principle.

Lemma 3. Let a(x, ·) ∈ C0([0, T0];V ) and v such that :

vt(x, t)−∆ωv(x, t)− b(x)a(x, t)v(x, t) ≥ 0, (x, t) ∈ S × (0, T ),

v(x, t) ≥ 0, (x, t) ∈ ∂S × (0, T ),

v0(x) ≥ 0, x ∈ V.

Then we have
v(x, t) ≥ 0, (x, t) ∈ V × [0, T ).

Proof. Let 0 < T0 < T and define the function z(x, t) = eλtv(x, t) where λ is small
enough such that b(x)a(x, t) + λ < 0, for t ∈ [0, T0], x ∈ V . We have :

zt(x, t)−∆ωz(x, t)− (b(x)a(x, t) + λ)z(x, t) ≥ 0, (x, t) ∈ S × (0, T ), (6a)

z(x, t) ≥ 0, x ∈ ∂S × (0, T ), (6b)

z(x, 0) = z0(x) ≥ 0, x ∈ V. (6c)
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Let m = min
x∈V

min
t∈[0,T0]

z(x, t). Since for x ∈ V , z(x, t) is continuous function, we can

assume that m = z(x0, tx0) for a certain x0 ∈ V.
Assume m < 0.

If tx0 = 0, then z(x0, tx0) = z0(x0) < 0, which contradicts (6c), hence tx0 ̸= 0.
If x0 ∈ ∂S, we have z(x0, tx0) < 0, which contradicts (6b), thereby x0 ∈ S. More-
over, we get

zt(x0, tx0) = lim
k→0

z(x0, tx0)− z(x0, tx0 − k)

k
≤ 0,

−
∑
y∈V

ω(x0, y)(z(y, t0)− z(x0, t0)) ≤ 0.

On the other hand, for λ small enough, we get

zt(x0, tx0)−∆ωz(x0, tx0)− (b(x0)a(x0, tx0) + λ)z(x0, tx0) < 0,

but this inequality contradicts (6a) and the proof is complete.
The following comparison lemma will be used throughout the paper.

Lemma 4. Let v and w be upper and lower solutions of (1) respectively, then for
(x, t) ∈ S × (0, T )

v(x, t) ≥ w(x, t)

Proof. Let us introduce z(x, t) = v(x, t)− w(x, t). We get :

zt(x, t)−∆ωz(x, t)− p(b(x)(1− η(x, t))−p−1z(x, t) ≥ 0, (x, t) ∈ S × (0, T ), (7a)

z(x, t) ≥ 0, x ∈ ∂S × (0, T ), (7b)

z0(x) ≥ 0, x ∈ V, (7c)

where η(x, t) lies between v(x, t) and w(x, t), for (x, t) ∈ S × (0, T ).
We can rewrite (7a)-(7c) as follows :

zt(x, t)−∆ωz(x, t)− (b(x)a(x, t)z(x, t) ≥ 0, (x, t) ∈ S × (0, T ),

where a(x, t) = p(1 − η(x, t))−p−1 for (x, t) ∈ S × (0, T ). According to lemma 3,
z(x, t) ≥ 0, for (x, t) ∈ S × (0, T ) and the proof is complete.

We need the following two important lemmas.

Lemma 5. Let u be solution of (1) with a positif initial data u0 lower solution
such as for some x0 ∈ S, u0(x0) ≥ u0(x) > 0 and b(x0) ≥ b(x) for x ∈ S. Then we
have
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(i) u(x, t) ≥ u0(x), for (x, t) ∈ S × (0, T ) ;

(ii) u(x0, t) ≥ u(x, t), for (x, t) ∈ S × (0, T ) ;

(iii) ut(x, t) > 0, for (x, t) ∈ S × (0, T ).

Proof. Here we follow the ideas of [6].

(i) Since u0 is a lower solution of (1), by the lemma 4 we get:

u(x, t) ≥ u0(x) ≥ 0, for (x, t) ∈ S × (0, T ).

(ii) Denote z(x, t) = u(x0, t) − u(x, t), for (x, t) ∈ V × (0, T ). It follows from
the definition of z that z(x, 0) ≥ 0 for any x ∈ V and z(x, t) ≥ 0 for any
(x, t) ∈ ∂S × (0, T ). Moreover, a straightforward calculation yields

zt(x, t)−∆ωz(x, t)− pb(x)(1− a(x, t))−p−1z(x, t) ≥ 0, ∀(x, t) ∈ S × (0, T ),

where a(x, t) lies between u(x0, t) and u(x, t). By virtue of Lemma 3, we have

u(x0, t) ≥ u(x, t) ∀(x, t) ∈ S × (0, T ).

(iii) The proof of (iii) is similar to that of the lemma 4. So we omit the details
here.

Now, we prove the quenching of u.

Theorem 6. Let u0 ∈ C(V ) a nonnegative and nontrivial data, compatible with
the boundary condition such as u0(x0) ≥ u0(x) > 0 and b(x0) ≥ b(x) for x ∈
S. Then the corresponding solution to (1) quenches in finite time T , and T ≤

(1− u0(x0))
p+1

(p+ 1)(b(x0)− h(x0))
. Moreover, there exists two positive constants C1, C2, such

that

C1(T − t)
1

p+1 ≤ 1− ∥u(·, t)∥∞ ≤ C2(T − t)
1

p+1 .

Proof.
Step 1 (Quenching). Set h(x) =

∑
y∈V ω(x, y), we get :

ut(x, t) =
∑
y∈V

ω(x, y)(u(y, t)− u(x, t)) + b(x))(1− u(x, t))−p,
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since 0 ≤ u(y, t) < 1 for y ∈ V and t ∈ (0, T ), we obtain :

ut(x, t) ≥ −
∑
y∈V

ω(x, y)u(x, t) + b(x)(1− u(x, t))−p,

ut(x, t) ≥ −h(x)(1− u(x, t))−p + b(x)(1− u(x, t))−p,

thus,
(1− u(x, t))put(x, t) ≥ b(x)− h(x). (8)

Since minx∈S b(x) ≥ maxx∈S h(x), we have b(x)− h(x) > 0.
Integrating inequality (8) from 0 to t, we get

(1− u(x, t))p+1 ≤ (1− u0(x))
p+1 − (p+ 1)(b(x)− h(x))t.

According to Lemma 4 for t ∈ (0, t), u(·, t) reaches its maximum at x0, which

implies that there exists T ≤ T0 =
(1− u0(x0))

p+1

(p+ 1)(b(x0)− h(x0))
such that

lim
t→T−

u(x0, t) = 1.

Step 2 (Quenching rates). Considering inequality (8) at point x0, integrating
from t to T , we get

(1− u(x0, t))
p+1 ≥ (p+ 1)(b(x0)− h(x0))(T − t),

therefore

1− u(x0, t) ≥ C1(T − t)
1

p+1 , with C1 = ((p+ 1)(b(x0)− h(x0)))
1

p+1 .

We still consider

ut(x0, t) =
∑
y∈V

ω(x0, y)(u(y, t)− u(x0, t)) + b(x0)(1− u(x0, t))
−p.

Due to u(x0, t) ≥ u(x, t) for all x ∈ V , we get

ut(x0, t) ≤ b(x0)(1− u(x0, t))
−p.

Multiplying both sides by (1− u(x0, t))
p and integrating from t to T , we have

(1− u(x0, t))
p+1 ≤ (p+ 1)b(x0)− (T − t),
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therefore we get :

1− u(x0, t) ≤ C2(T − t)
1

p+1 , with C2 = ((p+ 1)b(x0))
1

p+1 .

Theorem 7. Let u0 ∈ C(V ) a nonnegative and nontrivial data, compatible with
the boundary condition such as u0(x0) ≥ u0(x) > 0 and b(x0) ≥ b(x) for x ∈ S.
Then ut blows up at the quenching time.
Proof. We prove that ut blows up at quenching time, as in [2] and [6].
Suppose that ut is bounded. Then, a positive constantM exists, such that ut(x, t) <
M for (x, t) ∈ S × (0, T ]. For (x, t) ∈ S × (0, T ), we get :

ut(x, t) = ∆ωu(x, t) + b(x)(1− u(x, t))−p < M,

∆ωu(x0, t) + b(x0)(1− u(x0, t))
−p < M,

−h(x0)u(x0, t) + b(x0)(1− u(x0, t))
−p < M,

which implies
b(x0)(1− u(x0, t))

−p < h(x0)u(x0, t) +M.

Therefore, we obtain

(1− u(x0, t))
−p <

h(x0) +M

b(x0)
.

When t → T− , the left-hand side tends to infinity while the right-side is finite.
We then obtain a contradiction, which shows that ut blows up when u quenches.

4. Examples and numerical experiments
In this section, we present examples to illustrate the quenching of the solu-

tion of (1) as well as the blow-up of the time-derivative of its solution. We con-
sider a simple graph G(V,E, ω) such that ω(x, y) = 1 if {x, y} ∈ E and vertices
S = {x1, x2, x3}, ∂S = {x4, x5, x6} are linked as the following figure shows.

x1 x2

x6

x5x4

x3
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Thus, the problem (1) can be rewritten as:

ut(x1, t) = −3u(x1, t) + u(x2, t) + u(x3, t) + b(x1)(1− u(x1, t))
−p, t ∈ (0, T ),

ut(x2, t) = u(x1, t)− 3u(x2, t) + u(x3, t) + b(x2)(1− u(x2, t))
−p, t ∈ (0, T ),

ut(x3, t) = u(x1, t) + u(x2, t)− 3u(x3, t) + b(x3)(1− u(x3, t))
−p, t ∈ (0, T ),

u0(x1) = a,

u0(x2) = b,

u0(x2) = c.

(9)

This system is nonlinear. In this case, it is difficult to obtain its analytic solutions.
This motives the following numerical study.

We present numerical experiments of (9) conducted with the linearly explicit
method given by :

u(n+1) = Anu
(n) +∆tnf

(n),

where u(n) = (u(x1, n∆tn), u(x2, n∆tn), u(x3, n∆tn))
T ,

An =

1− 3∆tn ∆tn ∆tn
∆tn 1− 3∆tn ∆tn
∆tn ∆tn 1− 3∆tn

 , ∆tn = 0.0001(1− ∥un∥∞)p+1,

f (n) = (b(x1)(1− u(x1, n∆tn))
−p, b(x2)(1− u(x2, n∆tn))

−p, b(x3)(1− u(x3, n∆tn))
−p)

T
,

b(x1) = 4, b(x2) = 4.5, b(x3) = 4.5 and a = 0.05, b = 0.07, c = 0.08.
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Figure 1: Evolution of u for p = 0.5 Figure 2: Evolution of ut for p = 0.5



Some Quenching Problems for ω-diffusion Equations on Graphs ... 51

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

0

5

10

15

u
t(x

,t
)

105  blow-up of time derivative u
t
 for p=1

u
t
(x

1
,t)

u
t
(x

2
,t)

u
t
(x

3
,t)

Figure 3: Evolution of u for p = 1 Figure 4: Evolution of ut for p = 1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

t

0

2

4

6

8

10

12

14

16

18
u

t(x
,t

)
106  blow-up of time derivative u

t
 for p=1.5

u
t
(x

1
,t)

u
t
(x

2
,t)

u
t
(x

3
,t)
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Remark 8. We consider the problem (9) in the case where the initial data u0(x1) =
0.05, u0(x2) = 0.07, u0(x3) = 0.08 and b(x1) = 4, b(x2) = 4.5, b(x3) = 4.5. From
figures 1-6, we observe that ut blows up while u quenches in a finite time. By
the numerical simulation, when p = 0.1 (resp. p = 1 and p = 1.5 ) we obtain
approximately T = 0.1423 (resp. T = 0.0998 and T = 0.0756). Thus, we can say
that when p increases, we have an acceleration of quenching of the solution. This
result is not a surprise due to the result established in the previous section.

5. Conclusion
In this paper, we consider the quenching phenomenon for the ω-diffusion equa-

tions on graphs with potential and singular source and we obtain the existence
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of local solution for problem (1) via Banach fixed point theorem. We also show
that the solution of the problem quenches, whereas its time derivate blows up in
a finite time. Moreover, we give the upper quenching time and the quenching rate
on L∞-norm. Examples were proposed to illustrate our results. In the future, we
will further consider its lower blow-up time and also the blow-up set.
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