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Abstract: The purpose of this article is to introduce the readers, especially the
researchers, to some topics connected with functions of matrix argument, scal-
ing models, distributions of products and ratios, Bayesian structures, symmetric
products and symmetric ratios of matrices, scalar and matrix-variate fractional
integrals, functions of matrix argument through entropy optimization, singular
matrix-variate gamma and beta functions etc which are currently active so that
interested readers can get into these classes of problems for their current research
or teaching. Let X be a p × q, p ≤ q matrix of rank p in the real domain. If the
function f(X), associated with X, is a function of XX ′, where a prime denotes the
transpose, then such a function appears in a number of different disciplines. This
paper examines the recent developments in such matrix-variate functions when
X is in the real or complex domain. Connections to Bayes procedures, quantum
physics, scalar and matrix texture models in communication and engineering prob-
lems, fractional integrals, distributions of symmetric products and symmetric ratios
of matrices, singular matrix-variate gamma and beta functions and other related
areas are pointed out. Only an overview of the current research in these topics with
some illustrative examples are given in this paper. Since the material is summa-
rized from the author’s own works, most of the references are author’s own papers,
and hence similarity index, similarity with author’s own works, may be high. The
materials also cover some current results which are being published.
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1. Introduction

In this paper, we consider only real-valued scalar function f(X), where the
argument X may be scalar (1× 1 matrix), vector (1×m or m× 1 matrix), matrix
or a sequence of matrices in the real or complex domain where f is scalar and real-
valued. One can also make a statistical density out of f(X) by imposing additional
conditions. When f(X) is a real-valued scalar function of X such that f(X) ≥ 0
for all X in the domain of X and

∫
X
f(X)dX = 1, then such an f(X) is called

a statistical density of X where X may be a scalar, vector, matrix, collection of
matrices, in the real or complex domain. Here, dX represents the wedge product
of differentials of all distinct real scalar variables in X. For two real scalar variables
x and y the wedge product of differentials is defined as dx∧dy = −dy∧dx so that
dx ∧ dx = 0, dy ∧ dy = 0. If X = (xjk) is a p × q matrix in the real domain with
xjk’s being distinct real scalar variables, then dX = ∧p

j=1 ∧
q
k=1 dxjk. If X̃ = (x̃jk)

is a p × q matrix in the complex domain with distinct scalar complex variables
x̃jk’s as elements, then one can write X̃ = X1 + iX2, i =

√
(−1), X1, X2 are real

p× q matrices, then dX̃ will be defined as dX1∧dX2. The integral of a real-valued
scalar function f(X), over X, will be denoted as

∫
X
f(X)dX.

When we deal with matrix-variate functions in the real and complex domains,
a multiplicity of symbols and notations are required to represent items uniquely.
Hence, the following simplified notations will be used. Real scalar variables, whether
mathematical variables or random variables, will be denoted by lower-case letters
such as x, y, z and vector/matrix variables, mathematical or random, will be de-
noted by capital letters such as X, Y, Z. Scalar constants will be denoted by a, b, c
etc and vector/matrix constants by A,B etc. Variables in the complex domain will
be written with a tilde such as x̃, ỹ, X̃, Ỹ . No tilde will be used on constants. Greek
letters and other symbols will be explained when they occur for the first time. For
a p×p matrix A, the determinant will be written as |A| or det(A). When A is in the
complex domain, then det(A) = a + ib, i =

√
(−1), a, b are real scalar quantities,

then the absolute value of the determinant will be written as |det(A)| =
√
a2 + b2.

If B is in the complex domain then B∗ will represent the conjugate transpose of
B. If B = B∗, then B is Hermitian. A positive definite p × p matrix A will be



An Overview of Recent Developments in Functions of Matrix Argument 3

written as A > O and A = A′ when A is real, and B = B∗ > O (Hermitian positive
definite) when B is in the complex domain, where the prime denotes the transpose.

Let X = (xjk) be p× q, p ≤ q matrix of rank p in the real domain, that is, X is
a full rank matrix. Then, XX ′ > O (positive definite). If X̃ is p× q, p ≤ q matrix
of rank p in the complex domain, then X̃X̃∗ > O (Hermitian positive definite)
observing that X̃ is a full rank matrix. If X is real, then S = XX ′ > O is p × p
when X is a full rank matrix of rank p, p ≤ q and when X is p× q. If p > q and X
is of rank r ≤ q, then XX ′ will be positive semi-definite in the real case and X̃X̃∗

will be Hermitian positive semi-definite in the complex domain. Then, f(XX ′) or
f(X̃X̃∗) will be a singular matrix-variate case. A glimpse into the singular case
will be given in Section 7. If a function of X is a function of XX ′ = S, then one can
convert the differential element dX into the differential element dS, if necessary.
This can be achieved by a result from Mathai [8] which will be given here as a
lemma.

Lemma 1.1. Let X be a p × q, p ≤ q matrix of rank p in the real domain. Let
S = XX ′. Then, going through a transformation involving a lower triangular
matrix with positive diagonal elements and a unique semi-orthonormal matrix and
then integrating out the differential element corresponding to the semi-orthonormal
matrix, we have the following connection:

dX =
π

pq
2

Γp(
q
2
)
|S|

q
2
− p+1

2 dS

where, for example, Γp(α) is the real matrix-variate gamma function defined as the
following where Y is a p× p real positive definite matrix:

Γp(α) =

∫
Y >O

|Y |α−
p+1
2 e−tr(Y )dY,ℜ(α) > p− 1

2

= π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),ℜ(α) > p− 1

2

where tr(·) means the trace of the square matrix (·) and ℜ(·) means the real part
of (·). When X̃ is p × q, p ≤ q matrix of rank p in the complex domain and
when S̃ = X̃X̃∗ > O we have the following connection between the differential
elements of X̃ and S̃, which is obtained by going through a transformation involving
a lower triangular matrix with real and positive diagonal elements and a unique
semi-unitary matrix and then integrating out the differential element corresponding
to the semi-unitary matrix:

dX̃ =
πpq

Γ̃p(q)
|det(S̃)|q−pdS̃
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where, for example, Γ̃p(α) is a complex matrix-variate gamma function defined as
the following where Z̃ > O is a p× p Hermitian positive definite matrix:

Γ̃p(α) =

∫
Z̃>O

|det(Z̃)|α−pe−tr(Z̃)dZ̃,ℜ(α) > p− 1

= π
p(p−1)

2 Γ(α)Γ(α− 1)...Γ(α− p+ 1),ℜ(α) > p− 1.

For the proof and for other related Jacobians of matrix transformations, see
Mathai [8]. For example, if we have a function of the following form, where X is
real p× q, p ≤ q matrix of rank p,

f(X)dX = c|XX ′|γ[tr(XX ′)]ηe−[tr(XX′)]δdX (1.1)

then, we can write it as

f(X)dX = c
π

pq
2

Γp(
q
2
)
|S|γ+

q
2
− p+1

2 [tr(S)]ηe−[tr(S)]δdS

where c can be taken as the normalizing constant if f(X) is taken as a statistical
density. Now, there are techniques of integrating out S, see Mathai [14], to ob-
tain the normalizing constant c here. Corresponding will be the procedure in the
complex domain. Note that (1.1) is the most general form of a rectangular matrix-
variate function of the gamma or Gaussian type in the standard form. When γ = 0
the model in (1.1) is often called Kotz model. Some people call (1.1) with γ ̸= 0
as Kotz model also. This model is widely used in communication problems. When
return signals in radar transmissions are captured, a cross section of the multi-look
data will have pepper dust like contaminants called freckles and the cross section
itself is a random quantity called texture. Then, a cross section with the contami-
nants is of the form AX whereX represents the freckle component and A represents
the texture component. One can look into the distribution of X at preassigned A,
then the problem goes into Bayes analysis. One can look at A as a scaling parame-
ter then AX is a scaling model or scale mixture. If both A and X are considered as
independent random variables then it is a problem of the distribution of a product.
Usually, in communication problems involving multi-look data, X is a p×q matrix.
Usually, each elements will have a phase part and a time part and hence the proper
representation of each element is through a scalar complex variable. Thus, usually,
X̃ will be in the complex domain and the texture parameter A can be a scalar or
vector or matrix. Very often the density of X̃ is taken as the complex analogue of
(1.1). Starting from the 1960’s, the model in (1.1) with γ ̸= 0 was being used in
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physics, statistics, communication and engineering problems etc. The normalizing
constants traditionally used may be seen from Diaz-Garcia and Gutiérrez-Jáimez
[7]. Detailed derivations of the normalizing constants in all the models involving
determinant with the power γ ̸= 0 and at the same time the exponential trace
having a power of the form [tr(XX ′)]δ, δ > 0 are given recently in Mathai (2023).

In (1.1) if γ = 0, η = 0, δ = 1 then it is the Gaussian model in the standard
form. A general matrix-variate Gaussian model is of the following form, where X
is p× q, p ≤ q and of rank p:

f1(X)dX = c1e
−tr(AXBX′)dX (1.2)

where A > O is p× p and B > O is q × q constant positive definite matrices. If a
location parameter is to be included, then we replace AXBX ′ by A(X−M)B(X−
M)′,M is a location parameter matrix and if f1(X) is a statistical density, then
M = E[X] where E[·] means the expected value of [·]. There will not be any
change in the normalizing constant c1 by incorporatingM into the model. In order
to evaluate the normalizing constant in (1.2), we have to convert tr(AXBX ′) into
a form tr(UU ′) and then UU ′ into S, that is dU into dS by using Lemma 1.1 and
then integration is possible with the help of a matrix-variate type-1 beta integral.
In order to convert to UU ′ form we need another matrix transformation, which will
be given here as a lemma.

Lemma 1.2. Let X = (xjk) be p×q matrix with distinct real scalar elements xjk’s.
Let A be a p× p and B be a q × q nonsingular constant matrices. Then,

Y = AXB, |A| ≠ 0, |B| ≠ 0,⇒ dY = |A|q|B|pdX

If X̃ = (x̃jk) is a p× q matrix in the complex domain with distinct scalar complex
variables as elements, then

Ỹ = AX̃B, |A| ≠ 0, |B| ≠ 0,⇒ dỸ = |det(A)|2q|det(B)|2pdX̃

where the p×p matrix A and the q×q matrix B are constant nonsingular matrices in
the real or complex domain, observing that one can write, for example, |det(A)|2q =
|det(AA∗)|q where A∗ is the conjugate transpose of A or (Ac)′ = (A′)c = A∗, where
Ac is the conjugate of A.

For the proof and other details, see Mathai [8]. As an application of Lemma 1.2,
consider the exponent in the Gaussian model (1.2). One can write tr(AXBX ′) =

tr(A
1
2XBX ′A

1
2 ) where A

1
2 is the positive definite square root of the positive definite

matrix A > O. Now, write U = A
1
2XB

1
2 ⇒ dU = |A| q2 |B| p2dX by Lemma 1.2 and
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thus the exponent has become tr(UU ′). Note that once we have a form UU ′ which
is symmetric. If we need any further transformation involving UU ′, then we need
Jacobians involving symmetric matrices. One such result will be listed here as a
lemma.

Lemma 1.3. Let X = X ′ be a p × p nonsingular symmetric matrix with distinct
real scalar variables as elements. Let A be a p × p nonsingular constant matrix.
Then,

Y = AXA′, |A| ≠ 0,⇒ dY = |A|p+1dX.

When X̃ = X̃∗ is p × p Hermitian and when A is a p × p constant nonsingular
matrix in the real or complex domain, then

Ỹ = AX̃A∗, |A| ≠ 0,⇒ dỸ = |det(A)|2pdX̃ = |det(AA∗)|pdX̃.

For the proof, see Mathai [8]. As an illustration, let us consider the evaluation
of the following integral: ∫

X>O

|X|α−
p+1
2 e−tr(BX)dX

where X = X ′ > O is p × p positive definite, B = B′ > O is a constant p × p
positive definite matrix. We may write tr(BX) = tr(B

1
2XB

1
2 ). Now, let Y =

B
1
2XB

1
2 ⇒ dY = |B| p+1

2 dX by Lemma 1.3. Now, we have an integral of the form

|B|−α

∫
Y >O

|Y |α−
p+1
2 e−tr(Y )dY.

This is the matrix-variate gamma integral defined in Lemma 1.1. The value of this
integral is also given in Lemma 1.1. How do we evaluate the above real matrix-
variate gamma integral? This can be evaluated by using another result which is
given here as a lemma.

Lemma 1.4. Let the p × p matrix X = (xjk) be real and positive definite. Let
T = (tjk) be a lower triangular matrix with positive diagonal elements, that is,
tjk = 0, j < k, tjj > 0, j = 1, ..., p. Then,

X = TT ′ ⇒ dX = 2p{
p∏

j=1

tp+1−j
jj }dT.

Let X̃ = X̃∗ > O be p× p Hermitian positive definite with distinct scalar complex
variables as elements. Let T̃ = (t̃jk) be a lower triangular matrix in the complex
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domain with real and positive diagonal elements, that is t̃jk = 0, j < k, t̃jj = tjj >
0, j = 1, ..., p. Then,

dX̃ = 2p{
p∏

j=1

t
2(p−j)+1
jj }dT̃ .

For the proof, see Mathai [8]. Now, let us evaluate the real matrix-variate
gamma integral, namely

Γp(α) =

∫
X>O

|X|α−
p+1
2 e−tr(X)dX

where X is p × p real and positive definite with distinct real scalar variables as
elements. LetX = TT ′ where T is lower triangular with positive diagonal elements.
Note that |X| = |TT ′| =

∏p
j=1 t

2
jj and tr(X) = tr(TT ′) =

∑
j≥k t

2
jk because for

any matrix B = (bjk), square or rectangular, tr(BB′) = tr(B′B) =
∑

jk b
2
jk =

the sum of squares of all elements in B. If B is in the complex domain, then
tr(BB∗) = tr(B∗B) =

∑
jk |bjk|2 = sum of squares of the absolute values of all

elements in B. Now, Γp(α) splits into integrals over tjj’s and integrals over tjk’s
for j > k. That is,

Γp(α) = {
p∏

j=1

2

∫ ∞

0

(t2jj)
α− j

2 e−t2jjdtjj}{
∏
j>k

∫ ∞

−∞
e−t2jkdtjk}.

Observe that

2

∫ ∞

0

(t2jj)
α− j

2 e−t2jjdtjj = Γ(α− j − 1

2
),ℜ(α) > j − 1

2

for j = 1, ..., p which means

Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),ℜ(α) > p− 1

2

and ∏
j>k

∫ ∞

−∞
e−t2jkdtjk =

∏
j>k

√
π = π

p(p−1)
4 .

These establish that

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),ℜ(α) > p− 1

2
.
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In a similar manner, one can establish the result that the integral representation
in the complex matrix-variate gamma in Lemma 1.1 has the explicit expression
as given there. For the p × p real positive definite matrix one can define the real
matrix-variate beta function as

Bp(α, β) =
Γp(α)Γp(β)

Γp(α + β)
= Bp(β, α),ℜ(α) >

p− 1

2
,ℜ(β) > p− 1

2

and the corresponding complex matrix-variate beta function will be defined as

B̃p(α, β) =
Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
= B̃p(β, α),ℜ(α) > p− 1,ℜ(β) > p− 1.

From here, one can derive type-1 and type-2 beta integrals as the following, see the
details from Mathai [8]: For p × p real positive definite matrices X > O, Y > O,
ℜ(α) > p−1

2
, and ℜ(β) > p−1

2∫
O<X<I

|X|α−
p+1
2 |I −X|β−

p+1
2 dX =

Γp(α)Γp(β)

Γp(α + β)
(1.3)

which is a type-1 real matrix-variate beta integral, where O < X < I means X > O
and I −X > O (both positive definite), and∫

Y >O

|Y |α−
p+1
2 |I + Y |−(α+β)dY =

Γp(α)Γp(β)

Γp(α + β)
(1.4)

which is called a type-2 real matrix-variate beta integral. The corresponding inte-
grals in the complex domain are the following for ℜ(α) > p− 1,ℜ(β) > p− 1:∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃ =
Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
(1.5)

which is called a type-1 complex matrix-variate beta integral, and∫
Ỹ >O

|det(Ỹ )|α−p|det(I + Ỹ )|−(α+β)dỸ =
Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
(1.6)

which is called a complex matrix-variate type-2 beta integral. Properties of type-
1 and type-2 beta integrals, connections to gamma integrals and other related
properties may be seen from Mathai [8].

This paper is organized as follows: Section 1 deals with some preliminaries and
notations to be used in the manuscript. Section 2 evaluates some general integrals
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and introduces some general densities, mainly of the matrix-variate type. Section
3 details some recent procedures involving logistic type models for vector/matrix
variables in the real and complex domains. Section 4 concentrates on the evaluation
of the normalizing constants in some general matrix-variate densities and introduces
some general scaling models and general Bayesian structures. Section 5 shows the
connection of Mellin convolutions of products and ratios and statistical distribution
theory to fractional calculus, especially to fractional integrals of the first and second
kinds. Section 6 deals with the derivations of matrix-variate functions through
optimization of Mathai entropy. Section 7 gives a glimpse into singular matrix-
variate gamma and beta functions and Section 8 provides some concluding remarks.

2. Evaluation of Some General Integrals and Some General Densities
We will consider several models here. Once a model is introduced, for studying

the properties of such a model, the procedures will be parallel to the procedure
in computing the normalizing constant there. Hence, in what follows, we will
introduce various models and compute the normalizing constants in each case and
stop the discussion of that model.

Problem 2.1. A real multivariate model Let X be a p× 1 real vector, X ′ =
[x1, ..., xp] with xj’s real scalar variables. Then, X

′X = x21 + ...+ x2p. Consider the
function

f1(X)dX = c1(X
′X)γe−b(X′X)δdX.

Let us take f1(X) as a density and let us evaluate the normalizing constant c1.
Since X ′X is invariant under rotation of the axes of coordinates or under orthonor-
mal transformations, f1(X) here is a spherically symmetric distribution. It is also
the density for isotropic gamma distributed random points in a p-dimensional Eu-
clidean space. For isotropic and non-isotropic random points in geometrical proba-
bility problems, see Mathai [9]. Here we have isotropic gamma distributed random
points. Let us evaluate the normalizing constant in f1(X). Let u = X ′X. Note
that u is a scalar variable. Then, from Lemma 1.1 for a 1× p matrix, we have

dX =
π

p
2

Γ(p
2
)
u

p
2
−1du.

Then, the total integral

1 = c1

∫
X

[X ′X]γe−b(X′X)δdX = c1
π

p
2

Γ(p
2
)

∫ ∞

0

uγ+
p
2
−1e−buδ

du

= c1
π

p
2

Γ(p
2
)

1

δ
Γ(

1

δ
(γ +

p

2
))b−

1
δ
(γ+ p

2
) ⇒
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c1 =
δΓ(p

2
)b

1
δ
(γ+ p

2
)

π
p
2Γ(1

δ
(γ + p

2
))

for ℜ(γ) > −p
2
, δ > 0, b > 0. The last steps are done by making the substitution

v = uδ and then integrating out v by using a real scalar variable gamma integral.
We will denote the corresponding density in the complex domain by incorporating
the letter c into the subscript and write

f1c(X̃)dX̃ = c̃1[X̃
∗X̃]γe−b[X̃∗X̃]δdX̃.

Let
u = X̃∗X̃ = |x̃1|2 + ...+ |x̃p|2 = (x211 + x212) + ...+ (x2p1 + x2p2)

where x̃j = xj1 + ixj2, i =
√

(−1), xj1, xj2 are real scalar quantities. Here, we have
the sum of squares of 2p real scalar variables, as opposed to p scalar variables in
the real case. Then,

dX̃ =
π

2p
2
−1

Γ(2p
2
)
u

2p
2
−1du =

πp−1

Γ(p)
up−1du.

Thus, p
2
in the real case is replaced by p in the complex case. This is the only

difference. Hence, in the complex case the normalizing constant

c̃1 =
δΓ(p)b

1
δ
(γ+p)

πpΓ(1
δ
(γ + p))

for ℜ(γ) > −p, δ > 0, b > 0. Note that the density f1(X) is also the multivariate
Maxwell-Boltzmann and Raleigh densities in the standard forms in Physics con-
sidered in Mathai and Princty [17] and the corresponding density in the complex
domain is considered in Mathai, Provost and Haubold [19].

Problem 2.2. A rectangular matrix-variate model. Let X be p × q, p ≤ q
matrix of rank p in the real domain. Consider the density

f2(X)dX = c2[tr(XX
′)]ηe−b[tr(XX′)]δdX.

Let us evaluate the normalizing constant c2. Since X has pq distinct real scalar
variables, tr(XX ′) = sum of squares of pq real scalar variables. Hence if u =
tr(XX ′), then consider a string of pq real scalar variables, and now the wedge
product of the differentials of the elements in this string is dX itself. Hence

dX =
π

pq
2

Γ(pq
2
)
u

pq
2
−1du.
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Now, proceeding as in Problem 1, we have the normalizing constant

c2 =
δΓ(pq

2
)b

1
δ
(γ+ pq

2
)

π
pq
2 Γ(1

δ
(γ + pq

2
))
,ℜ(γ) > −pq

2
, b > 0, δ > 0.

In the corresponding complex case, replace pq
2

from the real case by pq for the
complex case, to obtain the final result.

Problem 2.3. Another rectangular matrix-variate model. Let X be a
p× q, p ≤ q matrix of rank p in the real domain. Consider the model

f3(X)dX = c3|XX ′|γe−b[tr(XX′)]δdX.

Let us evaluate the normalizing constant c3. Let the p×p matrix S = XX ′. Then,
S = S ′ > O. From Lemma 1.1,

dX =
π

pq
2

Γp(
q
2
)
|S|

q
2
− p+1

2 dS.

Then ∫
X

f3(X)dX = c3
π

pq
2

Γp(
q
2
)

∫
S>O

|S|γ+
q
2
− p+1

2 e−b[tr(S)]δdS.

For δ = 1 one can integrate out by using a real matrix-variate gamma integral of
Lemma 1.1. Hence, for δ = 1∫

S>O

|S|γ+
q
2
− p+1

2 e−b[tr(S)]dS = Γp(γ +
q

2
)b−p(γ+ q

2
)

and from here c3 is available. Parallel steps will give the normalizing constant
in the corresponding complex case for δ = 1. When δ ̸= 1 then the normalizing
constant is available from the general problem next.

Problem 2.4. Another rectangular matrix-variate model. Let X be p ×
q, p ≤ q matrix of rank p in the real domain. Consider the model

f4(X) = c4|XX ′|γ[tr(XX ′)]ηe−b[tr(XX′)]δ , δ > 0, b > 0

for ℜ(η) > 0,ℜ(γ) > −pq
2
. Let us evaluate the normalizing constant c4. One

method of doing it is to first use Lemma 1.1 and convert to S = XX ′ and dX to
dS. Then, use Lemma 1.4 and convert S into S = TT ′ where T is lower triangular
with positive diagonal elements and dS into dT . Then, there will be a total of
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p(p+1)/2 squares of the form t2jk. Make a general polar coordinate transformation
on these p(p + 1)/2, tjk’s. Then, integrate out the polar radius r and the polar
angles θ1, ..., θk−1, k = p(p+1)/2. One can use a parallel procedure in the complex
case. But in the complex case, there will be only p2 sum of squares of t2jk’s. Hence,
here k = p2 when using general polar coordinate transformation. Instead of going
through two lemmas, one can go directly to tjk’s by using the following lemma.

Lemma 2.1. Let X be p × q, p ≤ q matrix of rank p in the real domain. Let
X = TU ′ where T is a lower triangular matrix with positive diagonal elements and
U is a unique semi-orthonormal matrix UU ′ = Ip. Then, after integrating out the
differential element corresponding to U , one has the following connection between
dX and dT :

dX =
π

pq
2

Γp(
q
2
)
{

p∏
j=1

tq−j
jj }dT.

Let X̃ be p× q, p ≤ q matrix of rank p in the complex domain. Let X̃ = T̃ Ũ∗ where
T is a lower triangular matrix with real and positive diagonal elements and Ũ is
a unique semi-unitary matrix Ũ Ũ∗ = Ip with diagonal elements real. Then, after
integrating out the differential element corresponding to Ũ , we have the following
connection, see the details from Mathai[8]:

dX̃ =
π

p(p−1)
2

Γ̃p(q)
{

p∏
j=1

t
2(p−j)+1
jj }dT̃ .

Now, if we apply Lemma 2.1 in the real domain, then tr(XX ′) = tr(TT ′) =
sum of squares of p(p + 1)/2, tjk’s and |XX ′| = |TT ′| =

∏p
j=1 t

2
jj. Now, apply a

general polar coordinate transformation on the tjk’s, namely the following, which
will be stated as a lemma:

Lemma 2.2. Let x1, ..., xk be distinct real scalar variables. Consider the polar
coordinates r, θ1, ..., θk−1, r > 0,−π

2
< θj ≤ π

2
, j = 1, ..., k − 2,−π < θk−1 ≤ π.

Consider the transformation

x1 = r sin θ1

xj = r cos θ1... cos θj−1 sin θj, j = 2, ..., k − 2

xk = r cos θ1... cos θk−1

Then

dx1 ∧ ... ∧ dxk = rk−1{
k−1∏
j=1

| cos θj|p−j−1}dr ∧ dθ1 ∧ ... ∧ dθk−1.
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In our case, k = p(p + 1)/2 in the real domain and k = p2 in the complex
domain. Note that tr(TT ′) = r2 under Lemma 2.2. |XX ′| = |TT ′| =

∏p
j=1 t

2
jj.

When applying Lemma 2.2 to our tjk’s, take the first p, xj’s of Lemma 2.2 as
t11, t22, ..., tpp. Take the remaining xj’s as t21, t31, t32, ..., tp1, ..., tpp−1 so that k =
p + p(p − 1)/2 = p(p + 1)/2. Now, t211 = r2(sin θ1)

2, t222 = r2(cos θ1 sin θ2)
2 etc.

Then, integrate out r and then integrate out the sine and cosine product coming
from

∏p
j=1(t

2
jj)

q
2
− j

2 (t2jj)
p−j+ 1

2 . Details of the integration is given explicitly in Mathai
[14] and the final result is the following:

c4 =
δΓp(

q
2
)b

1
δ
(p(γ+ q

2
)+η))Γ(p(γ + q

2
))

π
pq
2 Γ[1

δ
(p(γ + q

2
) + η)]Γp(γ + q

2
)

(2.1)

for ℜ(γ) > − q
2
+ p−1

2
and the corresponding normalizing constant in the complex

domain is the following:

c̃4 =
δΓ̃p(q)b

1
δ
(p(γ+q)+η))Γ(p(γ + q))

πpqΓ[1
δ
(p(γ + q) + η)]Γ̃p(γ + q)

(2.2)

for ℜ(γ) > −q + p− 1.
Note 2.1. One can extend or generalize all the above models by replacing XX ′ by
A

1
2 (X−M)B(X−M)′A

1
2 in the real case, whereM = E[X], A > O and B > O are

p×p and q× q constant positive definite matrices. In the complex domain, replace
X̃X̃∗ by A

1
2 (X̃−M̃)B(X̃−M̃)∗A

1
2 where M̃ = E[X̃], A = A∗ > O,B = B∗ > O are

p×p and q×q constant hermitian positive definite matrices. The only difference will
be that the normalizing constant has to be multiplied by |A| q2 |B| p2 in the real case,
and in the complex case multiply the normalizing constant by |det(A)|q|det(B)|p.
3. Logistic Type Models

In each section we will list the functions in serial order as f1, f2 etc with the
corresponding normalizing constants by c1, c2 etc in order the avoid multiplicity
of notations and symbols. For a real scalar variable x the logistic density is the
following:

f(x) =
e−x

(1 + e−x)2
=

ex

(1 + ex)2
,−∞ < x <∞.

The graph of this model looks exactly like that of a real standard normal density
but the logistic density has a thicker tail compared to that of the standard normal
density. Hence, large deviations have higher probabilities compared to that of the
standard normal. Therefore, for industrial applications, a logistic model is preferred
to a standard Gaussian model. The logistic model can also be generated from a
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type-2 beta density by exponentiation. Consider a type-2 beta density for a real
scalar variable y ≥ 0, namely,

f1(y) =
Γ(α + β)

Γ(α)Γ(β)
yα−1(1 + y)−(α+β), y ≥ 0,ℜ(α) > 0,ℜ(β) > 0.

Let y = e−x, then the density, denoted by f2(x), is the following:

f2(x) =
Γ(α + β)

Γ(α)Γ(β)

e−αx

(1 + e−x)α+β
=

Γ(α + β)

Γ(α)Γ(β)

eβx

(1 + eαx)α+β
,−∞ < x <∞

under the same conditions ℜ(α) > 0,ℜ(β) > 0. When α = 1, β = 1 in f2(x), one
has the logistic model f(x). In a statistical density, the parameters are usually
real and then the conditions will be α > 0, β > 0. Advantage of f2(x) over f(x)
is that f2(x) is more viable due to the presence of α and β. Note that f2(x)
can be symmetric or non-symmetric whereas f(x) is symmetric only. Here, we
will consider logistic type models in the multivariate and matrix-variate cases so
that these may be better models in applications compared to the corresponding
Gaussian or gamma models. Let X be a p × 1 real vector, X ′ = [x1, ..., xp] where
the xj’s are distinct real scalar variables. Consider the model

f3(X) = c3[X
′X]γ

e−b[X′X]δ

(1 + ae−[X′X]δ)α+β
, 0 < a < 1,ℜ(α) > 0,ℜ(β) > 0, δ > 0.

What is the normalizing constant c3? We can expand the denominator by using a
binomial expansion.

(1 + ae−[X′X]δ)−(α+β) =
∞∑
k=0

(α + β)k
(−a)k

k!
e−k[X′X]δ

where, for example, (g)k is the Pochhammer symbol given by (g)k = g(g+1)...(g+
k − 1), g ̸= 0, (g)0 = 1. Then,

f3(X) = c3

∞∑
k=0

(α + β)k
(−k)k

k!
[X ′X]γe−(b+k)[X′X]δ .

Make the transformation u = X ′X ⇒ dX = π
p
2−1

Γ( p
2
)
u

p
2
−1du from Lemma 1.1. Now,∫ ∞

0

uγ+
p
2
−1e−(b+k)uδ

du =
1

δ
Γ(

1

δ
(γ +

p

2
))(b+ k)−

1
δ
(γ+ p

2
),ℜ(γ) > −p

2
.
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Therefore,

c−1
3 =

π
p
2

δΓ(p
2
)

∞∑
k=0

(α + β)k
(−a)k

k!
(b+ k)−

1
δ
(γ+ p

2
).

This can be represented in terms of an extended zeta function defined recently by
Mathai [15]. The ordinary zeta function ζ(ρ) and the generalized zeta function
ζ(ρ, α), available in the literature, are the following:

ζ(ρ) =
∞∑
k=1

1

kρ
, ζ(ρ, α) =

∞∑
k=0

1

(α + k)ρ
,ℜ(ρ) > 1, α ̸= 0,−1, ...

The extended zeta function is the following:

ζmr,n(z) = ζ[{(α1 + k)m1 ...(αr + k)mr} : a1, ..., am; b1, ..., bn; z]

=
∞∑
k=0

1

(α1 + k)m1 ...(αr + k)mr

(a1)k...(am)k
(b1)k...(bn)k

zk

k!

for n ≥ m,ℜ(m1 + ...+mr) > 1 or m = n+ 1, |z| < 1,ℜ(m1 + ....+mr) > 1, αj ̸=
0,−1, ..., j = 1, ..., r. Then, in terms of extended zeta function, the normalizing
constant c3 is the following:

c−1
3 =

π
p
2

δΓ(p
2
)
Γ(

1

δ
(γ +

p

2
))ζ[{((1

δ
(γ +

p

2
)), b)} : α + β; ;−a].

Now, we will consider a very general model in this category. Let X be p× q, p ≤ q
real matrix of rank p. Consider the model

f4(X) = c4|XX ′|γ[tr(XX ′)]η
e−b[tr(XX′)]δ

(1 + ae−[tr(XX′)]δ)α+β
.

We would like to evaluate the normalizing constant c4. Note that we can write

f(X) =
∞∑
k=0

(α + β)k
(−a)k

k!
|XX ′|γ[tr(XX ′)]ηe−(b+k)[tr(XX′)]δ .

Hence, the integral part is available from equations (2.1) in the real case and (2.2)
for the complex case, by replacing b by b+ k. That is, denoting the integral in the
real case by ϵ and in the complex case by ϵ̃ we have the following:

ϵ =

∫
X

|XX ′|γ[tr(XX ′)]ηe−(b+k)[tr(XX′)]δdX

=
π

pq
2 Γ[1

δ
(p(γ + q

2
) + η)]Γp(γ + q

2
)

δΓp(
q
2
)Γ(p(γ + p

2
))(b+ k)

1
δ
(p(γ+ q

2
)+η)
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for ℜ(γ) > − q
2
+ p−1

2
from (2.1). Then,

c−1
4 =

π
pq
2 Γ[1

δ
(p(γ + q

2
) + η)]Γp(γ + q

2
)

δΓp(
q
2
)Γ(p(γ + q

2
))

× ζ[{(((1
δ
(p(γ +

q

2
) + η)), b)} : α + β; ;−a] (3.2)

for b > 0, δ > 0,ℜ(η) > 0,ℜ(γ) > − q
2
+ p−1

2
, p ≤ q. The corresponding normalizing

constant in the corresponding model in the complex domain, denoted by c̃4, is the
following from (2.2):

c̃−1
4 =

πpqΓ[1
δ
(p(γ + q) + η)]Γ̃p(γ + q)

δΓ̃p(q)Γ(p(γ + q))

× ζ[{(((1
δ
(p(γ + q) + η)), b)} : α + β; ;−a] (3.3)

for b > 0, δ > 0,ℜ(η) > 0,ℜ(γ) > −q + p− 1, p ≤ q.

Note 3.1. The first model in Section 3 can be generalized by replacing X by
X − µ, µ = E[X] and multiplying the whole thing by a scalar constant also, in the
real case, and replacing X̃ by X̃ − µ̃, µ̃ = E[X̃] and the whole thing is multiplied
by a real scalar constant also. The other models, where X in the real case is a
p × q matrix can be generalized by replacing XX ′ by A

1
2 (X −M)B(X −M)′A

1
2

where M = E[X], A > O and B > O are p× p and q× q constant positive definite

matrices. In the complex case, replace X̃X̃∗ by A
1
2 (X̃ − M̃)B(X̃ − M̃)∗A

1
2 where

M̃ = E[X̃], A = A∗ > O,B = B∗ > O are p × p and q × q Hermitian positive
definite matrices.

4. Scaling Models and Bayesian Procedures
At the very outset, one should point out that as per Benavoli, Facchini and

Zaffalon [1], quantum physics is nothing but Bayesian analysis of Hermitian positive
definite matrices in a Hilbert space. Hence, all the models that we discuss here
have direct connection to quantum physics. Consider a variable X, where X may
be scalar or vector or matrix. If the density or function associated with X is a
function of XX ′ or X ′X in the real case or X̃X̃∗ or X̃∗X̃ in the complex case,
then a scaling constant can be

√
a if a > 0 is a real scalar or A

1
2 if A > O is a real

positive definite matrix because, for example,
√
aX ⇒ aXX ′. Consider the real

case first. Let U =
√
aX and let the function associated with X, or the density

of X if X is a random variable, be a function of XX ′. Here X is scaled by
√
a

or U is a scaled variable. Sometimes U is also called a scale mixture. If f(X) is
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the function or density associated with X, then f(a−
1
2U) is the function or density

associated with U . When a is a pre-assigned constant, then we may take f(a−
1
2U)

as the conditional density of U , given a > 0, and we may denote it as f(U |a)
which is available from f(X) by replacing X by a−

1
2U . Here, we will consider three

situations. (1): Computation of the distribution of
√
aX when the density of X is

available, where a > 0 is a constant. (2): Computation of the distribution of U or
the unconditional distribution of U when f(U |a) is taken as a conditional density
of U , given a, with some prior distribution for a. (3): Computation of the density
of U =

√
aX when a and X are independently distributed. A variable such as

U =
√
aX appears in many practical situations. Deng [3] gives the details of the

analysis of PolSAR (Polarimetric Synthetic Aparture Radar) data where when a
cross section of the multi-look return signal is taken, the cross section has pepper
dust like contaminants called freckles and the cross section variable itself called
texture and the structure is of the form U =

√
aX when the density of X is a

function of XX ′ or X ′X. In radar problems, usually X̃ is in the complex domain
and X̃ may be scalar/vector/matrix variable. In a scalar texture model, A > 0
is a real scalar quantity having its own distribution. Usually complex Gaussian
model is taken for X̃. But it is shown that when the surface is not smooth such as
forests, urban areas, sea surfaces etc, non-Gaussian models are preferred, see for
example, Bombrun and Beaulieu [2], Frery, Muller, Yannasse and Saint’Anne [4],
Yueh, Kong, Jao, Shin and Novak [6]. Here, we will consider various distributions
belonging to Mathai’s pathway family [Mathai [10]], namely generalized gamma,
type-1 beta and type-2 beta forms, where X may be scalar, vector or matrix in the
real or complex domain. At the same time we will consider a > 0 having densities
belonging to the pathway family. This is the situation of scalar texture models
in PolSAR data. If we cover all different combinations, then it will take up a lot
of pages and hence one or two typical situations will be given in detail here and
the same procedure can be applied to derive the unconditional densities for other
combinations of a and X.

Problem 4.1. Let X be p× q, p ≤ q matrix of rank p in the real domain. Let X
have an extended rectangular matrix-variate gamma function or a gamma density
f(X) of the following form:

f(X) = c|XX ′|γ[tr(XX ′)]ηe−b[tr(XX′)]δ , b > 0, δ > 0

where c is the corresponding normalizing constant, when f(X) is taken as a statis-
tical density, which we have evaluated in Section 2, equations (2.1) and (2.2). Let
U =

√
aX where a > 0 have a prior generalized gamma density, denoted by g(a)
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as follows:

g(a)da =
ρ1β

ρ2
ρ1

Γ(ρ2
ρ1
)
aρ2−1e−βaρ1da, ρ1 > 0, β > 0, a ≥ 0,ℜ(ρ2) > 0.

Then, as per our notation, the conditional density of U , given a, is

f(U |a)dU = c a−pγ−pq/2|UU ′|γ[1
a
tr(UU ′)]ηe−b[

tr(UU′)
a

]δdU

where a−pγ is coming from the determinant and a−
pq
2 is coming from the conversion

of dX into dU . Then the unconditional density of U , denoted by fu(U), is the
following:

fu(U) =

∫ ∞

a=0

f(U |a)g(a)da

=
ρ1β

ρ2
ρ1 c

Γ(ρ2
ρ1
)
|UU ′|γ

∫ ∞

0

aρ2−pγ−pq/2−1[
w

a
]ηe−βaρ1−b(w

a
)δda.

In the integral, we have a factor e−βaρ1−b(w
a
)δ . This will produce a Bessel type

or Krätzel type integral. For ρ1 = 1, δ = 1 the integrand normalized is inverse
Gaussian density for appropriate parameter for the exponent of a. For ρ1 = 1, δ = 1

2

is the reaction-rate probability integral in nuclear reaction-rate theory, see Mathai
and Haubold [16]. For ρ1 = 1 and general δ, it is the Krätzel integral and associated
with it is the Krätzel transform. This integral can be evaluated by using the
following statistical procedure. Let x1 > 0 and x2 > 0 be two independently
distributed real scalar variables with the densities f1(x1) and f2(x2) respectively.
Let w = x1x2 the product. Then, taking w = x1x2 and v = x1 or v = x2, the
Jacobian is 1

v
, and the density of w, denoted by h(w), is the following:

h(w) =

∫
v

1

v
f1(

w

v
)f2(v)dv =

∫
v

1

v
f1(v)f2(

w

v
)dv (4.1)

and then taking the expected values E[ws−1] = E[xs−1
1 ]E[xs−1

2 ] = Mf1(s)Mf2(s)
where Mf (s) is the Mellin transform of f with Mellin parameter s. That is,

Mh(s) =

∫ ∞

0

ws−1h(w)dw; Mf1(s) =

∫ ∞

0

xs−1
1 f1(x1)dx1;

Mf2(s) =

∫ ∞

0

xs−1
2 f2(x2)dx2
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whenever the Mellin transforms exist or whenever the respective integrals are con-
vergent, and from (4.1) by taking the Mellin transform we have

Mh(s) =Mf1(s)Mf2(s). (4.2)

These equations (4.1) and (4.2) are called the Mellin convolution of a product prop-
erty. The above statistical procedure is nothing but the application of the Mellin
convolution of a product property. We will make use of the Mellin convolution of a
product property to evaluate our integral over a in fu(U). Once, (4.2) is available,
we can take the inverse Mellin transform to obtain the explicit form of the function
h(w) or the density h(w) when random variables are involved. In Mellin transform,
the functions involved need not be densities, the only restriction is that the Mellin
transforms exist. We will evaluate our integral over a by using the following lemma,
the derivation and other details may be seen from Mathai [14].

Lemma 4.1. For δ > 0,ℜ(ν) > 0,ℜ(γ) > 0 the first part of the lemma follows.
For the second part the following additional conditions are needed. β = δ, ν

δ
̸=

±0, 1, 2, ..., and ν = ρ2 − pγ − pq/2 in our example.∫ ∞

0

xν−1e−αxβ− γ

xδ dx =
1

δβα
ν
β

H2,0
0,2

[
γ

1
δα

1
β

∣∣
(0, 1

δ
),( ν

β
, 1
β
)

]
, o < γ

1
δα

1
β <∞

=
Γ(γ

δ
)

δα
ν
δ

0F1( ; 1− ν

δ
;αγ) +

γ
nu
δ Γ(−ν

δ
)

δ
0F1( ; 1 +

ν

δ
;αγ).

For the theory and applications of H-function, see Mathai, Saxena and Haubold
[21]. The above representation is in terms of 0F1 series. For a representation in
terms of Bessel function of the second kind, see Jeffrey and Zwillinger [5]. By
using Lemma 4.1, our integral over a is the following for ν = ρ2 − pγ − pq/2 and
w = tr(UU ′):∫ ∞

0

aν−1(
w

a
)ηe−βaρ1−(w

a
)δda =

1

δρ1β
ν
ρ1

H2,0
0,2

[
β

1
ρ1w

∣∣
( η
δ
, 1
δ
),( ν

ρ1
, 1
ρ1

)

]
, 0 < β

1
ρ1w <∞

=
1

δβ
ν
δ

[(β
1
δw)ηΓ(

ν − η

δ
)0F1( ; 1 +

η − ν

δ
; βwδ)

+ (β
1
δw)νΓ(

η − ν

δ
)0F1( ; 1 +

ν − η

δ
; βwδ)].

For the series part to hold, one needs the conditions ν − η ̸= ±0, 1, ..., ρ1 = δ and
then in the contour integral s

δ
is replaced by s, s by δs and ds by δds.
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Problem 4.2. Let X and f(X) be as defined in Problem 4.1. Then

f(U |a) = ca−pγ− pq
2 |UU ′|γ(w

a
)ηe−b(w

a
)δ , w = tr(UU ′)

where the normalizing constant c is evaluated in Section 2 and a−pq/2 is coming
from converting dX into dU . Let the marginal density for a be of a type-2 beta
type, again denoted by g(a), that is,

g(a) =
ρ1k

α
ρ1Γ(β + α

ρ1
)

Γ(β)Γ( α
ρ1
)

aα−1

(1 + kaρ1)
β+ α

ρ1

, ρ1 > 0, k > 0,ℜ(α) > 0,ℜ(β) > 0.

Then, the unconditional density of U , again denoted by fu(U), is the following:

fu(U) =

∫ ∞

0

f(U |a)g(a)da

=
cρ1Γ(β + α

ρ1
)k

α
ρ1 |UU |γ

Γ(β)Γ( α
ρ1
)

∫ ∞

0

aα−pγ− pq
2
−1

(1 + kaρ1)
β+ α

ρ1

(
w

a
)ηe−b(w

a
)δda.

Comparing the integral part with (4.1) and (4.2) we can take

f1(x) = xηe−bxδ ⇒Mf1(s) =
1

δ
Γ(
η + s

δ
)b−

η+s
δ ,ℜ(s) > −ℜ(η), δ > 0, b > 0 (i)

and

f2(x) =
xα−pγ−pq/2

(1 + kxρ1)
β+ α

ρ1

⇒

Mf2(s) =
1

ρ1

Γ(α−pγ−pq/2+s
ρ1

)Γ(β + pγ+pq/2
ρ1

− s
ρ1
)

Γ(β + α
ρ1
)

k
−α−pγ−pq/2+s

ρ1 ,

for ℜ(s) > pℜ(γ) + pq
2
− ℜ(α),ℜ(s) < pℜ(γ) + pq/2 + ℜ(β), k > 0, ρ1 > 0. Now,

by taking the inverse Mellin transform, we have the unconditional density as the
following:

fu(U) = c1
1

2πi

∫ c+i∞

c−i∞
Γ(
η + s

δ
)Γ(

α− pγ − pq
2
+ s

ρ1
)Γ(β +

pγ + pq
2
− s

ρ1
)(b

1
δ k

1
ρ1w)−sds

= H2,1
1,2

[
b

1
δ k

1
ρ1w

∣∣(1−β− pγ+pq/2
ρ1

, 1
ρ1

)

( η
δ
, 1
δ
),(

α−pγ−pq/2
ρ1

, 1
ρ1

)

]
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where

c1 =
ck

pγ+pq/2
ρ1 |UU ′|γ

δΓ(β)Γ( α
ρ1
)b

η
δ

and c in the contour is such that−minℜ(η
δ
,
α−pγ− pq

2

ρ1
) < c < ℜ(β)+ pγ+pq/2

ρ1
. One can

reduce the H-function in terms of confluent hypergeometric series for the following
situation: δ = ρ1, η − α+ pγ + pq/2 ̸= ±0, 1, ... and then replace s

δ
by s. Then, we

have the following series by evaluating the sum of residues at the poles of Γ(η
δ
+ s)

and Γ(α−pγ−pq/2
δ

+ s). The final result is the following:

fu(U) = c2[(bkw
δ)

η
δΓ(

pγ + pq
2
+ η

δ
)Γ(

α− pγ − pq/2− η

δ
)

× 1F1(
pγ + η

δ
; 1 +

η + pγ + pq
2
− α

δ
; bkwδ)

+ (kbwδ)
α−pγ−pq/2

δ Γ(
η + pγ + pq

2
− α

δ
)Γ(

α

δ
)

× 1F1(
α

δ
; 1 +

α− pγ − pq
2
− η

δ
; bkwδ)]

where

c2 =
ck

pγ+pq/2
δ |UU ′|γ

Γ(β)Γ(α
δ
)b

η
δ

,

for k > 0, b > 0, δ > 0,ℜ(γ) > 0,ℜ(η) > 0,ℜ(α) > pγ+ pq
2
+ℜ(η), η+pγ+ pq

2
−α ̸=

±0, 1, ...

Note 4.1. One can consider other functions as prior function for a. Also, one
can consider other functions as associated functions for X. The procedure will be
parallel. For all these cases, one can consider the corresponding functions in the
complex domain. For example, in Problems 4.1 and 4.2 if the p × q, p ≤ q matrix
of rank p is in the complex domain, then the final results are available by going
parallel to the derivations in the real case. If X̃ is in the complex domain, then
replace w = tr(UU ′) in the real case by w̃ = tr(X̃X̃∗) in the complex case, where w̃
will also be real. Replace a

pq
2 in the differential element when converting dX into

dU in the real case by apq in the complex case. All other parameters will remain
the same. Thus, the results in the complex domain, corresponding to the results
in the real domain of Problems 4.1 and 4.2, are available from the real case results
by changing pq/2 to pq and w = tr(UU ′) to w̃ = tr(Ũ Ũ∗). In the normalizing
constant c, the matrix-variate gamma functions Γp(·) in the real domain have to
be replaced by the matrix-variate gamma functions Γ̃p(·) in the complex domain
when considering the distributions in the complex domain.
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5. Connection to Fractional Calculus
Let x1 > 0 and x2 > 0 be two real scalar variables. Let the functions associated

with x1 and x2 be f1(x1) and f2(x2) respectively. Let the joint function f(x1, x2)
be of the form f(x1, x2) = f1(x1)f2(x2). If we wish to draw a parallel to statistical
distribution theory, then one can take x1 > 0 and x2 > 0 be statistically indepen-
dently distributed real scalar random variables with the density functions f1(x1)
and f2(x2) respectively. Then, what is the function associated with the product
u = x1x2? If x1 and x2 are random variables, then we are asking the question:
what is the density of u = x1x2? If g(u) is the density of u, then we have already
shown that

g(u) =

∫
v

1

v
f1(

u

v
)f2(v)dv

whenever the integral is convergent. Let f1(x1) be of the form

f1(x1) =
Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
xγ1(1− x1)

α−1

for 0 ≤ x1 ≤ 1, ℜ(γ) > −1,ℜ(α) > 0 and f1(x1) = 0 elsewhere. If x1 > 0 is a
random variable, then we say that x1 is type-1 beta distributed with the parameters
γ + 1 and α. Let f2(x2) be an arbitrary function f(x2). If f(x2) is a density, then
we are considering f(x2) to be some arbitrary density function. Then,

g(u) =

∫
v

1

v
f1(

u

v
)f2(v)dv (i)

=
Γ(γ + 1 + α)

Γ(α)Γ(γ + 1)

∫
v

1

v
(
u

v
)γ(1− u

v
)α−1f(v)dv =

Γ(γ + 1 + α)

Γ(γ + 1)
K−α

2,γ,u(f)

where

K−α
2,γ,u(f) =

uγ

Γ(α)

∫
v≥u

v−α−γ(v − u)α−1f(v)dv.

This K−α
2,γ,u(f) is Erdélyi-Kober fractional integral of the second kind of order α

and parameter γ. Note that the above procedure holds even if f1 and f2 are not
statistical densities. The only condition is that the corresponding integrals are
convergent. One can take f1(x1) to be of the form 1

Γ(α)
ϕ(x1)(1 − x1)

α−1 where

ϕ(x1) is some function of x1. In the above example, we have taken ϕ(x1) to be a
constant multiple of xγ1 . By taking different forms of ϕ(x1) we can show that all the
various fractional integrals in the real scalar case available in the literature such as
Riemann-Liouville fractional integral of the second kind, Weyl fractional integral
of the second kind and all other fractional integrals of the second kind are available
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from the general definition introduced by Mathai [11]. In the general definition,
f1(x1) is taken as 1

Γ(α)
ϕ(x1)(1 − x1)

α−1,ℜ(α) > 0, f2 is taken as an arbitrary

function and then Mellin convolution of a product, namely (i) above, is taken to
obtain all fractional integrals of the second kind. Also, in the series of papers which
appeared in the journal: Linear Algebra and Applications, starting from 2013,
Mathai has extended fractional integrals and fractional derivatives to functions of
matrix argument and to the complex domain for the first time and at the same time
giving a general definition along with geometrical interpretations, encompassing all
the various definitions available in the literature. He had given most of the materials
in CMS (Centre for Mathematical Sciences) Module 10. Later, Hans Haubold
took the initiative to get all CMS Modules published by international publishers.
This Module 10 was taken as such with some recent materials of Mathai and
his co-workers added, and published by Nova Science Publishers under the title:
Introduction to Fractional Calculus (A.M. Mathai and Hans J. Haubold), Nova
Science Publishers, New York, 2017. Since the ideas were innovative, Springer
wanted to bring out a Springer Brief on the topic. Springer Briefs are 100-paged
publications by Springer on a current innovative idea, to expose the idea to the
scientific world. A Springer Brief from Japan appeared in 2018 under the title:
Erdélyi-Kober Fractional Integrals from a Statistical Perspective, Inspired by Solar
Neutrino Problem (A.M. Mathai and Hans J. Haubold, 2018). Modules 1,2,3 of
CMS were combined and published as a book by De Gruyter, Germany in 2017,
under the title: Linear Algebra (A.M. Mathai and Hans J. Haubold) and Modules
6,7,9 of CMS were combined and published by De Gruyter, Germany, under the
title: Probability and Statistics (A.M. Mathai and Hans J. Haubold, 2017). These
two books from De Gruyter, Germany, are made free download. All Statistics
students and faculty should have a copy of each of these basic materials, with a lot
of subtle points indicated therein, on his/her desk.

Mathai has combined all available definitions on fractional integrals of the first
kind and has shown that fractional integrals of the first kind can be constructed
by considering the density of a ratio of positive random variables or as Mellin
convolution of a ratio. Let x1 > 0 and x2 > 0 be as defined above with the
associated functions f1(x1) and f2(x2) and with the joint function as f1(x1)f2(x2).
Now, consider the ratio u1 =

x2

x1
and let v = x2, that is, x2 = v, x1 =

v
u1
. Consider

the transformation (x1, x2) → (u1, v). Then, we see that dx1 ∧ dx2 = − v
u2
1
du1 ∧ dv.

Let

f1(x1) =
Γ(α + γ)

Γ(γ)Γ(α)
xγ−1
1 (1− x1)

α−1

for 0 ≤ x1 ≤ 1,ℜ(γ) > 0,ℜ(α) > 0 and let f1(x1) = 0 elsewhere. Let f2(x2) =
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f(x2) an arbitrary function. Then, let g1(u1) be the function associated with u1.
When, x1 and x2 are real scalar positive random variables, then we are considering
the density of the ratio u1 =

x2

x1
. That is,

g1(u1) =
Γ(γ + α)

Γ(γ)Γ(α)

∫
v

(
v

u21
)f1(

v

u1
)f2(v)dv

=
Γ(γ + α)

Γ(γ)
K−α

1,γ,u1
(f) where

K−α
1,γ,u1

(f) =
u−γ−α
1

Γ(α)

∫
v≤u1

vγ(u1 − v)α−1f(v)dv,

whenever the integral is convergent, is Erdélyi-Kober fractional integral of the first
kind of order α and parameter γ. Thus, one can see that this first kind fractional
integral is nothing but a constant multiple of a statistical density of a ratio when f1
and f are statistical densities. Mathai has given a general definition for fractional
integral of the first kind, encompassing all available definitions in the literature,
by taking f1(x1) as 1

Γ(α)
ψ(x1)(1 − x1)

α−1,ℜ(α) > 0 and then taking the Mellin

convolution of a ratio. Then, by specializing ψ(x1) one can obtain various fractional
integrals of the first kind such as Riemann-Liouville integral, Weyl integral etc.
Also, Mathai [11-14] has extended the ideas and defined fractional integrals of the
first kind for functions of matrix arguments in the real and complex domains.

5.1. Symmetric product and symmetric ratio of matrices
Here we will examine the matrix-variate versions of the real scalar variable

product u = x1x2, x1 > 0, x2 > 0 and the scalar variable ratio u1 = x2

x1
. Consider

two p × p real positive definite matrices X1 > O,X2 > O. Let X
1
2
2 be the real

positive definite square root of the real positive definite matrix X2 > O. Let

U = X
1
2
2 X1X

1
2
2 and U1 = X

1
2
2 X

−1
1 X

1
2
2 . Then, U is a symmetric product of X1 > O

and X2 > O, and U1 is a symmetric ratio of X2 to X1. In the real scalar case

u = x1x2 = x2x1 but in the matrix case X
1
2
2 X1X

1
2
2 ̸= X

1
2
1 X2X

1
2
1 unless X1 and X2

commute. Similarly, X
1
2
2 X

−1
1 X

1
2
2 ̸= X

− 1
2

1 X2X
− 1

2
1 . From Mathai (1997) we have the

following results on Jacobians:

U = X
1
2
2 X1X

1
2
2 , V = X2 ⇒ dX1 ∧ dX2 = |V |−

p+1
2 dU ∧ dV (i)

U1 = X
1
2
2 X

−1
1 X

1
2
2 , V = X2 ⇒ dX1 ∧ dX2 = |V |

p+1
2 |U1|−(p+1)dU1 ∧ dV (ii)

In the complex case, consider the p× p Hermitian positive definite matrices X̃1 =

X̃∗
1 > O and X̃2 = X̃∗

2 > O. Let Ũ = X̃
1
2
2 X̃1X̃

1
2
2 be the symmetric product and let
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Ũ1 = X̃
1
2
2 X̃

−1
1 X̃

1
2
2 be the symmetric ratio of X̃2 to X̃1. Then, from Mathai [8], we

have the following:

Ũ = X̃
1
2
2 X̃1X̃

1
2
2 , Ṽ = X̃2 ⇒ dX̃1 ∧ dX̃2 = |det(Ṽ )|pdŨ ∧ dṼ (iii)

Ũ1 = X̃
1
2
2 X̃

−1
1 X̃

1
2
2 , Ṽ = X̃2 ⇒ dX̃1 ∧ dX2

= |det(Ṽ )|p|det(Ũ1)|−2pdŨ1 ∧ dṼ . (iv)

In the real case, let f1(X1) and f2(X2) be the real-valued scalar functions associ-
ated with X1 and X2 respectively and let the joint function be f1(X1)f2(X2), the
product, where fj(Xj) is a real-valued scalar function of Xj, j = 1, 2. If fj(Xj) is
a statistical density, then we have the additional conditions fj(Xj) ≥ 0 for all Xj

in the domain of Xj and
∫
Xj
fj(Xj)dXj = 1, j = 1, 2 where the differential element

dXj is defined in Section 1. Then, when the joint function is the product, we have
X1 and X2 statistically independently distributed. In the complex case, let X̃j

be a p × p Hermitian positive definite matrix, X̃j = X̃∗
j > O. Let the associated

function be fj(X̃j) which is a real-valued scalar function of the complex matrix
argument X̃j for j = 1, 2. Let the joint function be the product f1(X̃1)f2(X̃2).
Again, if fj(X̃j), j = 1, 2 are statistical densities then the additional conditions
are fj(X̃j) ≥ 0 for all X̃j in the domain of X̃j and

∫
X̃j
fj(X̃j)dX̃j = 1, j = 1, 2.

When the joint density is a product then the matrix-variate random variables in
the complex domain are statistically independently distributed.

5.2. Fractional integral of the second kind in the real and complex
matrix-variate cases

Let the real matrix variables X1 > O and X2 > O and the associated functions
f1(X1) and f2(X2) be as in Section 5.1. Let the symmetric product U , and V be as
defined in Section 5.1. Then, the joint function of U and V , denoted by h(U, V ),
is the following:

h(U, V )dU ∧ dV = f1(X1)f2(X2)dX1 ∧ dX2

= |V |−
p+1
2 f1(V

− 1
2UV − 1

2 )f2(V )dU ∧ dV

Then, the marginal function of U , denoted by g(U), is the following:

g(U) =

∫
V

h(U, V )dV =

∫
V

|V |−
p+1
2 f1(V

− 1
2UV − 1

2 )f2(V )dV. (v)

Let us examine this (v) for some special cases. Let

f1(X1) =
|X1|γ

Γp(α)
|I −X1|α−

p+1
2 ,ℜ(α) > p− 1

2
,
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for I −X1 > O,X1 > O, and let f2(X2) = f(X2) an arbitrary function. Then,

g(U) =
1

Γp(α)

∫
V

|V |−
p+1
2 |V − 1

2UV − 1
2 |γ|I − V − 1

2UV − 1
2 |α−

p+1
2 dV

=
|U |γ

Γp(α)

∫
V−U>O

|V |−γ−α|V − U |α−
p+1
2 f(V )dV

= K−α
2,γ,U(f),ℜ(α) >

p− 1

2
(5.1)

where K−α
2,γ,U(f) for p = 1 is Erdélyi-Kober fractional integral of the second kind of

order α and parameter γ. Hence Mathai [11], who introduced fractional integrals
in the matrix-variate case, called (5.1) as Erdélyi-Kober fractional integral of the
second kind of order α and parameter γ.

In the corresponding complex case, proceeding parallel to the derivation in the
real case, we have the following, denoting the marginal function of Ũ as g(Ũ):

g(Ũ) =
|det(Ũ)|γ

Γ̃p(α)

∫
Ṽ−Ũ>O

|det(Ṽ )|−γ−α|det(Ṽ − Ũ)|α−pdṼ

= K̃−α

2,γ,Ũ
(f),ℜ(α) > p− 1 (5.2)

where, Mathai [11-14] called (5.2) as the Erdélyi-Kober fractional integral of the
second kind of order α and parameter γ in the complex domain, and |det(·)| denotes
the absolute value of the determinant of (·) as explained in Section 1 and Γ̃p(·) is
the complex matrix-variate gamma as defined in Lemma 1.1.

One can establish a connection between fractional integral of the second kind
and density of a symmetric product of independently distributed real or complex
matrix-variate random variables. In the this case, take f1(X1) in the real case
as a real matrix-variate type-1 beta density with the parameters (γ + p+1

2
, α) and

f2(X2) = f(X2) an arbitrary density. In the complex case, take f1(X̃1) as a complex
matrix-variate type-1 beta density with the parameters (γ + p, α) and f2(X̃2) =
f(X̃2) an arbitrary density. Then, the fractional integral in (5.1) is obtained as a
constant multiple of the density of a symmetric product in the real domain and
the fractional integral in (5.2) as a constant multiple of the density of a symmetric
product in the complex domain.

5.3. Fractional integral of the first kind in the real and complex matrix-
variate cases

Let Xj > O, j = 1, 2 be p × p real positive definite matrices as defined in
Section 5.1 with the associated functions fj(Xj), j = 1, 2 and with the joint function
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f1(X1)f2(X2). Consider the symmetric ratio in (ii) of Section 5.2. Let us take

f1(X1) =
|X1|γ−

p+1
2

Γp(α)
|I −X1|α−

p+1
2 , O < X1 < I

for ℜ(α),ℜ(γ) > p−1
2
. Let f2(X2) = f(X2) where f is an arbitrary function. Let

the function associated with the symmetric ratio U1 be denoted as g1(U1). Then,

g1(U1) =
1

Γp(α)

∫
V

|V |
p+1
2 |U1|−(p+1)|V

1
2U−1

1 V
1
2 |γ−

p+1
2

× |I − V
1
2U−1

1 V
1
2 |α−

p+1
2 f(V )dV

=
|U1|−α−γ

Γp(α)

∫
U1−V >O

|V |γ|U1 − V |α−
p+1
2 f(V )dV

= K−α
1,γ,U1

(f) (5.3)

where for p = 1, (5.3) is Erdélyi-Kober fractional integral of the first kind of order
α and parameter γ. Hence Mathai [11-12] called (5.3) as Erdélyi-Kober fractional
integral of the first kind of order α and parameter γ in the real matrix-variate case.
The corresponding function of Ũ1 in the complex case, denoted by g1(Ũ1), is the
following:

g1(Ũ1) =
|det(Ũ1)|−γ−α

Γ̃p(α)

∫
Ũ1−Ṽ >O

|det(Ṽ )|γ|det(Ũ1 − Ṽ )|α−pf(Ṽ )dṼ

= K̃−α

1,γ,Ũ1
(f) (5.4)

where Ũ1 and Ṽ are p×p Hermitian positive definite matrices such that Ũ1−Ṽ > O
(Hermitian positive definite) and K̃−α

1,γ,Ũ1
(f) is Erdélyi-Kober fractional integral of

the first kind of order α and parameter γ in the complex matrix-variate case. If we
start with

f1(X̃1) =
Γ̃p(α + γ)

Γ̃p(γ)Γ̃p(α)
|det(X̃1)|γ−p|det(I − X̃1)|α−p, O < X̃1 < I

for ℜ(α) > p − 1,ℜ(γ) > p − 1, which is a complex matrix-variate type-1 beta
density, and let f2(X̃2) = f(X̃2) where f is an arbitrary density function, then,
g1(Ũ1) will be a constant multiple of the fractional integral of the first kind, namely

g1(Ũ1) =
Γ̃p(γ + α)

Γ̃p(γ)
K̃−α

1,γ,Ũ1
(f).
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6. Matrix-variate Functions Through Optimization of Mathai Entropy
If f(x) is a statistical density for a real scalar variable x, then Shannon’s measure

of uncertainly or entropy is defined as

S(f) = −c
∫
x

f(x) ln f(x)dx (6.1)

where c is a constant. There is a corresponding discrete version also. This (6.1)
is generalized in various directions. One α-generalized entropy known as Havrda-
Charvat entropy is the following:

Hα(f) = c

∫
x
[f(x)]αdx− 1

21−α − 1
, α ̸= 1. (6.2)

It is easy to see that when α → 1, then Hα(f) → S(f) = Shannon entropy. A
variant of (6.2) is Tsallis [22] entropy given by

Tα(f) = c

∫
x
[f(x)]αdx− 1

1− α
, α ̸= 1. (6.3)

In (6.1)-(6.3) the density involved is for a real scalar variable. By optimizing (6.3)
under the condition that the first moment is prefixed, produced Tsallis statistics of
non-extensive statistical mechanics and the whole branch of non-extensive statis-
tical mechanics came into existence. Axiomatic definitions or characterizations of
the measures in (6.1) and (6.2), and many items connected with these, were given
by Mathai and Rathie [20], which was the first book on axiomatic foundations of
information measures.

Mathai had introduced an α-generalized entropy measure on a general frame-
work, which in the real scalar case can be taken as a variant of Hα(f). Let f(X)
be a real-valued scalar function of X such that f(X) ≥ 0 in the domain of X and∫
X
f(X)dX = 1 where the differential element dX is defined in Section 1. Here,

X may be a scalar/vector/matrix or a sequence of matrices in the real or complex
domain. Then, Mathai entropy, denoted by Mα(f), is the following:

Mα(f) =

∫
X
[f(X)]1+

a−α
η dX − 1

α− a
=
E[(f(X))

a−α
η ]− 1

α− a
, α ̸= a, η > 0 (6.4)

where E[·] denotes the expected value of [·]. Note that (6.4) covers scalar/ vector/
matrix-variate cases in the real and complex domain and in the real scalar case we
can see that Mα(f) → S(f) when α → a where a is an anchoring point, α is the
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parameter of interest and η > 0 is a measuring unit of deviations of α from a. Note
that

lim
α→a

∫
X
[f(X)]

a−α
η − 1

α− a
= −1

η
ln f(X)

and hence [f(X)]
a−α
η −1

α−a
is an estimate for − 1

η
ln f(X). Let us optimize (6.4) for

the real scalar variable x, under two moment type constraints; (1): E[xγ(
a−α
η

)] =

prefixed, and (2): E[xγ(
a−α
η

)+δ] = prefixed. Then, if we use calculus of variation,
the Euler equation is the following:

∂

∂f
[f 1+a−α

η − λ1x
γ(a−α

η
)f − λ2x

γ(a−α
η

)+δf ] = 0

where λ1 and λ2 are Lagrangian multipliers. This leads to the function

f = c xγ[1 + λ3x
δ]

η
a−α (i)

Let us consider the case α < a. Then, the exponent η
a−α

> 0 since η > 0 and
hence f can produce a density for all a, α, η, α < a if λ3 is negative. Let λ3 =
−b(a− α), b > 0, α < a. Then, we have the model

f1(x) = c1 x
γ[1− b(a− α)xδ]

η
a−α , α < a, η > 0, b > 0 (ii)

for 1 − b(a − α)xδ > 0 where c1 is the corresponding normalizing constant. This
is generalized type-1 beta model in the real scalar variable case. When α > a, the
model in (ii) switches into the model

f2(x) = c2 x
γ[1 + b(α− a)xδ]−

η
α−a , α > a, b > 0, η > 0 (iii)

where c2 is the corresponding normalizing constant. When α → a, then both f1(x)
and f2(x) go to

f3(x) = c3 x
γe−bηxδ

, b > 0, η > 0. (iv)

The normalizing constant in f1(x) is evaluated by using a real scalar type-1 beta
integral, c2 is evaluated by using a real scalar type-2 beta integral and c3 by using
a gamma integral. From f1, one can go to f2 and f3 or from f2 we can go to f1
and f3 through the pathway parameter α. This is Mathai’s pathway idea [Mathai
[10]] and α here is Mathai’s pathway parameter.

Our aim in this section is to derive matrix-variate distributions through opti-
mization of Mathai entropy Mα(f). Let X be a p × q, p ≤ q matrix of rank p in
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the real domain. Let u = tr(XX ′) where XX ′ > O. Consider the constraints (1):

E[uγ(
a−α
η

)] = prefixed, and (2): E[uγ(
a−α
η

)+δ] = prefixed. Then, optimize Mα(f)
under these constraints and proceed as in the illustrative example of the real scalar
variable case. Then, we will end up with three models for α < a, α > a, α → a,
again denoted by f1(X), f2(X), f3(X) respectively, where, for example, f2(X) is
the following:

f2(X) = C2[tr(XX
′)]γ[1 + b(α− a)(tr(XX ′))δ]−

η
α−a , α > a (v)

where C2 is the corresponding normalizing constant, b > 0, η > 0, δ > 0,ℜ(γ) >
−pq

2
. Note that for p = 1 we have the 1 × q vector case as a special case of (v).

Thus, scalar, vector, rectangular matrix cases are all contained in (v) and from (v)
one can also go to the corresponding type-1 beta form and the gamma form also,
through the parameter α. Thus, three families of densities involving tr(XX ′) are
there in (v). One can generalize (v) by incorporating a location parameter matrix
and two scaling matrices or by replacing XX ′ by A(X − M)B(X − M)′ where
A > O is p × p and B > O is q × q constant positive definite matrices and M is
a p× q location parameter matrix. Mathematically speaking, the only change will
be that the normalizing constants will be multiplied by |A| q2 |B| p2 in f1, f2, f3. The
normalizing constants C1, C2, C3 can be evaluated by using Lemma 1.1 and then
by using scalar variable type-1 beta, type-2 beta and gamma integrals. Now, let us
consider the corresponding complex case. Let X̃ be a p× q, p ≤ q matrix of rank p
in the complex domain. Let ũ = tr(X̃X̃∗). Consider the same constraints as in the
real case with u in the real case replaced by ũ in the present complex case. Then,
proceeding as in the real case, we end up with three densities belonging to Mathai’s
pathway family, again denoted by fj(X̃j), j = 1, 2, 3. For example, f2(X̃2) will be
the following:

f2(X̃) = C̃2[tr(X̃X̃
∗)]γ[1 + b(α− a)(tr(X̃X̃∗))δ]−

η
α−a , α > a (vi)

for b > 0, η > 0, δ > 0,ℜ(γ) > −pq.
Now, let us consider constraints involving a determinant and a trace in the

real case. Again, let X be p × q, p ≤ q matrix of rank p in the real domain. Let

the constraints be the following: (1): E[|XX ′|γ(
a−α
η

)(tr(XX ′))ρ(
a−α
η

)] = fixed, and

(2): E[|XX ′|γ(
a−α
η

)(tr(XX ′))ρ(
a−α
η

)+δ] = fixed. Then, optimize Mα(f) under these
constraints and follow through the same procedures as before. Then, we will end up
with three families of densities. Let us denote them by f4, f5, f6 where for example,
f5 will be the following:

f5(X) = C5|XX ′|γ[tr(XX ′)]ρ[1 + b(α− a)(tr(XX ′))δ]−
η

α−a , α > a (vii)
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for α > a, b > 0, η > 0, δ > 0, ρ > 0,ℜ(γ) > 0. Note that from f5 one can go
to f4 and f6 through the pathway parameter α. Generalization is available by
replacing XX ′ by A(X −M)B(X −M)′ as mentioned before. The normalizing
constants C4, C5, C6 can be evaluated by using Lemma 2.2, Lemma 1.1 and then
scalar variable integrals. Whenever a determinant enters into the model as a factor
and at the same time if the trace has an arbitrary exponent, then the evaluation
of the normalizing constant becomes difficult as illustrated in the evaluation of the
normalizing constant in Mathai [14]. The density corresponding to f5(X) in the
complex domain, denoted by f5(X̃), is the following, the constraints are parallel to
those in the real case:

f5(X̃) = C̃5|det(X̃X̃∗)|γ[tr(X̃X̃∗)]ρ[1 + b(α− a)(tr(X̃X̃∗))δ]−
η

α−a (viii)

for α > a, b > 0, δ > 0, ρ > 0, η > 0 and C̃5 is the normalizing constant. Here
also, for evaluating the normalizing constant one would require Lemma 1.1 and
Lemma 2.2, equations (2.1) and (2.2). With the above examples, we will stop the
illustration of the optimization of entropy procedures.

Another recent area of development is the topic of singular distributions. What
we have discussed so far are nonsingular distributions in the sense the matrices
involved were nonsingular when considering square matrices and XX ′ nonsingular
when X is a rectangular matrix. This author has recently given the corresponding
singular versions for Gaussian, gamma, type-1 beta and type-2 matrix-variate dis-
tributions. In order to limit the size of the paper this aspect will not be discussed
in detail here. Interested readers may consult Mathai and Provost [18].

7. Singular Matrix-variate Gamma and Beta Functions

To start with, let us consider the real case. Let X be a p × q, p ≤ q matrix
of rank p in the real domain. Let M be a p × q parameter matrix. Then, the
real central rectangular matrix-variate gamma function associated with X can be
written in the following form, where we have incorporated the normalizing constant
also so that it can be taken as a density:

f1(XX
′)d(XX ′) =

|B|α

Γp(α)
|(X −M)(X −M)′|α−

p+1
2 e−tr(B(X−M)(X−M)′)d(XX ′)

(7.1)
When M ̸= O and if we ignore M , then we have the noncentral matrix-variate
gamma function or gamma density with shape parameter α and scale parameter
matrix B as the following where the second form is written by replacing d(XX ′)
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by dX by using Lemma 1.1:

f1(XX
′)d(XX ′) =

|B|α

Γp(α)
|XX ′|α−

p+1
2 e−tr(BXX′)d(XX ′)

=
|B|αΓp(

q
2
)

Γp(α)π
pq
2

|XX ′|α−
q
2 e−tr(BXX′)dX. (7.2)

When α = q
2
, then from (7.2) we have

f2(X)dX =
|B| q2
π

pq
2

e−tr(BXX′)dX. (7.3)

Note that (7.3) holds whether XX ′ is nonsingular or singular or for both the cases
p ≤ q and p > q because XX ′ = X1X

′
1 + ... +XqX

′
q where Xj is the j-th column

of the p× q matrix X and e−tr(BXjX
′
j) = e−X′

jBXj is integrable for each j = 1, ..., q.
We will start with (7.3) to develop singular matrix-variate gamma function and
gamma density. When p > q we have two possibilities that the rank of X may be
q < p or the rank of X is r ≤ q < p. Let us take the case that the rank of X is q.
Then, we may write the p× q matrix with p > q as the following:

X =

[
X1

X2

]
⇒ XX ′ = S =

[
S11 S12

S21 S22

]
(i)

where X1 and S11 are q × q and of rank q, X2 is (p− q)× q. Then

XX ′ =

[
X1

X2

] [
X ′

1 X ′
2

]
=

[
X1X

′
1 X1X

′
2

X2X
′
1 X2X

′
2

]
(ii)

where X1 is q× q and of rank q and hence nonsingular, X1X
′
1 is also of rank q and

nonsingular but X1X
′
1 is symmetric and positive definite also. When X is of rank

r ≤ q < p then, we will take X1 as r × q matrix of rank r where also X1X
′
1 > O.

When X1 is of rank q, then from (i) and (ii), X1X
′
1 = S11 > O and q× q. Observe

that dX = dX ′ and X and X ′ both have pq distinct elements. Note that X ′ is q×p
and its rank is q and hence X ′X > O. From Lemma 1.1, we have for S1 = X ′X,

dX ′ =
π

pq
2

Γq(
p
2
)
|S1|

p
2
− q+1

2 dS1. (iii)
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Therefore, from (7.3)

f2(X)dX =
|B| q2
π

pq
2

e−tr(BXX′)dX

= f2(X)dX ′ =
|B| q2
π

pq
2

π
pq
2

Γq(
p
2
)
|S1|

p
2
− q+1

2 e−tr(BS)dS1

=
|B| q2
Γq(

p
2
)
|S1|

p
2
− q+1

2 e−tr(BS)dS1, S = XX ′, S1 = X ′X

=
1

Γq(
p
2
)
|S1|

p
2
− q+1

2 e−tr(S1)dS1 for B = I. (iv)

This (iv) is one form of the singular real matrix-variate gamma function or gamma
density denoted by f3(S1)dS1. Then, the corresponding singular gamma density in
the complex domain, denoted by f3(S̃1), is the following:

f3(S̃1)dS̃1 =
|det(B)|q

Γ̃q(p)
|det(S̃1)|p−qe−tr(BS̃)dS̃1, S̃ = X̃X̃∗, S̃1 = X̃∗X̃

=
1

Γ̃q(p)
|det(S̃1)|p−qe−tr(S̃1)dS̃1 for B = I. (v)

From (i) and (ii), note that S is singular and the rows [S21, S22] are linear
functions of the rows in [S11, S12]. Hence, a linear combinations of [S11, S12] which
makes S21 = O (null) should make the corresponding element in S22 position also
null. Take −S21S

−1
11 times [S11, S12] and add to the second set of rows to make

S21 position null. Then, the corresponding matrix in the S22 position, namely
S22 − S21S

−1
11 S12 = O ⇒ S22 = S21S

−1
11 S12. This is a general result and hence we

will write it as a lemma.

Lemma 7.1. When X,X1, X2, S11, S12, S21, S22 are as defined in (i) and (ii) above
and when the rank of X = rank of X1 and whether X1 is q × q with rank q or X1

is r × q and with rank r ≤ q < p, we have

S22 = S21S
−1
11 S21. (7.4)

Then, we may take dS = dS11 ∧ dS21 or dS11 ∧ dS12. Also, dX = dX1 ∧ dX2

and from Lemma 1.1 when X1 is q × q and of rank q, we have

dX1 =
πq2

Γq(
q
2
)
|S11|

q
2
− q+1

2 dS11. (7.5)
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Letting S11 = CC ′ where C is q × q nonsingular matrix and X2 = S11C
′−1 and

applying Lemma 7.1, we have

dX2 = |C ′|−(p−q)dS21 = |S11|
q−p
2 dS21. (vi)

Consider a similar partitioning of the p× p matrix

B =

[
B11 B12

B21 B22

]
where, for example, B11 is q × q. Now,

tr(BXX ′) = tr(BS)

= tr(B11S11) + tr(B12S21) + tr(B21S12) + tr(B22S22)

= tr(B11X1X
′
1) + tr(B21X1X

′
2) + tr(B12X2X

′
1) + tr(B22X2X

′
2). (vii)

Now, from (i) to (vii) and (7.1) to (7.5), we have the following result.

Theorem 7.1. Let X be a p× q matrix of rank q and with pq distinct real scalar
variables as elements. Let p > q. Let X,S,Xj, j = 1, 2, Sij’s be as defined in (i)
and (ii). Let the rank of X1 and thereby rank of S11 be q. Let dS be interpreted as
dS = dS11 ∧ dS21. Let the singular gamma density of S be denoted as f4(S) in the
real case and f4(S̃) in the complex domain. Then, we have

f4(S)dS11 ∧ dS21 =
|B| q2

π
(p−q)q

2 Γq(
q
2
)
|S11|

q
2
− p+1

2 e−tr(BS)dS11 ∧ dS21 (7.6)

and

f4(S̃)dS̃11 ∧ dS̃21 =
|det(B)|q

π(p−q)qΓ̃q(q)
|det(S̃11)|q−pe−tr(BS̃)dS̃11 ∧ dS̃21. (7.7)

Form (7.6) and (7.7). one can derive the marginal densities of S11, S̃11, S21, S̃21

and the conditional densities of S21, given S11, as well as S̃21, given S̃11. Similar
procedures will produce the singular matrix-variate type-1 and type-2 beta func-
tions and beta densities. In order to limit the size of the manuscript we stop the
discussion here. Some more details may be found in Mathai and Provost [18].

8. Concluding Remarks
Here we have considered introductions to scaling models, Bayesian structures,

texture models in communication theory, and distribution of a product of indepen-
dent variables of the form U =

√
aX where X may be a scalar, vector or matrix
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in the real or complex domain. We considered the various structures when a > 0
is a real scalar variable only in order to limit the size of the paper. Materials are
available when the scaling factor is a matrix, including the ideas of a vector or
a rectangular matrix, in the real or complex domain. Some combinations of the
distributions of a and X in Mathai’s pathway family [Mathai [10]] are considered
for illustrative purposes. One can look into other combinations involving densi-
ties from outside Mathai’s pathway family. Mainly the Bayesian structures are
considered for illustrative purposes because the other situations mentioned can be
converted to Bayesian structures and hence more details on other situations are
not discussed in order to limit the size of the manuscript. The main purpose of
this paper is to introduce one family of problems which are being currently pursued
in the literature so that interested students and researchers can get into the areas.
All the models introduced in this paper are nonsingular models in the sense when
square matrices are involved the matrices are nonsingular and when a rectangular
matrix X is involved then XX ′ is nonsingular. One real matrix-variate singular
gamma function or singular gamma density is introduced in Section 7. One can
consider singular versions of all the models discussed in this paper. Most of this
aspect is open, some singular situations are tackled in Mathai and Provost [19].
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