South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 469-480

DOI: 10.56827/SEAJMMS.2024.2001.36 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

COINCIDENCE AND COMMON FIXED-POINT THEOREM USING COMPATIBLE MAPPING OF TYPE (P) ON INTUITIONISTIC FUZZY b-METRIC SPACES

Swati Agrawal, P. L. Sanodia*, Neeraj Malviya** and Jyoti Nema***

Oriental Institute of Science and Technology, Bhopal (M.P.), INDIA

E-mail : swatiagrawal1307@gmail.com

*Govt. Girls College, Seoni (M.P.), INDIA

**Govt. Degree College Timarni, Dist. Harda (M.P.), INDIA

E-mail : maths.neeraj@gmail.com

***Regional Institute of Education NCERT, Bhopal (M.P.), INDIA

(Received: Apr. 22, 2023 Accepted: Apr. 15, 2024 Published: Apr. 30, 2024)

Abstract: In this paper we have defined compatible type (P) mapping in the structure of intuitionistic fuzzy b-metric space and have proved a coincidence point theorem in intuitionistic fuzzy b-metric space.

Keywords and Phrases: Fuzzy b-metric space, Intuitionistic fuzzy b-metric space, Compatible mapping, Compatible type (P) mapping.

2020 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

The thought of b-metric space was introduced by Bakhtin [2] in 1989. The class of b-metric spaces is larger than that of metric spaces. In 2016, Nadaban [7] introduced the concept of fuzzy b-metric space and approved that the study in fuzzy b-metric spaces will obtain a lot of applications of as well as in mathematical engineering than in computer science. With the idea of intuitionistic fuzzy sets, Park [8] in 2004 defined the concept of intuitionistic fuzzy metric spaces with the help of continuous t-norm and continuous t-conorm as a generalization of fuzzy metric space. In 2020, Konwar [5] extended fixed point results and studied the existence of uniqueness of self-mapping on the intuitionistic fuzzy b-metric space. In 2022, Azam and Kanwal [1] have established some conventional fixed-point theorem in the setting of complete intuitionistic fuzzy b-metric spaces. On the other hand, in 2014, Tripathi et al. [9] defined compatible type (P) mapping in fuzzy metric space. In this paper we have extend Azam and Kanwal [1] fixed-point theorems in the setting of compatible mapping of type (P) in intuitionistic fuzzy b-metric spaces with other contraction.

2. Preliminaries

For the reader convenience some definitions and results are recalled. The perception of b-metric space was announced by Bakhtin [2] and extensively used by Czerwik [3].

Definition 2.1. [8] A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is called continuous triangular norm (t-norm) if it satisfies the following conditions:

- $(1) * is associative and commutative;$
- $(2) * is continuous;$

 $(3) a * 1 = a, \forall a \in [0, 1];$

(4) if $a \leq c$ and $b \leq d$ with $a, b, c, d \in [0, 1]$, then $a * b \leq c * d$.

Example 2.1.1. [6] Three basic t -norms are defined as follows:

(1) The minimum t-norm, $a *_{1} b = \min(a, b)$,

(2) The product *t*-norm, $a *_{2} b = a.b$,

(3) The Lukasiewicz t-norm $a *_3 b = max(a + b - 1, 0)$.

Definition 2.2. [8] A binary operation $\Diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous triangular conorm (t-conorm) if it satisfies the following conditions:

- (1) \diamond is associative and commutative;
- (2) \Diamond is continuous; (3) $a\Diamond 0 = a, \forall a \in [0, 1];$

(4) $a\Diamond b \leq c\Diamond d$, whenever $a \leq c$ and $b \leq d \ \forall a, b, c, d \in [0, 1]$.

Example 2.2.1. [6] Three basic *t*-conorms are given below:

(1) $a\Diamond_1 b = \min(a+b, 1),$ (2) $a\Diamond_2 b = (a + b - ab),$ (3) $a\Diamond_3b = \max(a, b)$.

Definition 2.3. [1] A 6-tuple $(X, M, N, *, \Diamond, s)$ is said to be an intuitionistic fuzzy b-metric space (IFb-MS), if X is an arbitrary set, $s \geq 1$ is a given real number, $*$ is a continuous t-norm, \diamondsuit is a continuous t-conorm. M and N are fuzzy sets on $X^2 \times [0,\infty)$ satisfying the following conditions: for all $x, y, z \in X$,

(a) $M(x, y, t) + N(x, y, t) \leq 1$; (b) $M(x, y, 0) = 0$; (c) $M(x, y, t) = 1, \forall t > 0$ iff $x=y$; (d) $M(x, y, t) = M(y, x, t) \forall t > 0;$ (e) $M(x, z, s(t+u)) \geq M(x, y, t) * M(y, z, u), \forall t, u > 0;$ (f) $M(x, y) : [0, \infty) \to [0, 1]$ is left continuous and $\lim_{t \to \infty} M(x, y, t) = 1$, $(g) N(x, y, 0) = 1;$ (h) $N(x, y, t) = 0 \forall t > 0$ iff $x = y$; (i) $N(x, y, t) = N(y, x, t) \forall t > 0;$ (j) $N(x, z, s(t+u)) \leq N(x, y, t) \lozenge N(y, z, u), \forall t, u > 0;$ (k) $N(x, y, \cdot) : [0, \infty) \to [0, 1]$ is right continuous and $\lim_{t \to \infty} N(x, y, t) = 0$. Here, $M(x, y, t)$ and $N(x, y, t)$ represent the nearness degree and the non-nearness degree with respect to t between x and y respectively.

Definition 2.4. [1] Let $s \geq 1$ be a given real number. A function $f: R \to R$ will be called s-nondecreasing if $t < u$ implies that $f(t) \leq f(su)$ and f is called s-nonincreasing if $t < u$ implies that $f(t) > f(su)$.

Proposition 2.5. [1] Let $(X, M, N, *, \Diamond, s)$ is an intuitionistic fuzzy b-metric space, then for all $x, y \in X$, the fuzzy set M and N are defined with respect to product such that $M(x, y, \ldots) : [0, \infty) \to [0, 1]$ is s-nondecreasing and $N(x, y, \ldots) : [0, \infty) \to [0, 1]$ is s-nonincreasing.

Definition 2.6. [1] Let $(X, M, N, *, \Diamond, s)$ be an intuitionistic fuzzy b-metric space.

- (a) A sequence $\{x_n\}$ in X is said to be convergent if there exists $x \in X$ such that $\lim_{n\to\infty} M(x_n, x, t) = 1$ and $\lim_{n\to\infty} N(x_n, x, t) = 0$ $\forall t > 0$. In this case x is called the limit of the sequence $\{x_n\}$ and we write $\lim_{n\to\infty} x_n = x$, or $x_n \to x$.
- (b) A sequence $\{x_n\}$ in $(X, M, *, \Diamond, s)$ is said to be a Cauchy sequence if for every $\epsilon \in (0, 1)$, there exists $n_0 \in N$ such that $M(x_n, x_m, t) > 1-\epsilon$ and $N(x_n, x_m, t)$ $\epsilon, \forall m, n \geq n_0$ and $t > 0$.
- (c) The space X is said to be complete if every Cauchy sequence is convergent and it is called compact if every sequence has a convergent subsequence.

The following result of Shazia Kanwal [4] gives common fixed point of Π and σ with the assumption of weakly compatibility:

Theorem 2.7. [4] Let $(\zeta, \Phi, \varphi, \Theta, *, s)$ be a compete IFb-MS and $\Pi, \sigma : \zeta \to \zeta$ be mappings satisfying the following conditions: (1) $\sigma(\zeta) \subseteq \Pi(\zeta)$,

(2) Π and σ are weakly compatible.

(3) The is $k, 0 \leq k < 1$, such that, for all $\omega, \nu \in \zeta$, $\Phi(\sigma(\omega), \sigma(\nu), kt) \geq \Phi(\Pi(\omega), \Pi(\nu), t)$ and $\varphi(\sigma(\omega), \sigma(\nu), kt) \geq \varphi(\Pi(\omega), \Pi(\nu), t)$. Then, Π and σ have a unique common fixed point in ζ .

3. Main Result

We define compatible and compatible type- P mappings in intuitionistic fuzzy b-metric spaces.

Definition 3.1. Two self-mappings A and S of an intuitionistic fuzzy b-metric space $(X, M, N, *, \Diamond)$ are called compatible if $\lim_{n\to\infty} M(ASx_n, SAx_n, t) = 1$ and $\lim_{n\to\infty}$ $N(ASx_n, SAx_n, t) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n =$ $\lim_{n\to\infty} Sx_n = x$ for some $x \in X$.

Definition 3.2. Two self-mappings A and S of an intuitionistic fuzzy b-metric space $(X, M, N, *, \Diamond)$ are called compatible of type (P) if $\lim_{n\to\infty} M(AAx_n, SSx_n, t)$ =

1 and $\lim_{n\to\infty} N(AAx_n, SSx_n, t) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = x$ for some $x \in X$.

Example 3.2.1. Let $X = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}$ with $*$ continuous *t*-norm and \diamond continuous t-conorm defined by $a * b = ab$ and $a\diamondsuit b = \min\{1, a + b\}$ respectively, for $a, b \in [0, 1]$. For each $t \in [0, \infty)$ and $x, y \in X$, define (M, N) by

$$
M(x, y, t) = \begin{cases} \frac{t}{t + |x - y|^2}, & \text{if } t > 0, \\ 0 & \text{if } t = 0, \end{cases} \quad \text{and} \quad N(x, y, t) = \begin{cases} \frac{|x - y|^2}{t + |x - y|^2}, & \text{if } t > 0, \\ 1 & \text{if } t = 0, \end{cases}
$$

Clearly $(X, M, N, *, \Diamond)$ is an intuitionistic fuzzy metric space.

Define $S_x = \frac{x}{6}$ $\frac{x}{6}$ and $Tx = \frac{x}{2}$ $\frac{x}{2}$ on X and $x_n = \frac{1}{n}$ $\frac{1}{n}$.

Clearly, it can be easily observed that S and T are compatible type (P) mapping. Our main result is to extend Theorem 2.7 of Kanwal et.al, using other contractive mapping in intuitionistic fuzzy b-metric space with compatible type- (P) mapping.

Theorem 3.3. Let $(X, M, N, *, \Diamond, s)$ be a complete intuitionistic fuzzy b-metric space with $*$ t-norm and \diamondsuit t-conorm defined as:

- (I) $a * b = \min\{a, b\}, a \Diamond b = \max\{a, b\},$
- (II) $M(x, y, \cdot)$ and $N(x, y, \cdot)$ are strictly increasing and strictly deceasing functions respectively.

Let $S, T: X \rightarrow X$ be two self-mapping on X satisfy following conditions: (i) $T(X) \subseteq S(X)$,

(*ii*) One of S or T is continuous, (iii) (S, T) is compatible of type (P) (iv) If for all $x, y \in X, k \in (0, \frac{1}{2})$ $(\frac{1}{2s}), t > 0,$ ${M(Tx, Su, t), M(Ty, Su, t), M(Ty, S)}$

$$
M(Tx,Ty,kt) \ge \min\{M(Tx, Sy,t), M(Ty, Sy,t), M(Ty, Sx,t)\}
$$

$$
N(Tx,Ty,kt) \le \max\{N(Tx, Sy,t), N(Ty, Sy,t), N(Ty, Sx,t)\}.
$$

Then x is common fixed point of S and T .

Proof. Let $x_0 \in X$. Since $T(X) \subseteq S(X)$ there exist x_{2n+1} and x_{2n} in X such that

$$
Tx_{2n} = Sx_{2n+1} = y_{2n+1} \quad \text{for}, \quad n = 1, 2, 3, \dots \tag{3.3.1}
$$

Case I. Putting $x = x_{2n}$ and $y = x_{2n+1}$ in (iv) we get

$$
M(y_{2n+1}, y_{2n+2}, kt) = M(Sx_{2n+1}, Sx_{2n+2}, kt) = M(Tx_{2n}, Tx_{2n+1}, kt)
$$

\n
$$
\geq \min\{M(Tx_{2n}, Sx_{2n+1}, t), M(Tx_{2n+1}, Sx_{2n+1}, t), M(Tx_{2n+1}, Sx_{2n}, t)\},
$$

\n
$$
= \min\{M(Sx_{2n+1}, Sx_{2n+1}, t), M(Sx_{2n+2}, Sx_{2n+1}, t), M(Sx_{2n+2}, Sx_{2n}, t)\},
$$

\n
$$
= \min\{M(y_{2n+1}, y_{2n+1}, t), M(y_{2n+2}, y_{2n+1}, t), M(y_{2n+2}, y_{2n}, t)\}, (By 3.3.1)
$$

Since $M(y_{2n+1}, y_{2n+1}, t) = 1$.

$$
M(y_{2n+1}, y_{2n+2}, kt) \ge \min\{(1, M(y_{2n+2}, y_{2n+1}, t), M(y_{2n+2}, y_{2n}, t))\},\newline \ge \min\{(M(y_{2n+2}, y_{2n+1}, t), M(y_{2n+2}, y_{2n}, t))\},\newline
$$

Since $kt < \frac{t}{2s}$ and by (II) of theorem (3.3), $M(x, y, \cdot)$ is a strictly increasing function. If $\min\{(M(\tilde{y}_{2n+2}, y_{2n+1}, t), M(y_{2n+2}, y_{2n}, t))\} = M(y_{2n+2}, y_{2n+1}, t)$ Then we will reach to a contradiction $M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n+2}, y_{2n+1}, t)$. Therefore,

$$
M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n+2}, y_{2n}, t)
$$

\n
$$
\ge M\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right) * M\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right)
$$
 (By using (e) of definition 2.3)
\n
$$
= \min \left\{ M\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right), M\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right) \right\}
$$
 (By (I) of theorem 3.3)

Since $kt < \frac{t}{2s}$ and by (II) of theorem 3.3. $M(x, y, \cdot)$ is a strictly increasing function. If $\min\Big\{M$ $\sqrt{ }$ $y_{2n+2}, y_{2n+1},$ t 2s $\Big)$, $M\Big(y_{2n+1}, y_{2n}, \Big)$ t 2s $\Big\} = M$ $y_{2n+2}, y_{2n+1},$ t 2s \setminus , then we will again reach to contradiction, $M(y_{2n+1}, y_{2n+2}, kt) \geq M(y_{2n+1}, y_{2n+2}, \frac{t}{2})$ $\frac{t}{2s}$).

which is not possible. Therefore, $M(y_{2n+2}, y_{2n+1}, kt) \geq M(y_{2n+1}, y_{2n}, \frac{t}{2})$ $(\frac{t}{2s})$ In the similar manner, $M(y_{2n+3}, y_{2n+2}, kt) \geq M(y_{2n+2}, y_{2n+1}, \frac{t}{2s})$. In general, $M(y_{n+1}, y_{n+2}, kt) \geq M(y_n, y_{n+1}, \frac{t}{2s})$ for $n = 1, 2, 3, ...$ $(\frac{t}{2s})$ for $n = 1, 2, 3, ...$ And, $M(y_{n+2}, y_{n+3}, kt) \geq M(y_{n+1}, y_{n+2}, \frac{t}{2})$ $(\frac{t}{2s})$ for $n = 1, 2, 3, ...$ Also, it follows that, $M(y_{n+1}, y_{n+2}, kt) \ge M(y_n, y_{n+1}, \frac{t}{2})$ $\left(\frac{t}{2s}\right) \geq M\left(y_{n-1}, y_n, \frac{t}{(2s)}\right)$ $\frac{t}{(2s)^2k}\bigg).$ Continuing this, we get, $M(y_{n+1}, y_{n+2}, kt) \geq M(y_0, y_1, \frac{t}{(2s)^{n}})$ $\frac{t}{(2s)^{n+1}k^n}\right)\to 0 \text{ as } n\to\infty.$ Thus, in general, when $n \to \infty$, Clearly, $1 \geq M(y_n, y_{n+1}, kt) \geq M(y_0, y_1, \frac{t}{(2s)^n}$ $\frac{t}{(2s)^n k^{n-1}}$ \rightarrow 1 Thus, $\lim_{n\to\infty} M(y_n, y_{n+1}, kt) = 1.$ Furthermore,

$$
N(y_{2n+1}, y_{2n+2}, kt) = N(Sx_{2n+1}, Sx_{2n+2}, kt) = N(Tx_{2n}, Tx_{2n+1}, kt)
$$

\n
$$
\leq \max\{(N(Tx_{2n}, Sx_{2n+1}, t), N(Tx_{2n+1}, Sx_{2n+1}, t), N(Tx_{2n+1}, Sx_{2n}, t))\},
$$

\n
$$
= \max\{(N(Sx_{2n+1}, Sx_{2n+1}, t), N(Sx_{2n+2}, Sx_{2n+1}, t), N(Sx_{2n+2}, Sx_{2n}, t)\},
$$

\n
$$
= \max\{(N(y_{2n+1}, y_{2n+1}, t), N(y_{2n+2}, y_{2n+1}, t), N(y_{2n+2}, y_{2n}, t))\},
$$

\n
$$
\Rightarrow N(y_{2n+1}, y_{2n+2}, kt) \leq \max\{N(y_{2n+2}, y_{2n+1}, t), N(y_{2n+2}, y_{2n}, t)\},
$$

\n[Since $N(y_{2n+1}, y_{2n+1}, t) = 0$]

Since $kt < \frac{t}{2s}$ and by (II) of theorem (3.3) $N(x, y, \cdot)$ is a strictly decreasing function. If max $\{(N(y_{2n+2}, y_{2n+1}, t), N(y_{2n+2}, y_{2n}, t))\} = N(y_{2n+2}, y_{2n+1}, t)$ Then we reach to a contradiction, $N(y_{2n+1}, y_{2n+2}, kt) \leq N(y_{2n+2}, y_{2n+1}, t)$ is not possible.

Therefore,

$$
N(y_{2n+1}, y_{2n+2}, kt) \le N(y_{2n+2}, y_{2n}, t)
$$

\n
$$
\le N\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right) \langle N\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right) \text{ (By using (j) of definition 2.3)}
$$

\n
$$
= \max \left\{ N\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right), N\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right) \right\} \text{ (By (I) of theorem 3.3)}
$$

Since $kt < \frac{t}{2s}$ and by (II) of theorem $(3.3)N(x, y, \cdot)$ is a strictly decreasing function If, max $\big\{N\big\}$ $\sqrt{ }$ $y_{2n+2}, y_{2n+1},$ t 2s $\bigg), N\bigg(y_{2n+1}, y_{2n},$ t 2s $\Big\} = N \Big($ $y_{2n+1}, y_{2n+2},$ t 2s \setminus Then we reach to a contradiction, $N(y_{2n+1}, y_{2n+2}, kt) \le N(y_{2n+1}, y_{2n+2}, \frac{t}{2})$ $(\frac{t}{2s})$ which is not possible.

Therefore, $N(y_{2n+1}, y_{2n+2}, kt) \le N(y_{2n+1}, y_{2n}, \frac{t}{2})$ $(\frac{t}{2s})$

By similar pattern $N(y_{2n+3}, y_{2n+2}, kt) \le N(y_{2n+2}, y_{2n+1}, \frac{t}{2})$ $(\frac{t}{2s})$ Thus, we have $N(y_{2n+1}, y_{2n+2}, kt) \le N(y_{2n}, y_{2n+1}, \frac{t}{2s})$ And $N(y_{2n+2}, y_{2n+3}, kt) \leq N(y_{2n+1}, y_{2n+2}, \frac{t}{2})$ $(\frac{t}{2s})$ In general, $N(y_{n+1}, y_{n+2}, kt) \le N(y_n, y_{n+1}, \frac{t}{2})$ $(\frac{t}{2s})$ for $n = 1, 2, 3, ...$ And $N(y_{n+2}, y_{n+3}, kt) \le N(y_{n+1}, y_{n+2}, \frac{t}{2})$ $(\frac{t}{2s})$ for $n = 1, 2, 3, ...$ Also, it follows that, $N(y_{n+1}, y_{n+2}, kt) \le N(y_n, y_{n+1}, \frac{t}{2})$ $\left(\frac{t}{2s}\right) \leq N\left(y_{n-1}, y_n, \frac{t}{(2s)}\right)$ $\frac{t}{(2s)^2k}$ Continuing this, we have, $N(y_{n+1}, y_{n+2}, kt) \le N(y_0, y_1, \frac{t}{(2s)^n})$ $\frac{t}{(2s)^{n+1}k^n}\right)\to 0$ as $n\to\infty$, Thus, in general, when $n \to \infty$, $0 \le N(y_n, y_{n+1}, kt) \le N(y_0, y_1, \frac{t}{(2s)^n}$ $\frac{t}{(2s)^n k^{n-1}}$ → 0 Therefore, $\lim_{n\to\infty} N(y_n, y_{n+1}, kt) = 0$ Hence, $M(y_n, y_{n+1}, kt) \rightarrow 1$ and $N(y_n, y_{n+1}, kt) \rightarrow 0$ as $n \rightarrow \infty$ for any $t > 0$, Next, we show that the sequence $\{y_n\}$ is a Cauchy sequence. For each $\varepsilon > 0$ and $t > 0$, we may be chosen $n_0 \in N$ such that $M(y_n, y_{n+1}t) > 1 - \varepsilon$ for all $n > n_0$ and $N(y_n, y_{n+1}t) < \varepsilon$ for all $n > n_0$ For $m, n \in N$, we suppose $m \geq n$. Then we have

$$
M(y_n, y_m, t) \ge M\left(y_n, y_{n+1}, \frac{t}{2s}\right) * M\left(y_{n+1}, y_m, \frac{t}{2s}\right)
$$

\n
$$
\ge M\left(y_n, y_{n+1}, \frac{t}{2s}\right) * M\left(y_{n+1}, y_{n+2}, \frac{t}{(2s)^2}\right) * M\left(y_{n+2}, y_m, \frac{t}{(2s)^3}\right)
$$

\n
$$
\ge M\left(y_n, y_{n+1}, \frac{t}{2s}\right) * M\left(y_{n+1}, y_{n+2}, \frac{t}{(2s)^2}\right) * M\left(y_{n+2}, y_m, \frac{t}{(2s)^3}\right) \dots
$$

\n
$$
\Rightarrow M(y_n, y_m, t) \ge (1 - \varepsilon) * (1 - \varepsilon) * (1 - \varepsilon) \dots (1 - \varepsilon)
$$

\n
$$
= \min\{(1 - \varepsilon), (1 - \varepsilon), (1 - \varepsilon), \dots (1 - \varepsilon)\} = (1 - \varepsilon) \text{ (by (I) of Theorem 3.3)}
$$

And

$$
N(y_n, y_m, t) \le N\left(y_n, y_{n+1}, \frac{t}{2s}\right) \diamond N\left(y_{n+1}, y_m, \frac{t}{2s}\right)
$$

\n
$$
\le N\left(y_n, y_{n+1}, \frac{t}{2s}\right) \diamond N\left(y_{n+1}, y_{n+2}, \frac{t}{(2s)^2}\right) \diamond N\left(y_{n+2}, y_m, \frac{t}{(2s)^3}\right)
$$

\n
$$
\le N\left(y_n, y_{n+1}, \frac{t}{2s}\right) \diamond N\left(y_{n+1}, y_{n+2}, \frac{t}{(2s)^2}\right) \diamond N\left(y_{n+2}, y_m, \frac{t}{(2s)^3}\right) \cdots
$$

\n
$$
\le \varepsilon \diamond \varepsilon \diamond \varepsilon \ldots \diamond \varepsilon = \max\{\varepsilon, \varepsilon, \varepsilon, \ldots, \varepsilon\} = \varepsilon \quad \text{(by (I) of Theorem 3.3)}
$$

Hence, $\{y_n\}$ is a Cauchy sequence in X.

Since $(X, M, N, \ast, \Diamond)$ is complete. In view of completeness of the space, sequence

 ${y_n}$ converges to some point $u \in X$. Also its subsequence converges to the same point i.e., $Sx_{2n} = Tx_{2n} \rightarrow u$. Now, we shall prove $Su = u$ then $M(u, Su, kt) \geq M(u, Tx_{2n}, \frac{kt}{2s})$ $\frac{k}{2s}$ \ast *M* $(Tx_{2n}, Su, \frac{kt}{2s})$, *S* is continuous and *S*,*T* are compatible type P such that $n \to \infty$. $TTx_{2n} \to Su$, $SSx_{2n} \to Su$,

$$
M(u, Su, kt) \ge M\left(u, Tx_{2n}, \frac{kt}{2s}\right) * M\left(Tx_{2n}, TTx_{2n}, \frac{kt}{2s}\right),
$$

\n
$$
\ge M\left(u, Tx_{2n}, \frac{kt}{2s}\right) * \min\left\{M\left(Tx_{2n}, STx_{2n}, \frac{t}{2s}\right), M\left(TTx_{2n}, STx_{2n}, \frac{t}{2s}\right), M\left(TTx_{2n}, STx_{2n}, \frac{t}{2s}\right)\right\}
$$

\n
$$
M\left(TTx_{2n}, Sx_{2n}, \frac{t}{2s}\right)\right\} \text{ (by (iv) of Theorem 3.3)}
$$

Since $Sx_{2n} = Tx_{2n} \rightarrow u$ and S and T are compatible type (P) Mapping. Therefore, as $n \to \infty$, we get, $TTx_{2n} \to Su$, $SSx_{2n} \to Su$.

$$
\leq M\left(u, u, \frac{kt}{2s}\right) * \min\left\{M\left(u, Su, \frac{t}{2s}\right), M\left(Su, Su, \frac{t}{2s}\right), M\left(Su, u, \frac{t}{2s}\right)\right\}
$$

\n
$$
\leq M\left(u, u, \frac{kt}{2s}\right) * \min\left\{M\left(u, Su, \frac{t}{2s}\right), M\left(Su, Su, \frac{t}{2s}\right), M\left(u, Su, \frac{t}{2s}\right)\right\}
$$

\n
$$
\Rightarrow M(u, Su, kt) \geq M\left(u, Su, \frac{t}{2s}\right)
$$

\n(Since, $M\left(u, u, \frac{kt}{2s}\right) = 1$ and $M\left(Su, Su, \frac{t}{2s}\right) = 1$ for all $t > 0$)

Therefore, $Su = u$. Now we will show that $Tu = u$. For that let $x = u$ and $y = Tx_{2n}$ then, (iv) of Theorem (3.3) becomes $M(Tu, TTx_{2n}, kt) \ge \min\{M(Tu, STx_{2n}, t), M(TTx_{2n}, STx_{2n}, t), M(TTx_{2n}, Su, t)\}\$ Since $Sx_{2n} = Tx_{2n} \rightarrow u$, S is continuous and S, T are compatible of type P such that

$$
TTx_{2n} = SSx_{2n} = Su = u
$$

\n
$$
M(Tu, u, kt) \ge \min\{M(Tu, Su, t), M(u, Su, t), M(u, Su, t)\}
$$

\n
$$
M(Tu, u, kt) \ge \min\{M(Tu, u, t), M(u, u, t), M(u, u, t)\},
$$

Since, $M(u, u, t) = 1$ for all $t > 0$. Therefore, $M(Tu, u, kt) \geq M(Tu, u, t)$ Thus, $Tu = u$. Hence, u is a fixed point of S and T. Now, we prove $Su = u$ for N, $N(u, Su, kt) \le N(u, Tx_{2n}, \frac{kt}{2s})$ $\frac{k t}{2s}$) $\Diamond N$ $(Tx_{2n}, Su, \frac{kt}{2s})$, S is continuous and S, T are compatible type P such that $n \to \infty$.

$$
TTx_{2n} \rightarrow Su, SSx_{2n} \rightarrow Su,
$$

\n
$$
N(u, Su, kt) \le N\left(u, Tx_{2n}, \frac{kt}{2s}\right) \diamond N\left(Tx_{2n}, TTx_{2n}, \frac{kt}{2s}\right),
$$

\n
$$
\le N\left(u, Tx_{2n}, \frac{kt}{2s}\right) \diamond \max\left\{N\left(Tx_{2n}, STx_{2n}, \frac{t}{2s}\right), N\left(TTx_{2n}, STx_{2n}, \frac{t}{2s}\right),\right\}
$$

\n
$$
N\left(TTx_{2n}, Sx_{2n}, \frac{t}{2s}\right)\right\}
$$

Since $Sx_{2n} = Tx_{2n} \rightarrow u$ and S and T are compatible type (P) mapping. Therefore, as $n \to \infty$, we get, $TTx_{2n} \to Su$, $SSx_{2n} \to Su$.

$$
\leq N\left(u, u, \frac{kt}{2s}\right) \Diamond \max\left\{N\left(u, Su, \frac{t}{2s}\right), N\left(Su, Su, \frac{t}{2s}\right), N\left(Su, u, \frac{t}{2s}\right)\right\}
$$

\n
$$
\leq N\left(u, u, \frac{kt}{2s}\right) \Diamond \max\left\{N\left(u, Su, \frac{t}{2s}\right), N\left(Su, Su, \frac{t}{2s}\right), N\left(u, Su, \frac{t}{2s}\right)\right\}
$$

\n
$$
\Rightarrow N(u, Su, kt) \leq N\left(u, Su, \frac{t}{2s}\right)
$$

\n(Since, $N\left(u, u, \frac{kt}{2s}\right) = 0$ and $N\left(Su, Su, \frac{t}{2s}\right) = 0$ for all $t > 0$)

Therefore, $Su = u$. Now we will show that $Tu = u$. For that let $x = u$ and $y = Tx_{2n}$ then, (iv) of Theorem (3.3) becomes $N(T u, TT x_{2n}, k t) \leq \max\{N(T u, ST x_{2n}, t), N(T T x_{2n}, ST x_{2n}, t), N(T T x_{2n}, Su, t)\}\$ Since $Sx_{2n} = Tx_{2n} \rightarrow u$, S is continuous and S, T are compatible of type P such that

$$
TTx_{2n} = SSx_{2n} = Su = u
$$

$$
N(Tu, u, kt) \le \max\{N(Tu, Su, t), N(u, Su, t), N(u, Su, t)\}
$$

$$
\le \max\{N(Tu, u, t), N(u, u, t), N(u, u, t)\},
$$

(Since, $N(u, u, t) = 0$ for all $t > 0$). $\Rightarrow N(Tu, u, kt) > N(Tu, u, t)$ Thus, $Tu = u$. Hence, u is a fixed point of S and T. Uniqueness. Let u' be another common fixed point of S and T . Then $Su' = Tu' = u'$, we get $M(Tu, Tu', kt) \ge \min\{M(Tu, Su', t), M(Tu', Su', t), M(Tu', Su, t)\},\$

 $M(u, u', kt) \ge \min\{M(u, u', t), M(u', u', t), M(u', u, t)\},\$ (Since $M(u', u', t) = 1$ for all $t > 0$) Therefore, $M(u, u', kt) \geq M(u, u', t) \geq M(u, u', \frac{t}{k})$ $\left(\frac{t}{k}\right) \geq M\left(u,u',\frac{t}{k}\right)$ $\frac{t}{k^2}\big) ... \geq M\left(u,u',\frac{t}{k^n}\right)$ $\frac{t}{k^{n-1}}$ \rightarrow 1, as $n \to \infty$. And, $N(Tu, Tu', kt) \le \max\{N(Tu, Su', t), N(Tu', Su', t), N(Tu', Su, t)\},$ $N(u, u', kt) \le \max\{N(u, u', t), N(u', u', t), N(u', u, t)\},\$ (Since $N(u', u', t) = 0$ for all $t > 0$) Therefore, $N(u, u', kt) \le N(u, u', t) \le N(u, u', \frac{t}{k})$ $(\frac{t}{k}) \leq N\left(u, u', \frac{t}{k^2}\right)$ $\frac{t}{k^2}\big) ... \le N\left(u,u',\frac{t}{k^n}\right)$ $\frac{t}{k^{n-1}}$ $\rightarrow 0$, as $n \to \infty$. By (c) and (h) of definition 2.3, we get $u = u'$. Therefore, u is the common fixed point of self-mappings S and T.

Acknowledgments

The authors are thankful to the editor and anonymous referees for their valuable comments and suggestions.

References

- [1] Azam, A., Kanwal, S., Introduction to Intuitionistic fuzzy b-metric spaces and fixed-point results, Thai Journal of Mathematics, Vol. 20, No. 1 (2022), 141-163.
- [2] Bakhtin, I. A., The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., Vol. 20 (1989), 26–37.
- [3] Czerwik, S., Contraction mappings in b-metric space, Acta Math. Inf. Univ. Ostraviensis, 1 (1993), 5-11.
- [4] Kanwal, Shazia, Azam, Akbar and Shami, Faria Ahmed, On Coincidence Theorem in Intuitionistic Fuzzy b-metric spaces with application, Journal of Function Spaces, Vol. 2022, Article ID 5616824, 10 pages, https://doi.org/10.1155/2022/5616824.
- [5] Konwar, N., Extension of fixed-point results in intuitionistic fuzzy b-metric space, Journal of Intelligent & Fuzzy Systems, Vol. 39, No. 5 (2020), 7831- 7841.
- [6] Kramosil O. and Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetica, Vol. 11 (1975), 326–334.
- [7] Nadaban, S., Fuzzy b-metric spaces, International Journal Computers Communications & Control, Vol. 11 No. (2), (2016), 273–281.
- [8] Park, J. H., Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, Vol. 22 (2004), 1039–1046.
- [9] Tripathi, B. P., Saluja, G. S., Sahu, D. P., Namdeo, N., Common fixed point theorems of compatible mapping of type (P) in intuitionistic fuzzy metric spaces, LE Matematiche, Vol. LXIX, (2014), Fasc. II, 77-92.

This page intertionally left blank.