South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 469-480

DOI: 10.56827/SEAJMMS.2024.2001.36

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

COINCIDENCE AND COMMON FIXED-POINT THEOREM USING COMPATIBLE MAPPING OF TYPE (P) ON INTUITIONISTIC FUZZY b-METRIC SPACES

Swati Agrawal, P. L. Sanodia*, Neeraj Malviya** and Jyoti Nema***

Oriental Institute of Science and Technology, Bhopal (M.P.), INDIA

E-mail : swatiagrawal1307@gmail.com

*Govt. Girls College, Seoni (M.P.), INDIA

**Govt. Degree College Timarni, Dist. Harda (M.P.), INDIA

E-mail : maths.neeraj@gmail.com

***Regional Institute of Education NCERT, Bhopal (M.P.), INDIA

(Received: Apr. 22, 2023 Accepted: Apr. 15, 2024 Published: Apr. 30, 2024)

Abstract: In this paper we have defined compatible type (P) mapping in the structure of intuitionistic fuzzy *b*-metric space and have proved a coincidence point theorem in intuitionistic fuzzy *b*-metric space.

Keywords and Phrases: Fuzzy *b*-metric space, Intuitionistic fuzzy *b*-metric space, Compatible mapping, Compatible type (P) mapping.

2020 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

The thought of *b*-metric space was introduced by Bakhtin [2] in 1989. The class of *b*-metric spaces is larger than that of metric spaces. In 2016, Nadaban [7] introduced the concept of fuzzy *b*-metric space and approved that the study in fuzzy *b*-metric spaces will obtain a lot of applications of as well as in mathematical engineering than in computer science. With the idea of intuitionistic fuzzy sets, Park [8] in 2004 defined the concept of intuitionistic fuzzy metric spaces with the help of continuous *t*-norm and continuous *t*-conorm as a generalization of fuzzy

metric space. In 2020, Konwar [5] extended fixed point results and studied the existence of uniqueness of self-mapping on the intuitionistic fuzzy *b*-metric space. In 2022, Azam and Kanwal [1] have established some conventional fixed-point theorem in the setting of complete intuitionistic fuzzy *b*-metric spaces. On the other hand, in 2014, Tripathi et al. [9] defined compatible type (P) mapping in fuzzy metric space. In this paper we have extend Azam and Kanwal [1] fixed-point theorems in the setting of compatible mapping of type (P) in intuitionistic fuzzy *b*-metric spaces with other contraction.

2. Preliminaries

For the reader convenience some definitions and results are recalled. The perception of b-metric space was announced by Bakhtin [2] and extensively used by Czerwik [3].

Definition 2.1. [8] A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called continuous triangular norm (t-norm) if it satisfies the following conditions:

- (1) * is associative and commutative;
- (2) * is continuous;

(3) $a * 1 = a, \forall a \in [0, 1];$

(4) if $a \leq c$ and $b \leq d$ with $a, b, c, d \in [0, 1]$, then $a * b \leq c * d$.

Example 2.1.1. [6] Three basic *t*-norms are defined as follows:

(1) The minimum *t*-norm, $a *_1 b = \min(a, b)$,

(2) The product *t*-norm, $a *_2 b = a.b$,

(3) The Lukasiewicz *t*-norm $a *_3 b = \max(a + b - 1, 0)$.

Definition 2.2. [8] A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous triangular conorm (t-conorm) if it satisfies the following conditions:

- (1) \Diamond is associative and commutative;
- (2) \Diamond is continuous;
- (3) $a \diamondsuit 0 = a, \forall a \in [0, 1];$

(4) $a \Diamond b \leq c \Diamond d$, whenever $a \leq c$ and $b \leq d \forall a, b, c, d \in [0, 1]$.

Example 2.2.1. [6] Three basic *t*-conorms are given below:

(1) $a \Diamond_1 b = \min(a+b,1),$ (2) $a \Diamond_2 b = (a+b-ab),$ (3) $a \Diamond_3 b = \max(a,b).$

Definition 2.3. [1] A 6-tuple $(X, M, N, *, \Diamond, s)$ is said to be an intuitionistic fuzzy b-metric space (IFb-MS), if X is an arbitrary set, $s \ge 1$ is a given real number, *is a continuous t-norm, \Diamond is a continuous t-conorm. M and N are fuzzy sets on $X^2 \times [0, \infty)$ satisfying the following conditions: for all $x, y, z \in X$,

470

(a) $M(x, y, t) + N(x, y, t) \leq 1$; (b) M(x, y, 0) = 0; (c) $M(x, y, t) = 1, \forall t > 0$ iff x=y; (d) $M(x, y, t) = M(y, x, t) \forall t > 0$; (e) $M(x, z, s(t+u)) \geq M(x, y, t) * M(y, z, u), \forall t, u > 0$; (f) $M(x, y) : [0, \infty) \to [0, 1]$ is left continuous and $\lim_{t\to\infty} M(x, y, t) = 1$, (g) N(x, y, 0) = 1; (h) $N(x, y, t) = 0 \forall t > 0$ iff x = y; (i) $N(x, y, t) = N(y, x, t) \forall t > 0$; (j) $N(x, z, s(t+u)) \leq N(x, y, t) \Diamond N(y, z, u), \forall t, u > 0$; (k) $N(x, y, \cdot) : [0, \infty) \to [0, 1]$ is right continuous and $\lim_{t\to\infty} N(x, y, t) = 0$. Here, M(x, y, t) and N(x, y, t) represent the nearness degree and the non-nearness degree with respect to t between x and y respectively.

Definition 2.4. [1] Let $s \ge 1$ be a given real number. A function $f : R \to R$ will be called s-nondecreasing if t < u implies that $f(t) \le f(su)$ and f is called s-nonincreasing if t < u implies that $f(t) \ge f(su)$.

Proposition 2.5. [1] Let $(X, M, N, *, \Diamond, s)$ is an intuitionistic fuzzy b-metric space, then for all $x, y \in X$, the fuzzy set M and N are defined with respect to product such that $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is s-nondecreasing and $N(x, y, \cdot) : [0, \infty) \to [0, 1]$ is s-nonincreasing.

Definition 2.6. [1] Let $(X, M, N, *, \Diamond, s)$ be an intuitionistic fuzzy b-metric space.

- (a) A sequence $\{x_n\}$ in X is said to be convergent if there exists $x \in X$ such that $\lim_{n\to\infty} M(x_n, x, t) = 1$ and $\lim_{n\to\infty} N(x_n, x, t) = 0 \quad \forall t > 0$. In this case x is called the limit of the sequence $\{x_n\}$ and we write $\lim_{n\to\infty} x_n = x$, or $x_n \to x$.
- (b) A sequence $\{x_n\}$ in $(X, M, *, \Diamond, s)$ is said to be a Cauchy sequence if for every $\epsilon \in (0, 1)$, there exists $n_0 \in N$ such that $M(x_n, x_m, t) > 1 \epsilon$ and $N(x_n, x_m, t) < \epsilon, \forall m, n \geq n_0$ and t > 0.
- (c) The space X is said to be complete if every Cauchy sequence is convergent and it is called compact if every sequence has a convergent subsequence.

The following result of Shazia Kanwal [4] gives common fixed point of Π and σ with the assumption of weakly compatibility:

Theorem 2.7. [4] Let $(\zeta, \Phi, \varphi, \bigcirc, *, s)$ be a compete IFb-MS and $\Pi, \sigma : \zeta \to \zeta$ be mappings satisfying the following conditions: (1) $\sigma(\zeta) \subseteq \Pi(\zeta)$, (2) Π and σ are weakly compatible.

(3) The is $k, 0 \leq k < 1$, such that, for all $\omega, \nu \in \zeta$, $\Phi(\sigma(\omega), \sigma(\nu), kt) \geq \Phi(\Pi(\omega), \Pi(\nu), t)$ and $\varphi(\sigma(\omega), \sigma(\nu), kt) \geq \varphi(\Pi(\omega), \Pi(\nu), t)$. Then, Π and σ have a unique common fixed point in ζ .

3. Main Result

We define compatible and compatible type-P mappings in intuitionistic fuzzy b-metric spaces.

Definition 3.1. Two self-mappings A and S of an intuitionistic fuzzy b-metric space $(X, M, N, *, \Diamond)$ are called compatible if $\lim_{n \to \infty} M(ASx_n, SAx_n, t) = 1$ and $\lim_{n \to \infty} N(ASx_n, SAx_n, t) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = x$ for some $x \in X$.

Definition 3.2. Two self-mappings A and S of an intuitionistic fuzzy b-metric space $(X, M, N, *, \Diamond)$ are called compatible of type (P) if $\lim_{n \to \infty} M(AAx_n, SSx_n, t) = 1$ and $\lim_{n \to \infty} N(AAx_n, SSx_n, t) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = x$ for some $x \in X$.

Example 3.2.1. Let $X = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}$ with * continuous *t*-norm and \Diamond continuous *t*-conorm defined by a * b = ab and $a\Diamond b = \min\{1, a + b\}$ respectively, for $a, b \in [0, 1]$. For each $t \in [0, \infty)$ and $x, y \in X$, define (M, N) by

$$M(x, y, t) = \begin{cases} \frac{t}{t+|x-y|^2}, & \text{if } t > 0, \\ 0 & \text{if } t = 0, \end{cases} \quad \text{and} \quad N(x, y, t) = \begin{cases} \frac{|x-y|^2}{t+|x-y|^2}, & \text{if } t > 0, \\ 1 & \text{if } t = 0, \end{cases}$$

Clearly $(X, M, N, *, \Diamond)$ is an intuitionistic fuzzy metric space.

Define $Sx = \frac{x}{6}$ and $Tx = \frac{x}{2}$ on X and $x_n = \frac{1}{n}$.

Clearly, it can be easily observed that S and T are compatible type (P) mapping. Our main result is to extend Theorem 2.7 of Kanwal et.al, using other contractive mapping in intuitionistic fuzzy *b*-metric space with compatible type-(P) mapping.

Theorem 3.3. Let $(X, M, N, *, \Diamond, s)$ be a complete intuitionistic fuzzy b-metric space with * t-norm and \Diamond t-conorm defined as:

- (I) $a * b = \min\{a, b\}, a \Diamond b = \max\{a, b\},$
- (II) $M(x, y, \cdot)$ and $N(x, y, \cdot)$ are strictly increasing and strictly deceasing functions respectively.

Let $S, T : X \to X$ be two self-mapping on X satisfy following conditions: (i) $T(X) \subseteq S(X)$, (ii) One of S or T is continuous, (iii) (S,T) is compatible of type (P) (iv) If for all $x, y \in X, k \in (0, \frac{1}{2s}), t > 0$,

$$M(Tx, Ty, kt) \ge \min\{M(Tx, Sy, t), M(Ty, Sy, t), M(Ty, Sx, t)\},\$$

$$N(Tx, Ty, kt) \le \max\{N(Tx, Sy, t), N(Ty, Sy, t), N(Ty, Sx, t)\}.$$

Then x is common fixed point of S and T.

Proof. Let $x_0 \in X$. Since $T(X) \subseteq S(X)$ there exist x_{2n+1} and x_{2n} in X such that

$$Tx_{2n} = Sx_{2n+1} = y_{2n+1}$$
 for, $n = 1, 2, 3, ...$ (3.3.1)

Case I. Putting $x = x_{2n}$ and $y = x_{2n+1}$ in (iv) we get

$$M(y_{2n+1}, y_{2n+2}, kt) = M(Sx_{2n+1}, Sx_{2n+2}, kt) = M(Tx_{2n}, Tx_{2n+1}, kt)$$

$$\geq \min\{M(Tx_{2n}, Sx_{2n+1}, t), M(Tx_{2n+1}, Sx_{2n+1}, t), M(Tx_{2n+1}, Sx_{2n}, t)\},$$

$$= \min\{M(Sx_{2n+1}, Sx_{2n+1}, t), M(Sx_{2n+2}, Sx_{2n+1}, t), M(Sx_{2n+2}, Sx_{2n}, t)\},$$

$$= \min\{M(y_{2n+1}, y_{2n+1}, t), M(y_{2n+2}, y_{2n+1}, t), M(y_{2n+2}, y_{2n}, t)\}, \quad (By 3.3.1)$$

Since $M(y_{2n+1}, y_{2n+1}, t) = 1$.

$$M(y_{2n+1}, y_{2n+2}, kt) \ge \min\{(1, M(y_{2n+2}, y_{2n+1}, t), M(y_{2n+2}, y_{2n}, t))\},\\ \ge \min\{(M(y_{2n+2}, y_{2n+1}, t), M(y_{2n+2}, y_{2n}, t))\},\$$

Since $kt < \frac{t}{2s}$ and by (II) of theorem (3.3), $M(x, y, \cdot)$ is a strictly increasing function. If $\min\{(M(y_{2n+2}, y_{2n+1}, t), M(y_{2n+2}, y_{2n}, t))\} = M(y_{2n+2}, y_{2n+1}, t)$ Then we will reach to a contradiction $M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n+2}, y_{2n+1}, t)$. Therefore,

$$M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n+2}, y_{2n}, t)$$

$$\ge M\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right) * M\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right) \quad (By using (e) of definition 2.3)$$

$$= \min\left\{M\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right), M\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right)\right\} \quad (By (I) of theorem 3.3)$$

Since $kt < \frac{t}{2s}$ and by (II) of theorem 3.3. $M(x, y, \cdot)$ is a strictly increasing function. If $\min\left\{M\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right), M\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right)\right\} = M\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right)$, then we will again reach to contradiction, $M(y_{2n+1}, y_{2n+2}, kt) \ge M\left(y_{2n+1}, y_{2n+2}, \frac{t}{2s}\right)$. which is not possible. Therefore, $M(y_{2n+2}, y_{2n+1}, kt) \ge M(y_{2n+1}, y_{2n}, \frac{t}{2s})$ In the similar manner, $M(y_{2n+3}, y_{2n+2}, kt) \ge M(y_{2n+2}, y_{2n+1}, \frac{t}{2s})$. In general, $M(y_{n+1}, y_{n+2}, kt) \ge M(y_n, y_{n+1}, \frac{t}{2s})$ for n = 1, 2, 3, ...And, $M(y_{n+2}, y_{n+3}, kt) \ge M(y_{n+1}, y_{n+2}, \frac{t}{2s})$ for n = 1, 2, 3, ...Also, it follows that, $M(y_{n+1}, y_{n+2}, kt) \ge M(y_n, y_{n+1}, \frac{t}{2s}) \ge M(y_{n-1}, y_n, \frac{t}{(2s)^{2k}})$. Continuing this, we get, $M(y_{n+1}, y_{n+2}, kt) \ge M(y_0, y_1, \frac{t}{(2s)^{n+1}k^n}) \to 0$ as $n \to \infty$. Thus, in general, when $n \to \infty$, Clearly, $1 \ge M(y_n, y_{n+1}, kt) \ge M(y_0, y_1, \frac{t}{(2s)^{nk^{n-1}}}) \to 1$ Thus, $\lim_{n\to\infty} M(y_n, y_{n+1}, kt) = 1$. Furthermore,

$$N(y_{2n+1}, y_{2n+2}, kt) = N(Sx_{2n+1}, Sx_{2n+2}, kt) = N(Tx_{2n}, Tx_{2n+1}, kt)$$

$$\leq \max\{(N(Tx_{2n}, Sx_{2n+1}, t), N(Tx_{2n+1}, Sx_{2n+1}, t), N(Tx_{2n+1}, Sx_{2n}, t))\},\$$

$$= \max\{(N(Sx_{2n+1}, Sx_{2n+1}, t), N(Sx_{2n+2}, Sx_{2n+1}, t), N(Sx_{2n+2}, Sx_{2n}, t))\},\$$

$$= \max\{(N(y_{2n+1}, y_{2n+1}, t), N(y_{2n+2}, y_{2n+1}, t), N(y_{2n+2}, y_{2n}, t))\},\$$

$$\Rightarrow N(y_{2n+1}, y_{2n+2}, kt) \leq \max\{N(y_{2n+2}, y_{2n+1}, t), N(y_{2n+2}, y_{2n}, t)\},\$$
[Since $N(y_{2n+1}, y_{2n+1}, t) = 0$]

Since $kt < \frac{t}{2s}$ and by (II) of theorem (3.3) $N(x, y, \cdot)$ is a strictly decreasing function. If $\max\{(N(y_{2n+2}, y_{2n+1}, t), N(y_{2n+2}, y_{2n}, t))\} = N(y_{2n+2}, y_{2n+1}, t)$ Then we reach to a contradiction, $N(y_{2n+1}, y_{2n+2}, kt) \leq N(y_{2n+2}, y_{2n+1}, t)$ is not possible. Therefore

Therefore,

$$N(y_{2n+1}, y_{2n+2}, kt) \leq N(y_{2n+2}, y_{2n}, t)$$

$$\leq N\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right) \Diamond N\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right) \quad (By using (j) \text{ of definition } 2.3)$$

$$= \max\left\{N\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right), N\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right)\right\} \quad (By (I) \text{ of theorem } 3.3)$$

Since $kt < \frac{t}{2s}$ and by (II) of theorem $(3.3)N(x, y, \cdot)$ is a strictly decreasing function If, $\max\left\{N\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right), N\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right)\right\} = N\left(y_{2n+1}, y_{2n+2}, \frac{t}{2s}\right)$ Then we reach to a contradiction, $N(y_{2n+1}, y_{2n+2}, kt) \leq N\left(y_{2n+1}, y_{2n+2}, \frac{t}{2s}\right)$ which is not possible.

Therefore, $N(y_{2n+1}, y_{2n+2}, kt) \leq N\left(y_{2n+1}, y_{2n}, \frac{t}{2s}\right)$

By similar pattern $N(y_{2n+3}, y_{2n+2}, kt) \leq N\left(y_{2n+2}, y_{2n+1}, \frac{t}{2s}\right)$ Thus, we have $N(y_{2n+1}, y_{2n+2}, kt) \leq N\left(y_{2n}, y_{2n+1}, \frac{t}{2s}\right)$ And $N(y_{2n+2}, y_{2n+3}, kt) \leq N\left(y_{2n+1}, y_{2n+2}, \frac{t}{2s}\right)$ In general, $N(y_{n+1}, y_{n+2}, kt) \leq N\left(y_n, y_{n+1}, \frac{t}{2s}\right)$ for n = 1, 2, 3, ...And $N(y_{n+2}, y_{n+3}, kt) \leq N\left(y_{n+1}, y_{n+2}, \frac{t}{2s}\right)$ for n = 1, 2, 3, ...Also, it follows that, $N(y_{n+1}, y_{n+2}, kt) \leq N\left(y_n, y_{n+1}, \frac{t}{2s}\right) \leq N\left(y_{n-1}, y_n, \frac{t}{(2s)^{2k}}\right)$ Continuing this, we have, $N(y_{n+1}, y_{n+2}, kt) \leq N\left(y_0, y_1, \frac{t}{(2s)^{n+1k^n}}\right) \to 0$ as $n \to \infty$, Thus, in general, when $n \to \infty$, $0 \leq N(y_n, y_{n+1}, kt) \leq N\left(y_0, y_1, \frac{t}{(2s)^{nk^{n-1}}}\right) \to 0$ Therefore, $\lim_{n\to\infty} N(y_n, y_{n+1}, kt) = 0$ Hence, $M(y_n, y_{n+1}, kt) \to 1$ and $N(y_n, y_{n+1}, kt) \to 0$ as $n \to \infty$ for any t > 0, Next, we show that the sequence $\{y_n\}$ is a Cauchy sequence. For each $\varepsilon > 0$ and t > 0, we may be chosen $n_0 \in N$ such that $M(y_n, y_{n+1}t) > 1 - \varepsilon$ for all $n > n_0$ and $N(y_n, y_{n+1}t) < \varepsilon$ for all $n > n_0$ For $m, n \in N$, we suppose $m \ge n$. Then we have

$$\begin{split} M(y_n, y_m, t) &\geq M\left(y_n, y_{n+1}, \frac{t}{2s}\right) * M\left(y_{n+1}, y_m, \frac{t}{2s}\right) \\ &\geq M\left(y_n, y_{n+1}, \frac{t}{2s}\right) * M\left(y_{n+1}, y_{n+2}, \frac{t}{(2s)^2}\right) * M\left(y_{n+2}, y_m, \frac{t}{(2s)^3}\right) \\ &\geq M\left(y_n, y_{n+1}, \frac{t}{2s}\right) * M\left(y_{n+1}, y_{n+2}, \frac{t}{(2s)^2}\right) * M\left(y_{n+2}, y_m, \frac{t}{(2s)^3}\right) \dots \\ &\Rightarrow M(y_n, y_m, t) \geq (1-\varepsilon) * (1-\varepsilon) * (1-\varepsilon) \dots (1-\varepsilon) \\ &= \min\{(1-\varepsilon), (1-\varepsilon), (1-\varepsilon), \dots (1-\varepsilon)\} = (1-\varepsilon) \quad (by (I) \text{ of Theorem 3.3}) \end{split}$$

And

$$\begin{split} N(y_n, y_m, t) &\leq N\left(y_n, y_{n+1}, \frac{t}{2s}\right) \Diamond N\left(y_{n+1}, y_m, \frac{t}{2s}\right) \\ &\leq N\left(y_n, y_{n+1}, \frac{t}{2s}\right) \Diamond N\left(y_{n+1}, y_{n+2}, \frac{t}{(2s)^2}\right) \Diamond N\left(y_{n+2}, y_m, \frac{t}{(2s)^3}\right) \\ &\leq N\left(y_n, y_{n+1}, \frac{t}{2s}\right) \Diamond N\left(y_{n+1}, y_{n+2}, \frac{t}{(2s)^2}\right) \Diamond N\left(y_{n+2}, y_m, \frac{t}{(2s)^3}\right) \dots \\ &\leq \varepsilon \Diamond \varepsilon \Diamond \varepsilon \dots \Diamond \varepsilon = \max\{\varepsilon, \varepsilon, \varepsilon, \dots, \varepsilon\} = \varepsilon \quad (by \ (I) \ of \ Theorem \ 3.3) \end{split}$$

Hence, $\{y_n\}$ is a Cauchy sequence in X.

Since $(X, M, N, *, \Diamond)$ is complete. In view of completeness of the space, sequence

 $\{y_n\}$ converges to some point $u \in X$. Also its subsequence converges to the same point i.e., $Sx_{2n} = Tx_{2n} \to u$. Now, we shall prove Su = u then $M(u, Su, kt) \geq M\left(u, Tx_{2n}, \frac{kt}{2s}\right) * M\left(Tx_{2n}, Su, \frac{kt}{2s}\right)$, S is continuous and S,T are compatible type P such that $n \to \infty$. $TTx_{2n} \to Su, SSx_{2n} \to Su$,

$$M(u,Su,kt) \ge M\left(u,Tx_{2n},\frac{kt}{2s}\right) * M\left(Tx_{2n},TTx_{2n},\frac{kt}{2s}\right),$$

$$\ge M\left(u,Tx_{2n},\frac{kt}{2s}\right) * \min\left\{M\left(Tx_{2n},STx_{2n},\frac{t}{2s}\right), M\left(TTx_{2n},STx_{2n},\frac{t}{2s}\right), M\left(TTx_{2n},STx_{2n},\frac{t}{2s}\right),$$

$$M\left(TTx_{2n},Sx_{2n},\frac{t}{2s}\right)\right\} \quad (by(iv) \text{ of Theorem 3.3})$$

Since $Sx_{2n} = Tx_{2n} \to u$ and S and T are compatible type (P) Mapping. Therefore, as $n \to \infty$, we get, $TTx_{2n} \to Su, SSx_{2n} \to Su$.

$$\leq M\left(u, u, \frac{kt}{2s}\right) * \min\left\{M\left(u, Su, \frac{t}{2s}\right), M\left(Su, Su, \frac{t}{2s}\right), M\left(Su, u, \frac{t}{2s}\right)\right\}$$
$$\leq M\left(u, u, \frac{kt}{2s}\right) * \min\left\{M\left(u, Su, \frac{t}{2s}\right), M\left(Su, Su, \frac{t}{2s}\right), M\left(u, Su, \frac{t}{2s}\right)\right\}$$
$$\Rightarrow M(u, Su, kt) \geq M\left(u, Su, \frac{t}{2s}\right)$$
$$(Since, M\left(u, u, \frac{kt}{2s}\right) = 1 \text{ and } M\left(Su, Su, \frac{t}{2s}\right) = 1 \text{ for all } t > 0)$$

Therefore, Su = u. Now we will show that Tu = u. For that let x = u and $y = Tx_{2n}$ then, (iv) of Theorem (3.3) becomes $M(Tu, TTx_{2n}, kt) \ge \min\{M(Tu, STx_{2n}, t), M(TTx_{2n}, STx_{2n}, t), M(TTx_{2n}, Su, t)\}$ Since $Sx_{2n} = Tx_{2n} \to u$, S is continuous and S, T are compatible of type P such that

$$TTx_{2n} = SSx_{2n} = Su = u$$

$$M(Tu, u, kt) \ge \min\{M(Tu, Su, t), M(u, Su, t), M(u, Su, t)\}$$

$$M(Tu, u, kt) \ge \min\{M(Tu, u, t), M(u, u, t), M(u, u, t)\},$$

Since, M(u, u, t) = 1 for all t > 0. Therefore, $M(Tu, u, kt) \ge M(Tu, u, t)$ Thus, Tu = u. Hence, u is a fixed point of S and T. Now, we prove Su = u for N, $N(u, Su, kt) \le N\left(u, Tx_{2n}, \frac{kt}{2s}\right) \Diamond N\left(Tx_{2n}, Su, \frac{kt}{2s}\right)$, S is continuous and S, T are compatible type P such that $n \to \infty$.

$$TTx_{2n} \to Su, SSx_{2n} \to Su,$$

$$N(u,Su,kt) \leq N\left(u, Tx_{2n}, \frac{kt}{2s}\right) \Diamond N\left(Tx_{2n}, TTx_{2n}, \frac{kt}{2s}\right),$$

$$\leq N\left(u, Tx_{2n}, \frac{kt}{2s}\right) \Diamond \max\left\{N\left(Tx_{2n}, STx_{2n}, \frac{t}{2s}\right), N\left(TTx_{2n}, STx_{2n}, \frac{t}{2s}\right), N\left(TTx_{2n}, STx_{2n}, \frac{t}{2s}\right), N\left(TTx_{2n}, STx_{2n}, \frac{t}{2s}\right),$$

$$N\left(TTx_{2n}, Sx_{2n}, \frac{t}{2s}\right)\right\}$$

Since $Sx_{2n} = Tx_{2n} \to u$ and S and T are compatible type (P) mapping. Therefore, as $n \to \infty$, we get, $TTx_{2n} \to Su, SSx_{2n} \to Su$.

$$\leq N\left(u, u, \frac{kt}{2s}\right) \diamondsuit \max\left\{N\left(u, Su, \frac{t}{2s}\right), N\left(Su, Su, \frac{t}{2s}\right), N\left(Su, u, \frac{t}{2s}\right)\right\}$$
$$\leq N\left(u, u, \frac{kt}{2s}\right) \diamondsuit \max\left\{N\left(u, Su, \frac{t}{2s}\right), N\left(Su, Su, \frac{t}{2s}\right), N\left(u, Su, \frac{t}{2s}\right)\right\}$$
$$\Rightarrow N(u, Su, kt) \leq N\left(u, Su, \frac{t}{2s}\right)$$
$$(Since, N\left(u, u, \frac{kt}{2s}\right) = 0 \text{ and } N\left(Su, Su, \frac{t}{2s}\right) = 0 \text{ for all } t > 0)$$

Therefore, Su = u. Now we will show that Tu = u. For that let x = u and $y = Tx_{2n}$ then, (iv) of Theorem (3.3) becomes $N(Tu, TTx_{2n}, kt) \leq \max\{N(Tu, STx_{2n}, t), N(TTx_{2n}, STx_{2n}, t), N(TTx_{2n}, Su, t)\}$ Since $Sx_{2n} = Tx_{2n} \rightarrow u$, S is continuous and S, T are compatible of type P such that

$$TTx_{2n} = SSx_{2n} = Su = u$$

$$N(Tu, u, kt) \le \max\{N(Tu, Su, t), N(u, Su, t), N(u, Su, t)\}$$

$$\le \max\{N(Tu, u, t), N(u, u, t), N(u, u, t)\},$$

(Since, N(u, u, t) = 0 for all t > 0). $\Rightarrow N(Tu, u, kt) \ge N(Tu, u, t)$ Thus, Tu = u. Hence, u is a fixed point of S and T. **Uniqueness.** Let u' be another common fixed point of S and T. Then Su' = Tu' = u'. we get $M(Tu, Tu', kt) \ge \min\{M(Tu, Su', t), M(Tu', Su', t), M(Tu', Su, t)\},$
$$\begin{split} &M(u,u',kt)\geq\min\{M(u,u',t),M(u',u',t),M(u',u,t)\},\\ &(\text{Since }M(u',u',t)=1\text{ for all }t>0)\\ &\text{Therefore,}\\ &M(u,u',kt)\geq M(u,u',t)\geq M\left(u,u',\frac{t}{k}\right)\geq M\left(u,u',\frac{t}{k^2}\right)\ldots\geq M\left(u,u',\frac{t}{k^{n-1}}\right)\rightarrow 1,\\ &\text{as }n\rightarrow\infty.\\ &\text{And, }N(Tu,Tu',kt)\leq\max\{N(Tu,Su',t),N(Tu',Su',t),N(Tu',Su,t)\},\\ &N(u,u',kt)\leq\max\{N(u,u',t),N(u',u',t),N(u',u,t)\},\\ &(\text{Since }N(u',u',t)=0\text{ for all }t>0)\\ &\text{Therefore,}\\ &N(u,u',kt)\leq N(u,u',t)\leq N\left(u,u',\frac{t}{k}\right)\leq N\left(u,u',\frac{t}{k^2}\right)\ldots\leq N\left(u,u',\frac{t}{k^{n-1}}\right)\rightarrow 0,\\ &\text{as }n\rightarrow\infty. \text{ By (c) and (h) of definition 2.3, we get }u=u'.\\ &\text{Therefore, }u\text{ is the common fixed point of self-mappings }S\text{ and }T. \end{split}$$

Acknowledgments

The authors are thankful to the editor and anonymous referees for their valuable comments and suggestions.

References

- [1] Azam, A., Kanwal, S., Introduction to Intuitionistic fuzzy *b*-metric spaces and fixed-point results, Thai Journal of Mathematics, Vol. 20, No. 1 (2022), 141-163.
- [2] Bakhtin, I. A., The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., Vol. 20 (1989), 26–37.
- [3] Czerwik, S., Contraction mappings in b-metric space, Acta Math. Inf. Univ. Ostraviensis, 1 (1993), 5-11.
- [4] Kanwal, Shazia, Azam, Akbar and Shami, Faria Ahmed, On Coincidence Theorem in Intuitionistic Fuzzy b-metric spaces with application, Journal of Function Spaces, Vol. 2022, Article ID 5616824, 10 pages, https://doi.org/10.1155/2022/5616824.
- [5] Konwar, N., Extension of fixed-point results in intuitionistic fuzzy b-metric space, Journal of Intelligent & Fuzzy Systems, Vol. 39, No. 5 (2020), 7831-7841.
- [6] Kramosil O. and Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetica, Vol. 11 (1975), 326–334.

- [7] Nadaban, S., Fuzzy b-metric spaces, International Journal Computers Communications & Control, Vol. 11 No. (2), (2016), 273–281.
- [8] Park, J. H., Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, Vol. 22 (2004), 1039–1046.
- [9] Tripathi, B. P., Saluja, G. S., Sahu, D. P., Namdeo, N., Common fixed point theorems of compatible mapping of type (P) in intuitionistic fuzzy metric spaces, LE Matematiche, Vol. LXIX, (2014), Fasc. II, 77-92.

This page intentionally left blank.