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Abstract: In this paper we consider various subclasses of normalized, analytic
functions defined in the open unit disk ∆ = {z ∈ C : |z| < 1} in the complex
plane C and study the Hardy space of the functions in these subclasses. This
study provides an analysis of the growth of these functions near the boundary
of the open unit disk and the Taylor’s coefficients of them. The study is carried
out using the methods of integral means and subordination of analytic functions.
Determination of explicit indices of the Hardy space and order of the growth rate
of the Taylor coefficient of these functions are important results here. The novelty
of the work here is an attempt to extend the study of the above mentioned features
for functions in standard subclasses of analytic univalent functions which were not
considered by researchers in the past.
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1. Introduction
The study on function spaces of analytic functions is of recent interest to re-

searchers working in the field of Geometric Function Theory. There are quite a few
different kinds of function spaces of analytic functions whose extremal problems,
coefficient inequalities, integral formulae and other geometric properties have been
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studied by the researchers in the recent past (see [2], [4], [8], [10] and [20]). One
such function space of analytic functions defined in the unit disk is the Hardy Space
- named by F.Riesz in the year 1923 in honour of a research paper by the great
English Mathematician G. H. Hardy published in the year 1915 [11]. We now recall
the definition of Hardy space.

Let ∆ = {z ∈ C : |z| < 1} be the open unit disk in the complex plane. For
functions f analytic in the open unit disk, the integral means are defined by

Mp(r, f) =


(

1
2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

, if 0 < p < ∞

max0≤θ<2π|f(reiθ)|, if p = ∞.

The Hardy spaces Hp consists of analytic functions f defined in the open unit disk
for which the integral meansMp(r, f) remains bounded as r → 1. ThusH∞ consists
of all bounded functions in the unit disk whereas the Hardy space H2 consists of
all functions f(z) =

∑∞
n=0 anz

n defined in the unit disk for which
∑∞

n=0 |an|2 < ∞.
It is evident that for 0 < p < q ≤ ∞, Hp ⊃ Hq. For more details on Hardy spaces,
one may refer to [5].

Let H be the class of all analytic functions in ∆ and A denote the class of
functions f ∈ H with normalization f(0) = 0 and f ′(0) = 1. Such functions can be
expressed in Taylor series as

f(z) = z +
∞∑
n=2

anz
n (1)

Call S to be the class of univalent functions in the class A.
In pursuit of proving the famous Bieberbach conjecture researchers have intro-

duced and studied numerous subclasses of class S in different contexts (see [6],
[21]. Recently, the researchers in Univalent Function Theory started exploring
the Hardy spaces of analytic functions and their derivatives in certain standard
geometric subclasses like starlike and convex functions, close-to-convex functions
[7], spiral-like functions [1] the class MV [α, k] [15], Bazilevic functions [14] and
functions of bounded boundary rotation [18] are some of the works done in the
field.

Motivated by the works of above researchers, in this paper we have considered
certain subclasses of normalized analytic functions introduced and studied by var-
ious authors and studied the Hardy spaces of functions and their derivatives in
these classes together with the growth estimate of the Taylor’s coefficients of the
functions in these subclasses.
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2. Some Subclasses of Normalized Analytic Functions in the Unit Disk
In this section, we recall the definition of subordination and compile the defi-

nitions of previously introduced subclass of S whose Hardy spaces and growth of
coefficients will be determined in the subsequent sections.

Definition 2.1. [6] Let f and g be analytic functions defined in the unit disk ∆
with f(0) = g(0). f is said to be subordinate to g, written as f ≺ g, if there exists
a function ω, analytic in ∆, with ω(0) = 0, |ω(z)| < 1 such that

f(z) = g(ω(z)) (2)

for each z ∈ ∆.

Definition 2.2. [17, 9] A function f ∈ A is said to be in class M(β) if

Re

{
zf ′(z)

f(z)

}
< β, for z ∈ ∆ and β > 1· (3)

Definition 2.3. [17, 9] A function f ∈ A is said to be in class N(β) if

Re

{
1 +

zf ′′(z)

f ′(z)

}
< β, for z ∈ ∆ and β > 1. (4)

Remark 2.1. [9] f ∈ N(β) ⇔ zf ′ ∈ M(β).

Definition 2.4. [19] An analytic function f defined in ∆ is said to be in class SQ
if

Re(
√

f ′(z)) >
1

2
, z ∈ ∆.

Functions in class SQ satisfies the subordination

f ′(z) ≺ 1

(1− z)2
, z ∈ ∆. (5)

Definition 2.5. [3] A function f ∈ S is said to be strongly starlike of order β
(0 < β ≤ 1) if ∣∣∣∣arg{zf ′(z)

f(z)

}∣∣∣∣ < π

2
β, z ∈ ∆.

The class of all strongly starlike functions is denoted by S̃∗(β), for some β.

Remark 2.2. [3] A function f is in S̃∗(β) (0 < β ≤ 1) iff

zf ′(z)

f(z)
≺

(
1 + z

1− z

)β

, z ∈ ∆. (6)
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Definition 2.6. [16] A function f ∈ S is said to be strongly convex of order β if

∣∣∣∣arg{1 +
zf ′′(z)

f ′(z)

}∣∣∣∣ < π

2
β, z ∈ ∆

for some β (0 < β ≤ 1) denoted by K̃∗(β).

3. Preliminary Lemmas

We now recall certain standard facts about the Hardy space Hp of analytic
functions f defined in the open unit disk.

Lemma 3.1. [5] If f ′ ∈ Hp and p < 1 then f ∈ H
p

1−p .

Lemma 3.2. [5] If f ′ ∈ Hp and p ≥ 1 then f ∈ H∞.

Lemma 3.3. [13] If f ∈ A satisfies zγf(z) ∈ Hp where 0 < p < ∞ and for some
γ ∈ R, then f ∈ Hp.

Lemma 3.4. [12] If f(z) ∈ Hp where 0 < p < 1 and f(z) =
∑∞

n=1 anz
n then

an = o(n
1
p
−1).

Lemma 3.5. [5] (Hardy-Littlewood’s subordination theorem) Let f(z) and F (z) be
analytic in ∆ and suppose f ≺ F . Then Mp(r, f) ≤ Mp(r, F ), 0 < p ≤ ∞.

Lemma 3.6. [5] If f(z) is analytic and univalent in ∆, then f ∈ Hp for all p < 1
2
.

Lemma 3.7. [5] Every analytic function f(z) with positive real part in ∆ is of
class Hp for all p < 1.

4. Main Results

Theorem 4.1. If f ∈ M(β), then

1. f ∈ Hp, for all p <
1

4(β − 1)
and for all β > 1.

2. f ′ ∈ Hp, for all p <
1

4β − 3
and for all β > 1.

3 If f(z) = z +
∞∑
n=2

anz
n, then an = o(n

1
p
−1) for p <

1

4(β − 1)
, for all β > 1.

Proof. Let f ∈ M(β).
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By (3),

Re

(
β − zf ′

f

β − 1

)
> 0

=⇒
(
β − zf ′

f

β − 1

)
= p(z), where Re(p(z)) > 0

=⇒ zf ′

f
= β − (β − 1)p(z)

=⇒ f ′ = β

(
f(z)

z

)
− (β − 1)p(z)

(
f(z)

z

)
.

Taking modulus on both sides,

|f ′(reiθ)| ≤ β

∣∣∣∣f(reiθ)reiθ

∣∣∣∣+ (β − 1)|p(reiθ)|
∣∣∣∣f(reiθ)reiθ

∣∣∣∣.
Using the definition of Integral Means,

Mλ
λ (r, f

′) =
1

2π

∫ 2π

0

|f ′(reiθ)|λdθ

≤ 1

2π

∫ 2π

0

[
β

∣∣∣∣f(reiθ)reiθ

∣∣∣∣+ (β − 1)|p(reiθ)|
∣∣∣∣f(reiθ)reiθ

∣∣∣∣]λdθ
Since (a+ b)p ≤ 2p(ap + bp), a, b ≥ 0 and 0 < p < ∞. For z = reiθ,

Mλ
λ (r, f

′) ≤ 2λ

2π

∫ 2π

0

(∣∣∣∣β(f(z)

z

)∣∣∣∣λ + ∣∣∣∣(β − 1)p(z)

(
f(z)

z

)∣∣∣∣λ)dθ,
=

(2β)λ

2π

∫ 2π

0

∣∣∣∣f(z)z

∣∣∣∣λdθ + (2(β − 1))λ

2π

∫ 2π

0

∣∣∣∣p(z).f(z)z

∣∣∣∣λdθ
≤ (2β)λ

(
1

2π

∫ 2π

0

∣∣∣∣f(z)z

∣∣∣∣λdθ)+
(2(β − 1))λ

[(
1

2π

∫ 2π

0

|p(z)|λmdθ
) 1

m
(

1

2π

∫ 2π

0

∣∣∣∣f(z)z

∣∣∣∣λndθ) 1
n
]

where
1

m
+

1

n
= 1 and m,n > 1.
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Therefore,

Mλ
λ (r, f

′) ≤ (2β)λMλ
λ

(
r,
f(z)

z

)
+ (2(β − 1))λ

[
Mλ

λm(r, p(z)).M
λ
λn

(
r,
f(z)

z

)]
.

(7)

For f ∈ M(β) where β > 1, by [9]

f(z)

z
≺ (1− z)2(β−1)·

For |z| < 1,

Mλ
λ (r, (1− z)2(β−1)) =

1

2π

∫ 2π

0

∣∣(1− z)2(β−1)
∣∣λdθ

=
1

2π

∫ 2π

0

|(1− z)|2(β−1)λdθ.

Employing Lemma 3.6, 2(β − 1)λ < 1
2

=⇒ λ < 1
4(β−1)

·
Hence,

(1− z)2(β−1) ∈ Hλ, for all λ <
1

4(β − 1)
·

Therefore, applying Hardy-Littlewood subordination theorem, we find that in RHS
of (7)

Mλ

(
r,
f(z)

z

)
is bounded for all λ <

1

4(β − 1)
·

This indicates that,
f(z)

z
∈ Hλ, for all λ <

1

4(β − 1)
. (8)

Lemma 3.3 leads to the conclusion that

f(z) ∈ Hλ, for all λ <
1

4(β − 1)
·

By Lemma 3.7, limr→1− Mλ
λm(r, p(z)) exists if λm < 1 and by (8), limr→1− Mλ

λn

(
r, f(z)

z

)
exists if λn < 1

4(β−1)
.

It becomes evident in (7) that,

lim
r→1−

Mλ
λ (r, f

′) (9)
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exists under the conditions λ < 1
4(β−1)

, λ < 1
m

and 4λ(β − 1) < 1
n
.

Following a series of calculations, we obtain the limit in (9) to exist for all λ < 1
4β−3

.

The growth condition on the Taylor coefficients, an of f(z) follows from Lemma
3.4.

Theorem 4.2. Let f ∈ N(β), where β > 1.

1 For β > 1, f ′ ∈ Hp, for all p <
1

4(β − 1)
·

2. If β >
5

4
, then f ∈ Hp, for all p <

1

4β − 5
·

3. If β ≤ 5

4
, then f ∈ H∞.

4. If f(z) = z +
∞∑
n=2

anz
n for β >

5

4
, then an = o(n

1
p
−1) for p <

1

4β − 5
·

Proof. For β > 1, let f ∈ N(β), then by Remark 2.1, zf ′ ∈ M(β).
By Theorem 4.1, zf ′ ∈ Hp, for all p < 1

4(β−1)
·

Consequently, it can be inferred from Lemma 3.3 and Lemma 3.1 that

f ∈ Hq, where q =
p

1− p
, p <

1

4(β − 1)
and β >

5

4
·

Using Lemma 3.2, for β ≤ 5
4
, we get, f ∈ H∞.

As a consequence of Lemma 3.4, we get a bound for the coefficients of functions

f(z) = z +
∑∞

n=2 anz
n as an = o(n

1
p
−1) for p < 1

4β−5
·

Theorem 4.3. Let f ∈ SQ, then

1. f ′ ∈ Hp, for all p <
1

2
·

2. f ∈ Hp, for all p < 1.

3. If f(z) = z +
∞∑
n=2

anz
n, then an = o(n

1
p
−1) for p < 1.

Proof. Consider f ∈ SQ.
Using (5) and Lemma 3.6, we get,

Mp(r, f
′) ≤ Mp(r, (1− z)−2).
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Mp(r, (1− z)−2) is bounded for all p < 1
2
.

This leads to the result that f ′ ∈ Hp for all p < 1
2
.

Since p < 1
2
< 1, Lemma 3.1 gives f ∈ Hq where q = p

1−p
and for all q < 1.

Alternate Proof. For a function f ∈ SQ,

Re(
√

f ′(z)) >
1

2
·

=⇒
(√

f ′(z)− 1/2

1/2

)
= p(z), where Re(p(z)) > 0

=⇒ (f ′(z))
1
2 =

p(z)

2
+

1

2
·

Let g(z) = (f ′(z))
1
2 then,

|g(z)|λ ≤
(∣∣∣∣p(z)z

∣∣∣∣+ 1

2

)λ

≤ 2λ
(∣∣∣∣p(z)z

∣∣∣∣λ + (
1

2

)λ)
= |p(z)|λ + 1.

Now,

Mλ
λ (r, g) ≤

1

2π

∫ 2π

0

|p(reiθ)|λdθ + 1.

Using Lemma 3.7, p(z) ∈ Hλ, for all λ < 1.
Therefore, g ∈ Hλ, for all λ < 1. This leads us to the conclusion that f ′(z) ∈ Hλ

for all λ < 1
2
.

Lemma 3.1 implies f ∈ Hλ for all λ < 1.
Applying Lemma 3.4 in determining the growth of Taylor coefficients of f proves
the last part.

Theorem 4.4. Consider the collection of analytic functions

SQAT =

{
f
∣∣Re

(√
f(z)

z

)
>

1

2

}
for |z| < 1.

If f ∈ SQAT , then

1. f ∈ Hp for all p <
1

2
·

2. If f(z) = z +
∞∑
n=2

anz
n, then an = o(n

1
p
−1) for p <

1

2
·
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Proof. Let g(z) =
∫ z

0
f(t)
t
dt.

Consider f ∈ SQAT .

=⇒ Re

(√
f(z)

z

)
>

1

2

=⇒ Re(
√
g′(z)) >

1

2
=⇒ g ∈ SQ·

Now that implies g′(z) = f(z)
z

∈ Hp for all p < 1
2
·

Therefore, by Lemma 3.3, we get f ∈ Hp for all p < 1
2
·

Theorem 4.5. Let f ∈ S̃∗(β) (0 < β ≤ 1), then

1. f ′ ∈ Hp, for all p <
1

2 + β
and

2. f ∈ Hp, for all p <
1

1 + β
·

Further if f(z) = z +
∑∞

n=2 anz
n, then an = o(n

1
p
−1) for p < 1

1+β
·

Proof. Let f ∈ S̃∗(β), then by (6),

zf ′(z)

f(z)
≤

(
1 + ω(z)

1− ω(z)

)β

= (p(z))β

=⇒ f ′(z) ≤ (p(z))β
(
f(z)

z

)
·

For z = reiθ, z ∈ ∆,

Mλ
λ (r, f

′(z)) =
1

2π

∫ 2π

0

|f ′(z)|λdθ ≤ 1

2π

∫ 2π

0

∣∣∣∣(p(z))β(f(z)

z

)∣∣∣∣λdθ
≤

(
1

2π

∫ 2π

0

|p(z)|βλmdθ
)(

1

2π

∫ 2π

0

∣∣∣∣f(z)z

∣∣∣∣λndθ)
where

1

m
+

1

n
= 1 and m,n > 1

= I1(z).I2(z)·
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The integral I1(z) is bounded for βλm < 1 and the integral I2(z) is bounded for
λn < 1

2
as r → 1−, using Lemma 3.7 and Lemma 3.6, respectively.

Therefore,

lim
r→1−

Mλ
λ (r, f

′)

exists for all λ < 1
β+2

·
Hence the Hardy spaces of f follows from Lemma 3.1.

Theorem 4.6. Let f ∈ K̃∗(β) (0 < β ≤ 1), then

1. f ′ ∈ Hp, for all p <
1

1 + β
and

2. f ∈ Hp, for all p <
1

β
·

Proof. Consider f ∈ K̃∗(β), then zf ′ ∈ S̃∗(β).
Now, zf ′ ∈ Hλ, for all λ < 1

1+β
·

Therefore, f ′ ∈ Hλ, for all λ < 1
1+β

·
Lemma 3.1 implies f ∈ Hp, for all p < 1

β
·

5. Conclusion

In this paper, we obtained the Hardy spacesHp of functions in certain geometric
subclasses of analytic functions defined on the open unit disk. The growth of the
Taylor’s coefficients |an| of the functions in these subclassses were found to be
of the order of power of n involving the index of the Hardy space to which the
functions belonged to. It will be interesting to obtain similar results for various
other geometric subclasses of analytic functions defined in the open unit disk in
the complex plane.
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