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1. Introduction, Notation and Definitions
The Ramanujan theta function is a fundamental theory in basic hypergeomet-

ric series that extends the structure of the Jacobi theta functions [1, 3, 7], while
retaining their essential characteristics. Specifically, the Jacobi triple product ex-
hibits a very sophisticated structure when expressed using the Ramanujan theta
functions [2, 10]. The Ramanujan theta function is typically employed to identify
the critical dimensions in theories such as bosonic string theory, superstring theory,
and M-theory.

On the other hand, continued fractions play an important role in various branches
of mathematics. They naturally arise in long division and in the theory of approx-
imating real numbers with rational numbers [4, 5]. A continued fraction is an
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expression obtained through an iterative process of representing a number as the
sum of its integer part and the reciprocal of another number [9], then writing this
other number as the sum of its integer part and another reciprocal, and so on.
It is related to number theory and helps us find good approximations for real-life
constants. Results [6, 8] are require to establish certain continued fractions related
to theta functions.

Throughout the paper, for any complex number a and q,

(a; q)∞ =
∞∏
n=0

(1− aqn), |q| < 1,

(a1, a2, ..., ar; q)∞ = (a1; q)∞(a2; q)∞(a3; q)∞...(ar; q)∞

Four Jacobi’s theta functions are defined as

θ1(z, q) = 2
∞∑
n=0

(−1)nq(n+
1
2)

2

sin(2n+ 1)z, (1.1)

θ2(z, q) = 2
∞∑
n=0

q(n+
1
2)

2

cos(2n+ 1)z, (1.2)

θ3(z, q) = 1 + 2
∞∑
n=1

qn
2

cos 2nz, (1.3)

θ4(z, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nz. (1.4)

If we put z = 0 in (1.1)-(1.4) we find,

θ1(q) = 0, (1.5)

θ2(q) = 2
∞∑
n=0

q(n+
1
2)

2

= 2q
1
4

∞∑
n=0

qn
2+n, (1.6)

θ3(q) = 1 + 2
∞∑
n=1

qn
2

, (1.7)

θ4(q) = 1 + 2
∞∑
n=1

(−1)nqn
2

. (1.8)

There are large number of beautiful identities related to θ2(q), θ3(q) and θ4(q). It
is saying that no topic in mathematics is more replete with beautiful formulas than
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that related to θ2(q), θ3(q) and θ4(q). One of the most beautiful identities involving
θ2(q), θ3(q) and θ4(q) is

θ43(q) = θ42(q) + θ44(q). (1.9)

Motivated with interesting identities involving Jacobi’s theta functions, Ramanujan
defined a very general theta function as,

f(a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (1.10)

Two useful cases of f(a, b) are

Φ(q) = f(q, q) = 1 + 2
∞∑
n=1

qn
2

=
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

(1.11)

and

Ψ(q) = f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

. (1.12)

If we apply Jacobi’s triple product identity [1; Entry 19, p. 35] we have,

f(a, b) = (−a,−b, ab; ab)∞, |ab| < 1. (1.13)

From [1; Entry 30 (II) & (III), p. 46] we have,

f(a, b) = f(a3b, ab3) + af(b/a, a5b3). (1.14)

From [1; Entry 30 (IV), p. 46] we note that,

f(a, b)f(−a,−b) = f(−a2,−b2)Φ(−ab). (1.15)

From [2; entry 29, p. 45], we note that for ab = cd,

f(a, b)f(c, d) = f(ac, bd)f(ad, bc) + af(b/c, ac2d)f(c/d, acd2). (1.16)

From [2; lemma (1.2.1) p. 13] we have,

f(a, b) = an(n+1)/2bn(n−1)/2f(a(abn), b(ab)−n), n is an integer. (1.17)

Ramanujan recorded many continued fractions in his notebooks. Most famous is
Rogers-Ramanujan continued fraction defined by,

f(−q,−q4)

f(−q2,−q5)
=

1

1+

q

1+

q2

1+

q3

1 + ...
. (1.18)
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(1.17) is the generalization of a very old result,

√
5− 1

2
=

1

1+

1

1+

1

1+

1

1 + ...
. (1.19)

2. Main Results
In this section, certain interesting results on continued fractions have been

established.
(i). Taking a = −q, b = −q5 in (1.13) we get,

f(−q,−q5) = (q, q5, q6; q6)∞. (2.1)

Again, taking a = −q3 = b in (1.13) we find,

f(−q3,−q3) = (q3; q6)2∞(q6; q6)∞. (2.2)

Now, taking the ratio of (2.1) and (2.2) and comparing with [1 ;(6.2.37) p. 154] we
get

f(−q,−q5)

f(−q3,−q3)
=

(q, q5; q6)∞
(q3; q6)2∞

=
1

1+

q + q2

1+

q2 + q4

1+

q3 + q6

1 + ...
. (2.3)

(ii). Taking a = −q, b = −q7 in (1.13) we have

f(−q,−q7) = (q, q7, q8; q8)∞. (2.4)

Again, taking a = −q3, b = −q5 in (1.13) we get,

f(−q3,−q5) = (q3, q5, q8; q8)∞. (2.5)

Now, taking the ratio of (2.4) and (2.5) and comparing with [1 ;(6.2.38) p. 154] we
obtain

f(−q,−q7)

f(−q3,−q5)
=

(q, q7; q8)∞
(q3, q5; q8)∞

=
1

1+

q + q2

1+

q4

1+

q3 + q6

1 + ...
. (2.6)

(iii). Taking a = −q = c, b = d = −q4 in (1.16) we find

f 2(−q,−q4) = f(q2, q8)f(q5, q5)− qf(q3, q7)f(1, q10), (2.7)

Again, taking a = c = −q2 and b = d = −q3 in (1.16) we get,

f 2(−q2,−q3) = f(q4, q6)f(q5, q5)− q2f(q, q9)f(1, q10). (2.8)
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Taking the ratio of (2.7) and (2.8) and using (1.8) we have

f(q2, q8)f(q5, q5)− qf(q3, q7)f(1, q10)

f(q4, q6)f(q5, q5)− q2f(q, q9)f(1, q10)
=

{
1

1+

q

1+

q2

1+

q3

1 + ...

}2

. (2.9)

(iv). Taking a == c = −q, b = d = −q7 in (1.16) we find

f 2(−q,−q7) = f(q2, q14)f(q8, q8)− qf(q6, q10)f(1, q16), (2.10)

Again, taking a = c = −q3 and b = d = −q5 in (1.16) we get,

f 2(−q3,−q5) = f(q6, q10)f(q8, q8)− q3f(q2, q14)f(1, q16). (2.11)

Taking the ratio of (2.10) and (2.11) and using (2.6) we find

f(q2, q14)f(q8, q8)− qf(q6, q10)f(1, q16)

f(q6, q10)f(q8, q8)− q3f(q2, q14)f(1, q16)
=

{
1

1+

q + q2

1+

q4

1+

q3 + q6

1 + ...

}2

. (2.12)

(v). Taking a = c = −q, b = d = −q5 in (1.16) we get

f 2(−q,−q5) = f(q2, q10)f(q6, q6)− qf(q4, q8)f(1, q12), (2.13)

Again, taking a = c = −q3 and b = d = −q3 in (1.16) we get,

f 2(−q3,−q3) = f(q6, q6)f(q6, q6)− q3f(1, q12)f(1, q12). (2.14)

Taking the ratio of (2.13) and (2.14) and using (2.3) we find

f(q2, q10)f(q6, q6)− qf(q4, q8)f(1, q12)

f(q6, q6)f(q6, q6)− q3f(1, q12)f(1, q12)
=

{
1

1+

q + q2

1+

q2 + q4

1+

q3 + q6

1 + ...

}2

. (2.15)

(vi). Taking a = −q, b = −q4, c = −q, d = −q7 in (1.16) we get

f(−q,−q4)f(−q,−q7) = f(q2, q11)f(q8, q5)− qf(q3, q10)f(−q3, q16). (2.16)

Again, taking a = −q2, b = −q3, c = −q3 and d = −q5 in (1.16) we get,

f(−q2,−q3)f(−q3,−q5) = f(q5, q8)f(q7, q6)− q2f(1, q13)f(q−2, q15). (2.17)

Taking the ratio of (2.16) and (2.17) and making use of (1.18) and (2.6) we find

f(q2, q11)f(q8, q5)− qf(q3, q10)f(−q3, q16)

f(q5, q8)f(q7, q6)− q2f(1, q13)f(q−2, q15)

=

{
1

1+

q

1+

q2

1+

q3

1 + ...

}{
1

1+

q + q2

1+

q4

1+

q3 + q6

1 + ...

}
. (2.18)

Similar other results can also be scored.
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