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Abstract: We find some results on matching coefficients for certain g-products.
Some of the results are associated with Rogers—Ramanujan continued fraction

_ (9.4% ")
R( ) - 2 3.5 )
(0% 4% ¢°)os
while some are associated with analogous of Rogers—Ramanujan functions. The

techniques used for proving the results involves Ramanujan’s theta functions, iden-
tities for Rogers—Ramanujan type functions, and ¢-series manipulations.
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1. Introduction

Recently, Baruah and Das [7] have found some interesting results on the series
expansion of certain ¢g-products having matching coefficients with their reciprocals.
For example, consider

and
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For some positive integers a, b, ¢, d and x, we have s;(an+0b) = +xs)(cn+d), for all
n > 0, then the power series S1(¢q) is said to have matching coefficients with their
reciprocals 1/51(¢). They also presented some conjectures based on the numerical
evidence in their paper. And later on, in 2023, these conjectures were proved by
Du and Tang [11] using algorithmic approach.

In this paper, we have found some matching coefficients for two power series
Salg) = Yy sa(n)g” and Shlg) = ST, sh(n)g” as salan + b) = aslen +
d), where S)(q) is not necessarily be the reciprocal of S5(¢q). The results mainly
arise from identities belonging to Rogers—Ramanujan type functions and some
g-series manipulations. Before proceeding further, we record the definition for ¢-
Pochhammer symbol, which is given by:

(a;q)n = H(l —aq’), and (a;q)00 = H(l —aq’),

where a, ¢ are complex numbers with |¢| < 1. For convenience, we set

(a1,02,¢;- - -, ami @)oo = (013 @)oo (A2} Qoo+ * (A} D)oo (€5 @) o
Also, for a positive integer [, we use
fi=(d"d)
Let G(q) and H(q) be the Rogers-Ramanujan functions defined, respectively, by

1 1
o) = (4,04 ¢°)’ 1(q) = (6% ¢%) o0

(1.1)

The Rogers—Ramanujan continued fraction, R(q) can be represented as the quotient
of H(q) and G(q) as:
H(q)

R(q) = Gl

Let us consider Ramanujan’s parameter [6, p. 33|, [8, p. 523], [15, p. 362]

Ramanujan also introduced another two parameters in his lost notebook

R(4"?)*R(q)

1(q) == R(q)R(¢"), v(q) == R



Some matching coefficients of g—products 407

In this paper, we present the matching coefficients for the terms associated with
Ramanujan’s parameters and some of Rogers—Ramanujan type functions.

Now we consider S>(q) as qu(q) and S5(q) as the reciprocal of qu(q) (as defined
earlier) and let

Dt — S ri(n)g" = gulg),

qu(q)

and we give results for the matching coefficients 71 (n) and 7{(n), for certain values
of n. Similarly, we provide the matching coefficients for the following:

> o S n(n)g” = vie?).

- s — ) < n  qk(q)
and ;T k(q?)’ 2 " = k(g)

n=0

The following theorem represents the matching coefficients for 7;(n) and 7/(n) for
1<i<A4

Theorem 1.1. Forn > 0, we have

75(2n) + 12(2n) = —271(2n) — 271 (2n) + 4, (1.2)
m3(5n+71)=70GBn+r), forre {23}, (1.3)
2n+1)—7m2n+1)=72n+1) — 7 (2n + 1), (1.4)
73(2n) — 13(2n) = —71(2n) + 11 (2n). (1.5)
Consider

> Yi(n)g" = Glq)H(g), > Ti(n)g" = G(—q)H(—q),

— o Gl@)J(=q) < . H(@K(=9)

; T5(n)g" = H(q) ’ HZ:O To(n)g" = G ,

o n  J(d)H () S e~ Kld)G(?
2N = Gome 2O Boen
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where J(q) and K (q) are g-products shown as:
f2<Q7 q97 q10; qlo)oo

3 7 ,10. .10
J(q):f2<Q7Q7q 1 q )oo

P : K(q) = 7 (1.6)

Theorem 1.2. Forn > 0, we have
T(2n) = T1(2n) (1.7)
Ti(2n+1)=-"T12n+1), (1.8)
Ty(n+1) = —Tg( ), (1.9)
Tio,(5n+7) = =Ts21(5n+7), forre{l,2,34}, (1.10)
Tg,172(5n+7") —Ys1205n+7r—1), forre{1,4}, (1.11)
Ti2n+1) = —-"T4(2n+1), (1.12)
T, (2n) = T4(2n). (1.13)

Next, we consider the following analogous of the Rogers—Ramanujan functions
(1.1) as

A (0,005 %) e fe SR

S(q) — i (_Q; q2)nq

= = , 1.14
~  (¢%q"n fifa f3[4 (1.14)
i n? 2 4 6.6 2
q (q 45,4754 )OOfQ fg
T(q) = = = : 1.15
@ nzzo (4% ¢*)n fufa fifa (1.15)
® (g 2) o 3 43 6.6 2
N(q) = Z( 4 1nq U ST STUET R 7 (1.16)
=0 (@* 4" )n fifa fifafe
and the following continued fraction that was established by Naika et al. in [14]:
L(q)
U(q) = ¢+, 1.17
@) = 1370 (117)

where

112, 12 5 7 12,12
L<q):(q,q 45 ) M(q):(q,q,q 10"%) o
fa Ja
Consider S(q) and Sa(q) as T(¢")/S(q") and S(¢7)/T(¢’), respectively, for some

positive integers i and j, where S5(q) not necessarily always be the reciprocal of
Sg(q) Let

— v T(d) S e S(@)
nzzowl’i(n)q ~ S’ nzzowu( )q" = (@)
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Also, let
> wh(n)g" = S(—q)N(g), > wa(n)g" = N(—q)S(q),
n=0 n=0
o0 1 oo
d / n _ , n _ U
Theorem 1.3. Forn > 0, we have
Wy o(6n 4 4) = —w;2(6n + 3),
Wi (61 +2) +wia(6n + 1) = W) ,(2n + 1) + w1 2(2n),
wigdn+71) =wia(dn+r —=3), forre{1,2},
Wy g(8n +4) = w4(8n + 1),
wy g(24n + 16) = wy 4(24n + 13),
wh(2n) = w(2n),
wh(2n +1) = —wq(2n + 1),
ws(2n +2) = —w3(2n + 2),
wi(3n + 1) = ws(3n + 1),
wi(12n +r) =w3(12n + 1), forr € {5,9}.
Let us suppose
v1(n)g" = -, vai(n)q" = =,
; ' ( ) fBz ; ? ( ) fz
U3,i(n)qn _17 U4,z(n)qn = )
n=0 fz n=0 f2l
> (" = f(=¢")f(a), > us(n)g" = f(d°) f(—q),
n=0 n=0

where

409
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Theorem 1.4. Forn >0 and a > 0, we have

v14(3n+2) =v11(3n +2), (1.28)
v14(6n + 1) =v11(6n+ 1), forr e {0,4} (1.29)
v14(3n) —v11(3n) = v14(3%n) — v11(3%n), (1.30)
01490 + 3) — vy 1 (90 + 3) = v (3% N + 3%) — vy (3% + 39), (1.31)
0143 +2-3%) = v, (3% N+ 2 3%), (1.32)
U24(2n) = v11(2n + 1), (1.33)
v3o(3n+r1) =v3:(3n+r+1), forre{0,1} (1.34)
Vio(3n+1) =v19(3n+71), forr e {0,2} (1.35)

vs(2n) = v5(2n), (1.36)

vs(2n 4+ 1) = —vs(2n + 1), (1.37)
vg(10n + 1) = vs(10n + 1) =0, forr € {4,8}. (1.38)

The paper is organized as follows. Section 2 contain some preliminary results that

will be used to prove the main results. Section 3 includes the proof for Theorems
1.1-1.4.

2. Preliminaries
For |ab] < 1, Ramanujan’s general theta function f(a,b) is given by:

_ Z q"(n+1)/2pn(n—1)/2
The two special cases of f(a,b) are

elq) = Zq—g

n=—oo

U(q) = flg,4°) = Z g HD/2 f
n=0

4

fi
Also,

p\—q) = —,
(—q) T
Jacobi’s triple product identity is given by

fla,b) = (—a; ab)oo(—b; ab) oo (ab; ab)o
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A very useful consequence of Jacobi triple identity is the infinite product identity:

e}

(G0 = Y (=1"2n+1)g V2

n=—oo

Euler’s pentagonal number theorem is given by

[e.e]

fl — (q7Q)oo — Z (_1)nqn(3n71)/2.
Lemma 2.1. We have
2 _ f2f8 _ f2f16
=g
LB
fi  f3he fa
B BR L Rl
(A T
5 fifsfts o fuféfsf

AT Ty

S S 1

fs fio Ufuf?

LRI, R
hh BLABRRRR

Sofs =262 fafso + f5 10 — 24 3 fifio 1o qf22f120f20

gt {8t | Sulhof?

f2f2 fo
Jifs =20 g T 2afi e = Safa S
Y Y

3f4f20f40+ f20
RETTURRE I T HRRE R
L g B fE BB

fifs o2 flfe RS, /3

f4f20.

(2.1)
(2.2)
(2.3)
(2.4)
(2.5)
(2.6)
(2.7)
(2.8)
(2.9)

(2.10)

Proof. Identities (2.1)—(2.6) comes from [12]. (2.7) and (2.8) are the identities
from [13]. Identities (2.9) and (2.10) obtained by replacing ¢ by —¢ in identities

(2.7) and (2.8), respectively and then using

o
(—a; q)oo—flf4.

(2.11)
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Lemma 2.2. [12] We have
3 fefs | fis

h fshs TR
f_12 _ f_92 o f3f18
foo fis f6f9
Ja _ fiaf1s fe 18 fs 2 J6.J18./36
F T Y- e
Lemma 2.3. [9] We have
I B
qp(q) wla) = Qf1f4f53f2307
1 B 3
qu(q) V) = fofffsfm’
1 o f4f20
v(q?) V) = fafio

ko) ak(e®) _ AL
ak(q®) k() affy
Lemma 2.4. [10] We have

G(q)H(q) — G(—q)H(—q) =2 %J}goézo

GO + G0 =25

F-0)1(@) ~ S&")f(~q) = 27" ff;gfo

FP)S @) + 1@ (o) = 220

Lemma 2.5. [2] We have
G*(q)J(—q) + ¢H*(q) K (—q) = %

J(q)H(q)H(q*) + K(q)G(q)G(q?) 2i20’

J(¢*)G(q) H(g*) + qK (¢*) H(q)G(¢?) @

(2.12)
(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
(2.20)
(2.21)

(2.22)

(2.23)
(2.24)

(2.25)
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Lemma 2.6. [5] We have

3
K()J(—q) + K(—q)J(q) = 22402
2
K(q)J(~q) — K(~q)J(q) = ijﬁjg .
Lemma 2.7. [1] We have
2/ 2 2/ 2y _ I3 fafrz
T(q") +qS°(q°) = [NEIER
Lemma 2.8. [4] We have
I8\ Bapdyar sy L fiafoa
T(¢")T(q°) — ¢°S(¢")S(q°) = 20T < T
Lemma 2.9. [16] We have
S(—q)N(g) — N(=q)S(q) = J}if 1
S(-)N () + N(-0)S(a) = 27"
Lemma 2.10. [3] We have
1 _ B
U(Q) " U(Q) B qfi 5’2
1 f5fs

U(q) = .
U(Q) ( ) Qf1f3ff12
3. Proof of Theorems 1.1-1.4.

This section is devoted to prove the theorems shown in Section 1.

413

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Proof of Theorem 1.1. Squaring both sides (2.16) and (2.17), we find that

- - 3
7_/(n)anrl 4 m(n qn+1 + 2q = 2
; 1 Z ) FEF fs 0

ir n)q" +Zr2 +2:4f‘§f20
n=0 n=0 f2f130

(3.1)

(3.2)
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Substituting (2.10) in (3.1), then extracting the odd terms

> A@n)g" + > m2n)g" = _pfifo 3, (3.3)
n=0 n=0

f1f5

and bringing out the even terms from (3.2), we have

To(2n)q" + Z T(2n)¢" +2 = f2 J1o
n n=0 f f5

Comparing (3.3) and (3.4), we get (1.2). Now consider (2.18),

ZTQ(” n+1_|_ZT n+1 f1f5
vt flo

With the help of Euler’s pentagonal number theorem, we obtain

iTZ’/’( n+1 + ZT n+1 ;5 i (_1>nqn(3n—1)/2‘
n=0 10

n=—oo

WE

Il
=)

Here, n(3n —1)/2 # 3,4 (mod 5), which gives (1.3). Similarly, consider (2.15) and
(2.18),

G / n+l G n+1 f23f150
;Tl(n)q ;Tl(n)q B f1f4f53f2307 (35)
o (oo} 3

g™ =3 ry(n)g = J}—f (3.6)
n=0 n=0

Using (2.7) and (2.9), then extracting the even and odd terms, we obtain (1.4) and
(1.5), respectively.

Proof of Theorem 1.2. Consider (2.19), we have
N N o L0t
T (n Ti(n)q"
nZ_; 1 ZO 3 RTINS

Extracting the terms involving the even powers of ¢, we get (1.7). Similarly, con-
sidering (2.20), we have

G / n G n f8f20
nZ:OTl(n)q + nZ:OTl(n) f2f4o'
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Then extracting the terms involving the odd powers of ¢ and we arrive at (1.8).
From (2.23), dividing both sides by G(q)H(q), we obtain

i T/ q + Z T n+1
n=0

and we readily arrive at (1.9). From (2.24), dividing both sides by G?(q)H?(q), we
obtain

ZT321 n)q" +ZT321 n)q" = LQO

Bringing out the terms involving ¢°"*1 ¢®"*2 ¢3¢t we have (1.10). Also,
from (2.25), dividing both sides by G*(¢)H?(q), we obtain

) 9 e
ZT312 qn + ZT&LZ(n)anrl _ % _ % Z (_1)nq2n )
n=0 45 5

n=—oo

Here, 2n? # 1,4 (mod 5), therefore we get (1.11). Consider (2.26),

Z Ti(n)¢" + Z Ty(n)q" f4 f20
n=0 n=0 f2

Extracting the terms containing the odd powers of ¢ to get (1.12). Similarly,
considering (2.27) and extracting the terms involving even powers of ¢, we obtain
(1.13).

Proof of Theorem 1.3. Consider

- ~ T*¢?) +495%(¢?)
2%2 Q+QZW12 = T8

Using (1.14), (1.15), and (2.28), we have

s / n - n+l __ fng
;wm(n)q " ;wl,g(n)q - fifafefiz

Substituting (2.2), we get

IR v _ Bifs | B
nzzowl,z(n)q + nzzowm(n)q ~ Rl + qf42f6.
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Extracting the terms containing the even and odd powers of ¢ from above, we have

Zlean +Zw12 (2n + 1)¢"™ = f2f3

n=0 n=0 fl
S wia@n+ g + 3 wia(2n)g" = jﬁ’} .
n=0 n=0 243
Substituting (2.12) in (3.7)
f3 fafts
Wi (2n)g" + ) wia(@2n 4 1)g" ! = +q
Z ta(2n)d" Z A Y T
Bringing out the terms involving ¢+, ¢*" 2, we get
- / n = n __ f1f62
p

n=0 n=0

Z Wy o(6n +4)¢" + Z wi2(6n + 3)¢" = 0.

n=0 n=0

From (3.11), we get (1.18). Similarly, comparing (3.10) and (3.8), we

(1.19). Consider

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

arrive at

4).

Zwls n)q" — g wa _T(@*)T(q¢") — ¢°S(d°)S(q

T(q*)S(q®)

Using (1.14), (1.15), and (2.29), we have

L n N n+3:i(f122f16f224_f12f24)
;%wm(n)q gwm(")q 2% 1275, YA

Using (2.1) in above, we get

fi6.foa

o0 OO 2 2 5
23 e —2 et - LTl S
n=0 n=0

Rl fiftelis

f8f428 '
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Extracting the terms involving ¢**, ¢*"*1, ¢*"*2, ¢*"*3 from above, we obtain
5

22w184n+3) il QZwl (4n)q" ™ = fifaf§ 2102{62, (3.12)

" e B itk
2 Z wys(4n)q" — 2 Z wi4(4n — 3)q" f4 /e (3.13)

n=0 ’ n=0 f2f
2 Zwll,s(4n +1)¢" -2 ZW1,4(47”L —2)¢" =0, (3.14)
n=0 n=0

2> whg(An+2)g" =2 wia(dn —1)¢" =0. (3.15)

The last two equations prove (1.20). Extracting the terms containing even and odd
powers of ¢ from (3.13), we get

o0 o0 2
ZWQ,B(S”)QTL - ZW1,4(871 —3)¢" = ;2 fg, (3.16)
n=0 n=0 1f6

Zw178(8n +4)q" — Zw174(8n +1)¢" =0. (3.17)

From (3.17), we prove (1.21). Substituting (2.12) in (3.16), we have

o0 e ;
;wi,s(gn)qn B ;w174(8n S faf;ls ! J;EZ'J};

, we arrive at (1.22). Consider

Bringing out the terms containing ¢®"+2

sz n)q" —ZwQ = S(=¢)N(q) — N(—q)S(q),

f2f12
From 2.30
f4 & ( )
Extracting the even terms, we obtain (1.23). Now, consider
- / n = n
> wh(n)g" + > wan)g" = S(—q)N(q) + N(—q)S(q),
n=0 n=0
= Ja (From 2.31)
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and extracting the odd terms to get (1.24). Consider (2.32), we have

o0 o0 3
D wh(n)g" T+ ws(n)gt! = J{f’—Jf}‘; (3.18)
n=0 n=0

Substituting the values from (2.2), we obtain
- / n+1 - n+1 fzilf62
ng(n)q +Zw3(n)q = 2 +q.
n=0 n=0 2J12
Extracting the terms containing odd powers of ¢ to get (1.25). Consider (2.33), we
have . .
Zwé(n)anrl _ ng(n)anrl _ f22fé4 .
—~ — VAWEYEY

Substituting (2.12), we get

iw/(n)qn+l_§:w3(n)qn+1: f(?f92 + f6f18
= e f3 fiofis Ttfofly

Extracting the terms involving ¢3!, ¢3"*2, ¢>**3 from above equation, we obtain
f3 13

ws(3n)q w3(3n)q : (3.19)
Z 3 Z f1 faft

ng(sn +1)¢" — ng(?m +1)¢" =0, (3.20)

il
wh(3n + 2)¢" ! ws(3n +2)¢" ™ = 3.21
% ! Z; 277 (3:21)

We can easily arrive at (1.26) from (3.20). Using (2.6) in (3.19), we have

A i
Z“’S (3n)a Z“*” (m)" = T + 0725

Extracting the terms containing odd powers of ¢, we have

o0 o0 2
Z wy(6n + 3)¢" — Z w3(6n + 3)¢" = ?2]}2.
n=0 n=0 4J6
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Bringing out the terms containing odd powers of ¢, we obtain (1.27) for r = 9.

Similarly, consider (3.21) and using (2.4),

[t
wy(3n 4 2)¢" ! ws(3n +2)¢" ! =
§ i Z s(Bn+ 2 = 5

+ 2¢q

Extracting the terms containing even powers of ¢, we have

n=0

ng (6n+5)g"" ng 6n +5)¢""" =
n=0

Bringing out the terms containing odd powers of ¢, we get (1.27).

Proof of Theorem 1.4. Consider

Z v14(n)g" — Z vi,1(n)q" = f_4 -
n=0 n=0 12

From (2.5), we have

fe

f4f12

3
1

fz

ZUM q —Zvll C] —3C]f2f12
fuf2

Substituting (2.13), we have

fafofsfu
3 .

= - f12f18 s [ 36
vi4(n)q" — v11(n)q" — 6gq
; 14(m)g nzzo La(n)e f2f fofis
Extracting the terms involving ¢*", ¢***1, ¢>"*2, we have
ZU14 3nq—Zv11 3n ‘];42‘22
f4 f3
v14(3n +1)¢"— v11(3n+1
3t 1= om0 =91
=0.

Z v14(3n +2)¢"— Z v11(3n + 2)q
n=0 n=0

(3.22)

(3.23)

(3.24)
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From (3.24), we have (1.28). Extracting the terms involving ¢** and ¢*"*' from
(3.22), we get (1.29) (for r = 0) and

318
fifs’

> v1a(6n+3)g"= > v11(6n +3)g" = —6 (3.25)
n=0 n=0

respectively. Similarly, on bringing out the terms involving ¢*"*!, we obtain (1.29)
(for r = 4). Also, using (2.12), we get

oty g sl l
f62f36 f6f18 .

ZU174(3n)q” — Z v11(3n)q¢" = —6¢q
n=0 n=0

Extracting the terms involving ¢*", ¢*"*!, ¢***2 from above which completes the

proof of (1.30), (1.31), (1.32), respectively, for « = 1. Rest of the proof part can
be proved using induction. Consider

S S a_ f5 o f
E U,nq"—g Uaa(n)q"T = = — g
n=0 21( ) n=0 24( ) fl f4

From (2.2), we obtain

n=0 n=0 f2 f12

Bringing out the terms containing odd powers of ¢, we have (1.33). Next, we
consider

S v =3 wma(mgt = gl
n=0 7 n=0 ’ fl f9

Using (2.12), we have

< n o - n+l _ fG_fQQ
;U?’»l (n)q ;}USQ(”)Q f3f18.

3n+1 3n+2
y

Bringing out the terms involving ¢ , we get (1.34). Similarly, considering

0o - 2 2
HZ:OU4,9(n)qn — nZ:()U4’1(n>qn _ % B %

q
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Using (2.13), we have

nz; v 9(n)q" — nz; vg1(n)q" J;fﬁ];l; .

3n+2

Extracting the terms involving ¢*", q , we arrive at (1.35). Considering

o ofe S
T

Extracting the terms involving ¢?" ™, we have v.(2n + 1) = —v5(2n + 1). Also,
from (2.22),

fff

Bringing out the even and odd powers of ¢, we have (1.36) and

205 (2n+1)¢" —l—ng) (2n+1)g f5f20 f22,
f1o 1

respectively.

ZU5 (2n+1)¢" + ng, (2n + 1)q f;fzo Z (=1)"¢*™.
10

n=—oo

As ¢ £ 1,4 (mod 5), we have v}(10n + ) = —v5(10n + ) for r € {4,8}. Then
using (1.36), we arrive at (1.38).
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