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1. Introduction
Since its introduction by Zadeh [12], fuzzy sets have been prevalent in nearly

every field of mathematics. Florentine Smarandache [10] created the concept of
neutrosophy and neutorsophic sets at the beginning of 20th century. Later Salama
[8] and Alblowi initiated the neutrosophic sets in a topology entitled as neutro-
sophic topological space.Recently, the authors [6] of this paper defined a new no-
tion of neutrosophic sets namely neutrosophic ΛP -open and neutrosophic ΛP -closed
sets. Also,we have studied about novel concept of neutrosophic ΛP -neighbourhood
with quasi coincident. Also extended the neutrosophic continuous functions to
neutrosophic ΛP -continuous [7] and neutrosophic ΛP -irresolute functions in neu-
trosophic topological space. The topological isomorphism commonly called home-
omorphism plays a vital role in the properties of topological spaces. Parimala
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et.al [4] introduced the concept of neutrosophic homeomorphism and neutrosophic
αψ−homeomorphism in neutrosophic topological spaces. This paper aspires to
overly erunicate the thought of neutrosophic ΛP -homeomorphism which is extended
to neutrosophic ΛP -ihomeomorphism in neutrosophic topological spaces. Initially
the article gives brief explanation on neutrosophic ΛP -open and neutrosophic ΛP -
closed mapping.

2. Preliminaries

Definition 2.1. [8] Let U be a non-empty fixed set. A Neutrosophic set K is
an object having the form K = {⟨u, µK(u), σK(u), γK(u)⟩ : u ∈ U} where µK(u),
σK(u) and γK(u) represents the degree of membership, the degree of indeterminacy
and the degree of non-membership respectively of each element u ∈ U to the setU .
A neutrosophic set K = {⟨u, µK(u), σK(u), γK(u)⟩ : u ∈ U} can be identified to an
ordered triple ⟨µK(u), σK(u), γK(u)⟩ in on U .

Definition 2.2. [8] Let U be a non-empty set and
K = {⟨u, µK(u), σK(u), γK(u)⟩ : u ∈ U} and M = {⟨u, µM(u), σM(u), γM(u)⟩ :
u ∈ U} are neutrosophic sets, then

i. K ⊆M ⇔ µK(u) ≤ µM(u), σK(u) ≤ σM(u) and γK(u) ≥ γM(u)∀u ∈ U

ii. K
⋃
M = {⟨u, max (µK(u), µM(u)) , max (σK(u), σM(u)) ,

min (γK(u), γM(u)) : u ∈ U⟩}

iii. K
⋂
M = {⟨u, min (µK(u), µM(u)) , min (σK(u), σM(u)) ,

max (γK(u), γM(u)) : u ∈ U⟩}

iv. KC = {⟨u, (γK(u), 1− σK(u), µK(u))⟩ : u ∈ U}

v. 0Ntr = {⟨u, 0, 0, 1⟩ : u ∈ U} and 1Ntr = {⟨u, 1, 1, 0⟩ : u ∈ U}

Definition 2.3. [8] A Neutrosophic topology on a non-empty set U is a family
τNtr of neutrosophic sets in U satisfying the following axioms:

i. 0Ntr, 1Ntr ∈ τNtr.

ii. K1

⋂
K2 ∈ τNtr for any K1, K2 ∈ τNtr.

iii.
⋃
Ki ∈ τNtr for every {Ki : i ∈ I} ⊆ τNtr.
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In this case the ordered pair (U, τNtr) is called a neutrosophic topological space.
The members of τNtr are neutrosophic open set and its complements are neutro-
sophic closed.

Definition 2.4. [3] Let (U, τNtr) be a neutrosophic topological space and S be a
non-empty subset of U. Then, a neutrosophic relative topology on S is defined by

τSNtr
= {K ∩ 1SNtr

: K ∈ τNtr}

where

1SNtr
=

{
< 1, 1, 0 >, & if s ∈ S
< 0, 0, 1 >, & otherwise

Thus, (S, τSNtr
) is called a neutrosophic subspace of (U, τNtr).

Definition 2.5. [9] (U, τNtr) and (V, ρNtr) be neutrosophic topological spaces. Then
the function fNtr : (U, τNtr) −→ (V, ρNtr) is said to be neutrosophicopen if fNtr(K)
is Ntr-open in (V, ρNtr) for every Ntr-open set K in (U, τNtr).

Definition 2.6. [4] A bijective function fNtr : (U, τNtr) −→ (V, ρNtr) is said to be a
neutrosophic homeomorphism if fNtr and f

−1
Ntr

are Ntr-continuous.

Definition 2.7. [6] A neutrosophic set K of a neutrosophic topological space
(U, τNtr) is said to be neutrosophicΛP-open if there exist a neutrosophicpre-open
set E ̸= 0Ntr , 1Ntr such that K ⊆ Ntrcl(K

⋂
E). The complement of neutrosophic

ΛP -open set is neutrosophic ΛP -closed. The class of neutrosophic ΛP -open sets is
denoted by NtrΛPO(U, τNtr).

Theorem 2.8. [6] A neutrosophic set K in a neutrosophic topological space
(U, τNtr) is NtrΛP -open if and only if for every neutrosophic point ua,b,c ∈ K, there
exists a NtrΛP -open set Mua,b,c

such that ua,b,c ∈Mua,b,c
⊆ K.

Theorem 2.9. [6] Every Ntr-open set is NtrΛP -open.

Definition 2.10. [7] Let ua,b,c be a neutrosophic point in a neutrosophic topological
space (U, τNtr). Then a neutrosophic set N in U is said to be neutrosophicΛP-
neighbourhood(NtrΛP -nbhd) of ua,b,c if there exists a NtrΛP -open set M such that
ua,b,c ∈M ⊆ N.

Definition 2.11. [7]A neutrosophic topological space (U, τNtr) is said to be NtrTΛP
-

space if every NtrΛP -open set in (U, τNtr) is Ntr-open.

Definition 2.12. [7] Let (U, τNtr) and (V, ρNtr) be neutrosophic topological spaces.
Then the function fNtr : (U, τNtr) −→ (V, ρNtr) is said to be neutrosophicΛP-
continuous if f−1

Ntr
(M) is NtrΛP -open in (U, τNtr) for every Ntr-open set M in
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(V, ρNtr) .

Theorem 2.13. [7] Every Ntr-continuous function is NtrΛP -continuous.

Definition 2.14. [7] Let (U, τNtr) and (V, ρNtr) be neutrosophic topological spaces.
Then the function fNtr : (U, τNtr) −→ (V, ρNtr) is said to be neutrosophicΛP-
irresolute if f−1

Ntr
(M) is NtrΛP -open in (U, τNtr) for every NtrΛP -open set M in

(V, ρNtr) .

Theorem 2.15. [7] Every NtrΛP -irresolute function is NtrΛP -continuous.

Theorem 2.16. [7] Let fNtr : (U, τNtr) −→ (V, ρNtr) be a function between two
neutrosophic topological spaces. Then the following statements are equivalent:

i. fNtr is NtrΛP -irresolute.

ii. fNtr (NtrΛP cl(K)) ⊆ NtrΛP cl (fNtr(K)) for every neutrosophic set K in U.

iii. NtrΛP cl
(
f−1
Ntr

(M)
)
⊆ f−1

Ntr
(NtrΛP cl(M)) for every neutrosophic set M in V.

Theorem 2.17. [7] If fNtr : (U, τNtr) −→ (V, ρNtr) and gNtr : (V, ρNtr) −→ (W,ωNtr)
are NtrΛP -irresolute functions, then their composition gNtr ◦ fNtr : (U, τNtr) −→
(W,ωNtr) is also NtrΛP -irresolute.

3. NeutrosophicΛP-open and ΛP-closed Maps

Definition 3.1. Let (U, τNtr)and(V, ρNtr) be neutrosophic topological spaces. Then
the mappingfNtr : (U, τNtr) −→ (V, ρNtr) is said to be a neutrosophicΛP-open if
fNtr(K) is NtrΛP -open in (V, ρNtr) for every Ntr-open set K in (U, τNtr).

Example 3.2. Let U = {a, b} , V = {x, y} , τNtr = {0Ntr , 1Ntr , K1, K2} , ρNtr =
{0Ntr , 1Ntr ,M} where K1 = {< a, 0.1, 0.2, 0.5 >< b, 0.3, 0.3, 0.6 >} ,
K2 = {< a, 0.1, 0.1, 0.4 >< b, 0.2, 0.3, 0.7 >} and M = {< x, 0.1, 0.1, 0.6 >
< y, 0.1, 0.2, 0.8 >}. Consider the collections A = {A : 0Ntr ⊂ A ⊂ KC}, B =
{B : KC ⊂ B ⊂ K} and C = {C : K ⊂ C ⊂ 1Ntr}of neutrosophic sets in V.
Then NtrΛPO (V, ρNtr) = {0Ntr ,M,M c,A,B, C,1Ntr} . Define fNtr : (U, τNtr) −→
(V, ρNtr) as fNtr(a) = x and fNtr(b) = y. Then fNtr (K1) = {< x, 0.1, 0.2, 0.5 ><
y, 0.3, 0.3, 0.6 >} ∈ B and fNtr (K2) = {< x, 0.1, 0.1, 0.4 >< y, 0.2, 0.3, 0.7 >}∈ C.
Hence fNtr is NtrΛP -open.

Theorem 3.3. Every Ntr-open map is NtrΛP -open.
Proof. Let fNtr : (U, τNtr) −→ (V, ρNtr) be a Ntr-open map and K be a Ntr-open
set in U. Then, fNtr(K) is Ntr-open in V. By theorem 2.9, fNtr(K) is NtrΛP -open
in V. Hence fNtr is a NtrΛP -open map.
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Remark 3.4. The converse of theorem 3.3 does not hold in general.

Example 3.5. Let U = {a, b} , V = {x, y} , τNtr = {0Ntr , 1Ntr , K}andρNtr =
{0Ntr , 1Ntr ,M} where K = {< a, 0.7, 0.5, 0.3 >< b, 0.6, 0.3, 0.3 >},
M = {< a, 0.3, 0.7, 0.6 >< b, 0.3, 0.5, 0.7}. Consider the collections A = {A :
KC ⊂ A ⊂ K} and B = {B : KC ⊂ B ⊊ K} of neutrosophic sets in V. Then
NtrΛPO (V, ρNtr) = {0Ntr ,M,M c,A,B,1Ntr} . Define fNtr : (U, τNtr) −→ (V, ρNtr) as
fNtr(a) = y and fNtr(b) = x. Then fNtr(K) = {< x, 0.6, 0.3, 0.3 >< y, 0.7, 0.5, 0.3 >}
=M cis NtrΛP -open but not Ntr-open in V. Hence fNtr is NtrΛP -open but not Ntr-
open.

Theorem 3.6. Let fNtr : (U, τNtr) −→ (V, ρNtr) be a mapping between neutrosophic
topological spaces. Then, the following are equivalent:

i. fNtr is NtrΛP -open.

ii. fNtr (Ntrint(K)) ⊆ NtrΛP int (fNtr(K)) for every neutrosophic set K in U.

iii. Ntrint
(
f−1
Ntr

(M)
)
⊆ f−1

Ntr
(NtrΛP int(M)) for every neutrosophic set M in V.

(i)=⇒(ii) Let K be a neutrosophic set in U and fNtr be a NtrΛP -open function.
Then fNtr (Ntrint(K)) is a NtrΛP -open set in V which impliesfNtr (Ntrint(K)) ⊆
fNtr(K). Also, NtrΛP int (fNtr(K)) is the largestNtrΛP -open set contained in fNtr(K).
Hence fNtr (Ntrint(K)) ⊆ NtrΛP int (fNtr(K))for every neutrosophic set K in U.

(ii)=⇒(iii) Let M be a neutrosophic set in V. Then, by assumption
fNtr

(
Ntrint

(
f−1
Ntr

(M)
))

⊆ NtrΛP int
(
fNtr

(
f−1
Ntr

(M)
))

⊆ NtrΛP int(M).
Hence Ntrint

(
f−1
Ntr

(M)
)
⊆ f−1

Ntr
(NtrΛP int(M)) .

(iii)=⇒(i) Let K be a Ntr-open set in U. By assumption,Ntrint
(
f−1
Ntr

(fNtr(K))
)

⊆
f−1
Ntr

(NtrΛP int (fNtr(K))) .Now, K = Ntrint(K) ⊆ Ntrint
(
f−1
Ntr

(fNtr(K))
)
implies

fNtr(K) ⊆ NtrΛP int (fNtr(K)) . Also, NtrΛP int (fNtr(K)) ⊆ fNtr(K).
ConsequentlyfNtr(K) is NtrΛP -open in V. Hence fNtr is NtrΛP -open.

Theorem 3.7. A mappingfNtr : (U, τNtr) −→ (V, ρNtr) is NtrΛP -open if and only if
for each neutrosophic set K in (V, ρNtr) and for each Ntr-closed set M in (U, τNtr)
containing f−1

Ntr
(K), there is a NtrΛP -closed set N in (V, ρNtr) such that K ⊆ N

and f−1
Ntr

(N) ⊆M.
Proof. LetfNtr : (U, τNtr) −→ (V, ρNtr) is a NtrΛP -open map. Let K be a neutro-
sophic set in V and M be a Ntr-closed set in U such that f−1

Ntr
(K) ⊆M. Then,N =

(fNtr

(
MC

)
)
C
is NtrΛP -closed in V andf−1

Ntr
(N) ⊆ M since N = (fNtr

(
MC

)
)
C ⊆

fNtr(M
C)

C
= fNtr(M). Conversely, let O be a Ntr-open set in U. Then, OC is Ntr-
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closed in U and f−1
Ntr

(fNtr(O))
C ⊆ OC . Now by assumption, there is a NtrΛP -

closed set N in V such that (fNtr(O))
C ⊆ Nand f−1

Ntr
(N) ⊆ OC . Hence NC ⊆

fNtr(O) ⊆ fNtr

((
f−1
Ntr

(N)
)C)

= fNtr

(
f−1
Ntr

(
NC

))
⊆ NC implies fNtr(O) = NC .

ConsequentlyfNtr(O) is NtrΛP -open in V.Hence fNtr is NtrΛP -open.

Theorem 3.8. A mapping fNtr : (U, τNtr) −→ (V, ρNtr) is NtrΛP -open if and only
if f−1

Ntr
(NtrΛP cl(K)) ⊆ Ntrcl

(
f−1
Ntr

(K)
)
for every neutrosophic set K in (V, ρNtr).

Proof. Suppose fNtr : (U, τNtr) −→ (V, ρNtr) is a NtrΛP -open function. For any
neutrosophic set K inV, f−1

Ntr
(K) ⊆ Ntrcl

(
f−1
Ntr

(K)
)
. Then, by theorem 3.7, there

exists a NtrΛP -closed set N in V such that K ⊆ N and f−1
Ntr

(N) ⊆ Ntrcl
(
f−1
Ntr

(K)
)
.

Now, sinceN isNtrΛP -closed andK ⊆ N, f−1
Ntr

(NtrΛP cl(K)) ⊆ f−1
Ntr

(NtrΛP cl(N)) =
f−1
Ntr

(N) ⊆ Ntrcl
(
f−1
Ntr

(K)
)
. Hence f−1

Ntr
(NtrΛP cl(K)) ⊆ Ntrcl

(
f−1
Ntr

(K)
)
for every

neutrosophic set K in V. Conversely, assume that K is a neutrosophic set in V
and M is Ntr-closed set in U containing f−1

Ntr
(K). Now, let N = NtrΛP cl(K). Then

N is a NtrΛP -closed set in V such that K ⊆ N and by assumption f−1
Ntr

(N) =
f−1
Ntr

(NtrΛP cl(K)) ⊆ Ntrcl
(
f−1
Ntr

(K)
)
⊆ Ntrcl(M) =M. Hence, by theorem 3.7, fNtr

is NtrΛP -open.

Remark 3.9. The composition of two NtrΛP -open maps need not be NtrΛP -open.

Example 3.10. Let U = {a, b} , V = {x, y} and W = {p, q} . Consider the
neutrosophic topologies τNtr = {0Ntr , 1Ntr , K} , ρNtr = {0Ntr , 1Ntr ,M} and ωNtr =
{0Ntr , 1Ntr , N} where K = {< a, 0.6, 0.5, 0.2 >< b, 0.7, 0.6, 0.1 >}, M = {<
x, 0.1, 0.4, 0.7 >< y, 0.2, 0.5, 0.6 >} and N = {< p, 0.1, 0.3, 0.8 >< q, 0.2, 0.4, 0.7 >
} Consider the collections A = {A : 0Ntr ⊂ A ⊂ Kc},B = {B :M c ⊂ B ⊂ 1Ntr}
and C = {C :M ⊂ C ⊂M c} of neutrosophic sets in V and
P = {P : 0Ntr ⊂ P ⊂ Kc}, Q = {Q :M c ⊂ Q ⊂ 1Ntr}, R = {R :M ⊂ R ⊂M c}
the collection of neutrosophic sets in W.
Then, NtrΛPO (V, ρNtr) = {0Ntr ,M,M c,A,B, C,1Ntr} and
NtrΛPO (W,ωNtr) = {0Ntr , N,N

c,P ,Q,R,1Ntr} . Define fNtr : (U, τNtr) −→ (V, ρNtr)
as fNtr(a) = y and fNtr(b) = x.
Then fNtr(K) = {< x, 0.7, 0.6, 0.1 >< y, 0.6, 0.5, 0.2 >} = M c is NtrΛP -open in
(V, ρNtr) . Also, define gNtr : (V, ρNtr) −→ (W,ωNtr) as gNtr(x) = qandgNtr(y) = p.
Then gNtr(M) = {< p, 0.2, 0.5, 0.6 >< q, 0.1, 0.4, 0.7 >} ∈ R which implies gNtr(M)
is NtrΛP -open in (W,ωNtr) . This implies that both fNtr and gNtr are NtrΛP -open.
Now, let gNtr ◦ fNtr : (U, τNtr) −→ (W,ωNtr) be the composition of two NtrΛP -open
functions. Then, gNtr◦fNtr is not NtrΛP -open since gNtr◦fNtr(K) = gNtr(fNtr(K)) =
{< p, 0.6, 0.5, 0.2 >< q, 0.7, 0.6, 0.1 >} is not NtrΛP -open in (W,ωNtr).

Theorem 3.11. Let fNtr : (U, τNtr) −→ (V, ρNtr) and gNtr : (V, ρNtr) −→ (W,ωNtr)
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be NtrΛP -open and let (V, ρNtr) be a NtrTΛP
-space. Then gNtr ◦ fNtr : (U, τNtr) −→

(W,ωNtr) is also NtrΛP -open.
Proof. Let K be any Ntr-open set in U . Since fNtr is NtrΛP -open, fNtr(K) is
NtrΛP -open in V. Then, by assumption fNtr(K) is Ntr-open in V. Again, since gNtr

is NtrΛP -opengNtr (fNtr(K)) = gNtr ◦ fNtr(K) is NtrΛP -open in W. Hence g ◦ f is
NtrΛP -open.

Theorem 3.12. Let fNtr : (U, τNtr) −→ (V, ρNtr) be a bijective map between two
neutrosophic topological spaces. Then, the following are equivalent

i. fNtr is NtrΛP -open.

ii. For each (ua,b,c) ∈ (U, τNtr) and for every NtrnbhdK of ua,b,cin (U, τNtr) , there
exists a NtrΛP -nbhdM of fNtr(ua,b,c) in (V, ρNtr) such that M ⊆ fNtr(K).

Proof. (i)⇒(ii) Let fNtr be a NtrΛP -open map and K be an arbitrary Ntrnbhd
of ua,b,c in U. Then, there exists a Ntr-open setN in U such that ua,b,c ∈ N ⊆ K.
Since fNtr is NtrΛP -open, fNtr(N) is NtrΛP -open in V. Now, let fNtr(N) = M.
Then, fNtr(ua,b,c) ∈ M ⊆ fNtr(K). This implies M is a NtrΛP -nbhd of fNtr(ua,b,c)
and M ⊆ fNtr(K).

(ii) ⇒(i) LetK be aNtr-open set in U, ua,b,c ∈ K and fNtr(ua,b,c) = vx,y,z ∈ fNtr(K).
By assumption, there exists a NtrΛP -nbhdMvx,y,z of vx,y,z such that Mvx,y,z ⊆
fNtr(K). Since Mvx,y,z is a NtrΛP -nbhd, there exists a NtrΛP -open set Nvx,y,z in V
such that vx,y,z ∈ Nvx,y,z ⊆ Mvx,y,z . By theorem 2.8, fNtr(K) is NtrΛP -open. Hence
fNtr is NtrΛP -open.

Theorem 3.13. Let (U, τNtr)and (V, ρNtr) be neutrosophic topological spaces and
(S, τ ∗Ntr

) be a subspace of (U, τNtr) . If fNtr : (U, τNtr) −→ (V, ρNtr) is a NtrΛP -open
map and 1SNtr

is Ntr-open in (U, τNtr) , then the restriction fNtr|S : (S, τ ∗Ntr
) −→

(V, ρNtr) is also NtrΛP -open.
Proof. Let K be Ntr-open in S. Then, K = 1SNtr

⋂
M for some Ntr-open set M in

U. Now, K is Ntr-open in U and since fNtr is NtrΛP -open, fNtr(K) is NtrΛP -open
in V. But fNtr(K) = fNtr|S(K). Therefore fNtr|S is NtrΛP -open.

Definition 3.14. A mapping fNtr : (U, τNtr) −→ (V, ρNtr) between two neutrosophic
topological spaces is said to be neutrosophicΛP-closed if fNtr(K) is NtrΛP -closed
in (V, ρNtr) for every Ntr-closed set K in (U, τNtr).

Example 3.15. Consider the neutrosophic topological spaces defined in example
3.2. Here KC

1 = {< a, 0.5, 0.8, 0.1 >< b, 0.6, 0.7, 0.3 >} ,
KC

2 = {< a, 0.4, 0.9, 0.1 >< b, 0.7, 0.7, 0.2 >} and
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NtrΛPC (V, ρNtr) =
{
0Ntr ,M,M c,A′

,B,C ′
, 1Ntr

}
where A′

= {Ac : A ∈ A} and

C ′
=

{
CC : C ∈ C

}
. Now, define fNtr : (U, τNtr) −→ (V, ρNtr) as fNtr(a) = y and

fNtr(b) = x. Then fNtr

(
KC

1

)
= {< x, 0.6, 0.7, 0.3 >< y, 0.5, 0.8, 0.1 >} ∈ B and

fNtr

(
KC

2

)
= {< x, 0.7, 0.7, 0.2 >< y, 0.4, 0.9, 0.1 >} ∈ C ′

. Hence fNtr is NtrΛP -
closed.

Theorem 3.16. A mapping fNtr : (U, τNtr) −→ (V, ρNtr) between two neutrosophic
topological spaces is NtrΛP -closed if and only if NtrΛP cl (fNtr(K)) ⊆ fNtr (Ntrcl(K))
for every neutrosophic set K in U.
Proof. Let K be a neutrosophic set in U and fNtr be a NtrΛP -closed map. Then,
fNtr (Ntrcl(K)) is a NtrΛP -closed set in V and fNtr(K) ⊆ fNtr (Ntrcl(K)) .Also,
NtrΛP cl (fNtr(K)) is the smallest NtrΛP -closed set containing fNtr(K).
Hence NtrΛP cl (fNtr(K)) ⊆ fNtr (Ntrcl(K)) for every neutrosophic set K in U. Con-
versely, let K be a Ntr-closed set in U. Then K = Ntrcl(K) implies fNtr(K) =
fNtr (Ntrcl(K)) . Hence, by assumption NtrΛP cl (fNtr(K)) ⊆ fNtr(K). Also, since
fNtr(K) ⊆ NtrΛP cl (fNtr(K)) , fNtr(K) = NtrΛP cl (fNtr(K)) which implies fNtr(K)
is NtrΛP -closed in V. Hence fNtr is a NtrΛP -closed map.

Theorem 3.17. A bijective map fNtr : (U, τNtr) −→ (V, ρNtr) between two neu-
trosophic topological spaces is NtrΛP -closed if and only if f−1

Ntr
(NtrΛP cl(K)) ⊆

Ntrcl
(
f−1
Ntr

(K)
)
for every neutrosophic set K in V.

Proof. Let K be a neutrosophic set in V and fNtr be a NtrΛP -closed map. Then
fNtr

(
Ntrcl

(
f−1
Ntr

(K)
))

is NtrΛP -closed in V which implies
NtrΛP cl

(
fNtr

(
Ntrcl

(
f−1
Ntr

(K)
)))

= fNtr

(
Ntrcl

(
f−1
Ntr

(K)
))
. Also, since

K = fNtr

(
f−1
Ntr

(K)
)
and f−1

Ntr
(K) ⊆ Ntrcl

(
f−1
Ntr

(K)
)
implies

fNtr

(
f−1
Ntr

(K)
)
⊆ fNtr

(
Ntrcl

(
f−1
Ntr

(K)
))
,

NtrΛP cl(K) ⊆ NtrΛP cl
(
fNtr

(
Ntrcl

(
f−1
Ntr

(K)
)))

= fNtr

(
Ntrcl

(
f−1
Ntr

(K)
))
. Hence

f−1
Ntr

(NtrΛP cl(K)) ⊆ Ntrcl
(
f−1
Ntr

(K)
)
for every neutrosophic set K in V. Con-

versely, let K be a Ntr-closed set in U. By assumption, f−1
Ntr

(NtrΛP cl (fNtr(K))) ⊆
Ntrcl

(
f−1
Ntr

(fNtr(K))
)
= Ntrcl(K) = K.

Consequently,NtrΛP cl (fNtr(K)) ⊆ fNtr(K). Also, fNtr(K) ⊆ Ntrcl (fNtr(K)) .Hence
fNtr(K) is NtrΛP -closed which implies fNtr is NtrΛP -closed.

Remark 3.18. The composition of two NtrΛP -closed maps need not be NtrΛP -
closed.

Example 3.19. Let U = {a, b} , V = {x, y}and W = {p, q} . Consider the neu-
trosophic topologies τNtr = {0Ntr , 1Ntr , K1, K2} , ρNtr = {0Ntr , 1Ntr ,M}andωNtr =
{0Ntr , 1Ntr , N} where K1 = {< a, 0.8, 0.7, 0.1 >< b, 0.8, 0.5, 0.2 >}, K2 = {<
a, 0.5, 0.7, 0.2 >< b, 0.6, 0.5, 0.5 >}M = {< x, 0.1, 0.2, 0.8 >< y, 0.1, 0.1, 0.7 >}
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and N = {< p, 0.1, 0.1, 0.7 >< q, 0.1, 0.2, 0.8 >} Consider the collections
A = {A : A ⊂M c, A ⊂ K} , B = {B : B ⊂M c, M ⊊ B,B ⊊ Kc}, C = {C : K ⊂
C ⊊ Kc} of neutrosophic sets in V and P = {P : M c ⊂ P ⊂ 1Ntr},
Q = {Q :M ⊂ Q ⊂M c}, R = {R :M ⊂ R ⊊M c} the collection of neutrosophic
sets in W. Then, NtrΛPC (V, ρNtr) = {0Ntr ,M,M c,A,B, C,1Ntr},NtrΛPC (W,ωNtr) =
{0Ntr , N,N

c,P ,Q,R,1Ntr} . Define fNtr : (U, τNtr) −→ (V, ρNtr) as fNtr(a) = y
and fNtr(b) = x. Then fNtr

(
KC

1

)
= {< x, 0.1, 0.3, 0.8 >< y, 0.2, 0.5, 0.8 >} and

fNtr

(
KC

2

)
= {< x, 0.5, 0.5, 0.6 >< y, 0.2, 0.3, 0.5 >}∈ B.Also, define gNtr : (V, ρNtr)

−→ (W,ωNtr) as gNtr(x) = p and gNtr(y) = q. Then, gNtr(M
c) = {< p, 0.8, 0.8, 0.1 >

< q, 0.7, 0.9, 0.1 >} ∈ R. This implies that both fNtr and gNtr are NtrΛP -closed.
Now, let gNtr ◦ fNtr : (U, τNtr) −→ (W,ωNtr) be the composition of two NtrΛP -
closed maps. Then, gNtr ◦ fNtr

(
KC

1

)
= gNtr(fNtr

(
KC

1

)
) = {< p, 0.2, 0.5, 0.8 ><

q, 0.1, 0.3, 0.8 >} and gNtr ◦ fNtr

(
KC

2

)
= gNtr(fNtr

(
KC

2

)
) = {< p, 0.5, 0.5, 0.6 ><

q, 0.2, 0.3, 0.5 >} are not NtrΛP -closed in (W,ωNtr) . Hence gNtr ◦ fNtr is not NtrΛP -
closed.

Theorem 3.20. Let fNtr : (U, τNtr) −→ (V, ρNtr) and gNtr : (V, ρNtr) −→ (W,ωNtr)
be NtrΛP -closed map and let (V, ρNtr) be a NtrTΛP

-space. Then gNtr ◦fNtr : (U, τNtr)
−→ (W,ωNtr) is also NtrΛP -closed map.
Proof. The proof is similar to theorem 3.11.

Theorem 3.21. Let fNtr : (U, τNtr) −→ (V, ρNtr) be a bijective map between two
neutrosophic topological spaces. Then, the following are equivalent

i. fNtr is NtrΛP -open.

ii. fNtr is NtrΛP -closed.

iii. f−1
Ntr

is NtrΛP -continuous.

Proof. (i)=⇒(ii) Let fNtr be a NtrΛP -open function and let K be a Ntr-closed
set in U. Then Kc is Ntr-open in U and by assumption, fNtr(K

c) is NtrΛP -open
in V. That is, (fNtr

(K))cis NtrΛP -open in V. Hence fNtr(K) is NtrΛP -closed in
V. Therefore fNtr is NtrΛP -closed.

(ii)=⇒(iii) Let K be a Ntr-closed set in U. Then, by assumption fNtr(K) is NtrΛP -

closed in V. Hence
(
f−1
Ntr

)−1
(K) = fNtr(K) is NtrΛP -closed in V. Therefore f−1

Ntr
is

NtrΛP -continuous.

(iii)=⇒(i) Let K be a Ntr-open set in U. Then, by assumption
(
f−1
Ntr

)−1
(K) =

fNtr(K) is NtrΛP -open in V. Hence fNtr is NtrΛP -open.

Theorem 3.22. LetfNtr : (U, τNtr) −→ (V, ρNtr) and gNtr : (V, ρNtr) −→ (W,ωNtr)
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be mappings between neutrosophic topological spaces such that their composition
gNtr ◦ fNtr : (U, τNtr) −→ (W,ωNtr) is NtrΛP -open. Then the following are true

i. If fNtr is Ntr-continuous and surjective, then gNtr is NtrΛP -open.

ii. If fNtr is a NtrΛP -continuous, surjective and (V, ρNtr) is a NtrTΛP
-space, then

gNtr is NtrΛP -open.

iii. If gNtr is NtrΛP -irresolute and injective, then fNtr is NtrΛP -open.

Proof.

i. Let K be a Ntr-open set in V. Since fNtr is Ntr-continuous, f
−1
Ntr

(K) is
Ntropen in U. Now, since gNtr ◦ fNtr is NtrΛP -open, gNtr ◦ fNtr

(
f−1
Ntr

(K)
)
=

gNtr

(
fNtr

(
f−1
Ntr

(K)
))

= gNtr(K) is NtrΛP -open in W . Hence gNtr is NtrΛP -
open.

ii. Let K be a Ntr-open set in V. Since fNtr is NtrΛP -continuous, f
−1
Ntr

(K) is
NtrΛP -open in U. Now, since V is aNtrTΛP

-space, f−1
Ntr

(K) isNtr-open in Uand
since gNtr ◦ fNtr is NtrΛP -open, gNtr ◦ fNtr

(
f−1
Ntr

(K)
)
= gNtr

(
fNtr

(
f−1
Ntr

(K)
))

=
gNtr(K) is NtrΛP -open in W . Hence gNtr is NtrΛP -open.

iii. Let K be a Ntr-open set in U. Since gNtr ◦fNtr is NtrΛP -open, (gNtr ◦fNtr)(K)
is NtrΛP -open. Now, since gNtr is NtrΛP -irresolute injective function,
g−1
Ntr

(gNtr ◦ fNtr(K)) = g−1
Ntr

(gNtr (fNtr(K))) = fNtr(K) is NtrΛP -open in V .
Hence fNtr is NtrΛP -open.

Theorem 3.23. IffNtr : (U, τNtr) −→ (V, ρNtr) is a NtrΛP -open function and gNtr :
(V, ρNtr) −→ (W,ωNtr) is a surjection such that their composition is Ntr-open, then
gNtr is NtrΛP -continuous.
Proof. Let K be a Ntr-open set in U. Since gNtr ◦ fNtr is Ntr-open, gNtr ◦ fNtr(K) is
Ntr-open in W . Now, g−1

Ntr
(gNtr ◦ fNtr(K)) = g−1

Ntr
(gNtr (fNtr(K))) = fNtr(K). Since

fNtr is NtrΛP -open, fNtr(K) is NtrΛP -open in V and hence gNtr is NtrΛP -continuous.

4. NeutrosophicΛP-homeomorphism

Definition 4.1. A bijective map fNtr : (U, τNtr) −→ (V, ρNtr) is said to be a
neutrosophicΛP-homeomorphism if fNtr and f

−1
Ntr

are NtrΛP -continuous.

Example 4.2. Let U = {a, b} , V = {x, y} , τNtr = {0Ntr , 1Ntr , K1, K2} ,
ρNtr = {0Ntr , 1Ntr ,M} where K1 = {< a, 0.3, 0.4, 0.5 >< b, 0.6, 0.5, 0.6 >} ,
K2 = {< a, 0.3, 0.3, 0.8 >< b, 0.5, 0.2, 0.6 >} and
M = {< x, 0.2, 0.3, 0.8 >< y, 0.3, 0.2, 0.9 >} .
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Consider the collections A = {A : 0Ntr ⊂ A ⊂ K} ,B = {B : K ⊂ B ⊂ Kc}
and C = {C : C ⊊ K,K ⊊ C, C ⊂ Kc} of neutrosophic sets in U and the collec-
tions P = {P : 0Ntr ⊂ P ⊂ K2} ,Q = {Q : K1 ⊂ Q ⊂ KC

1 } and R = {R : R ⊊
K1;K1 ⊊ R; R ⊂ KC

1 } of neutrosophic sets in V.
Then NtrΛPO(U, τNtr) =

{
0Ntr , K1, K2, K

C
1 ,A,B, C,1Ntr

}
and

NtrΛPO (V, ρNtr) = {0Ntr ,M,M c,P ,Q,R,1Ntr} .Define fNtr : (U, τNtr) −→ (V, ρNtr)
as fNtr(a) = x and fNtr(b) = y. Then f−1

Ntr
: (V, ρNtr) −→ (U, τNtr) is defined as

f−1
Ntr

(x) = a and f−1
Ntr

(y) = b.Now, f−1
Ntr

(M) = {< a, 0.2, 0.3, 0.8 >< b, 0.3, 0.2, 0.9 >

} ∈ A,(f−1
Ntr

)
−1

(K1) = {< x, 0.3, 0.4, 0.5 >< y, 0.6, 0.5, 0.6 >} ∈ Q and

(f−1
Ntr

)
−1

(K2) = {< x, 0.3, 0.3, 0.8 >< y, 0.5, 0.2, 0.6 >}∈ R. Clearly, fNtr is a

bijection and both fNtr and f−1
Ntr

are NtrΛP -continuous. Hence fNtr is a NtrΛP -
homeomorphism.

Theorem 4.3. Every Ntr-homeomorphism is a NtrΛP -homeomorphism.
Proof. Let a bijective map fNtr : (U, τNtr) −→ (V, ρNtr) be a Ntr-homeomorphism.
Then both fNtr and f

−1
Ntr

are Ntr-continuous. By theorem 2.13, both fNtr and f
−1
Ntr

are NtrΛP -continuous. Hence fNtr is a NtrΛP -homeomorphism.

Remark 4.4. The converse of theorem 4.3 does not hold in general.

Example 4.5. Let U = {a, b} , V = {x, y} , τNtr = {0Ntr , 1Ntr , K} and ρNtr =
{0Ntr , 1Ntr ,M} WhereK = {< a, 0.3, 0.4, 0.9 >< b, 0.2, 0.3, 0.8 >} and
M = {< a, 0.4, 0.5, 0.8 >< b, 0.3, 0.5, 0.4 >}.

Consider the collections A = {A : 0Ntr ⊂ A ⊂ K} ,B =
{
B : K ⊂ B ⊂ KC

}
, C =

{
C : C ⊊ K;K ⊊ C; C ⊂ KC

}
of neutrosophic sets in U and the collections

P = {P : 0Ntr ⊂ P ⊂M} ,Q =
{
Q :M ⊂ Q ⊂MC

}
,R = {R : R ⊊ M ;M ⊊

R; R ⊂MC} of neutrosophic sets in V.

Then, NtrΛPO(U, τNtr) = {0Ntr , K,K
c,A,B, C,1Ntr},

NtrΛPO (V, ρNtr) = {0Ntr ,M,M c,P ,Q,R,1Ntr}. Define fNtr : (U, τNtr) −→ (V, ρNtr)
as fNtr(a) = y and fNtr(b) = x. Then f−1

Ntr
: (V, ρNtr) −→ (U, τNtr) is defined as

f−1
Ntr

(x) = b and f−1
Ntr

(y) = a.

Now, f−1
Ntr

(M) = {< a, 0.3, 0.5, 0.4 >< b, 0.4, 0.5, 0.8 >}∈ B and (f−1
Ntr

)
−1
(K) =

{< x, 0.2, 0.3, 0.8 >< y, 0.3, 0.4, 0.9 >}∈ P .Clearly, fNtr is a bijection and both
fNtr and f

−1
Ntr

are NtrΛP -continuous but not Ntr-continuous. Hence fNtr is a NtrΛP -
homeomorphism but not Ntr-homeomorphism.

Theorem 4.6. Let fNtr : (U, τNtr) −→ (V, ρNtr) be a bijective NtrΛP -continuous
function between two neutrosophic topological spaces. Then, the following are equiv-
alent
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i. fNtr is a NtrΛP -open map.

ii. fNtr is a NtrΛP -closed map.

iii. fNtr is a NtrΛP -homeomorphism.

Proof. Proof follows from theorem 3.21.

Remark 4.7. The composition of two NtrΛP -homeomorphisms need not be NtrΛP -
homeomorphism.

Example 4.8. Let U = {a, b} , V = {x, y}and W = {p, q} . Consider the neu-
trosophic topologies τNtr = {0Ntr , 1Ntr , K1, K2} , ρNtr = {0Ntr , 1Ntr ,M} and ωNtr =
{0Ntr , 1Ntr , N} where K1 = {< a, 0.4, 0.5, 0.1 >< b, 0.6, 0.7, 0.2 >}, K2 = {<
a, 0.1, 0.5, 0.4 >< b, 0.2, 0.3, 0.6 >},M = {< x, 0.2, 0.4, 0.7 >< y, 0.2, 0.3, 0.8 >}
and N = {< p, 0.1, 0.4, 0.7 >< q, 0.3, 0.7, 0.8 >}.
Consider A = {A : 0Ntr ⊂ A ⊂ K2} , the collection of neutrosophic sets in
U,X = {X : 0Ntr ⊂ X ⊂M}, Y =

{
Y :M ⊂ Y ⊂MC

}
,

Z =
{
Z : Z ⊊M ;M ⊊ Z;Z ⊂MC

}
the collection of neutrosophic sets in V and

P = {P : 0Ntr ⊂ P ⊂ N} ,Q =
{
Q : N ⊂ Q ⊂ NC

}
,

R =
{
R : R ⊊ N ;N ⊊ R;R ⊂ NC

}
, the collection of neutrosophic sets in W.

Then, NtrΛPO (U, τNtr) = {0Ntr , K1, K2,A,1Ntr} ,
NtrΛPO (V, ρNtr) = {0Ntr ,M,M c,X ,Y ,Z,1Ntr} and
NtrΛPO (W,ωNtr) = {0Ntr , N,N

c,P ,Q,R,1Ntr} . Define fNtr : (U, τNtr) −→ (V, ρNtr)
as fNtr(a) = x and fNtr(b) = y. Then
fNtr (K1) = {< x, 0.4, 0.5, 0.1 >< y, 0.6, 0.7, 0.2 >}
and fNtr (K2) = {< x, 0.1, 0.5, 0.4 >< y, 0.2, 0.3, 0.6 >}∈ Y .

Also, f−1
Ntr

(M) = {< a, 0.2, 0.4, 0.7 >< b, 0.2, 0.3, 0.8 >}∈ A. Now, define gNtr :
(V, ρNtr) −→ (W,ωNtr) as gNtr(x) = p and gNtr(y) = q. Then gNtr(M) = {<
p, 0.2, 0.4, 0.7 >< q, 0.2, 0.3, 0.8 >} ∈ P and
g−1
Ntr

(N) = {< x, 0.1, 0.4, 0.7 >< y, 0.3, 0.7, 0.8 >}∈ Y . This implies that both fNtr

and gNtr are NtrΛP -homeomorphism. Now, let gNtr ◦fNtr : (U, τNtr) −→ (W,ωNtr) be
the composition of two NtrΛP -homeomorphisms. Then, gNtr ◦ fNtr is not a NtrΛP -
homeomorphism since (gNtr

◦ fNtr)
−1(N) = f−1

Ntr
(g−1

Ntr
(N)) = {< a, 0.1, 0.4, 0.7 ><

b, 0.3, 0.7, 0.8 >}is not NtrΛP -open in (U, τNtr) .

Theorem 4.9. LetfNtr : (U, τNtr) −→ (V, ρNtr) and gNtr : (V, ρNtr) −→ (W,ωNtr) be
NtrΛP -homeomorphisms where (V, ρNtr) is a NtrTΛP

-space. Then, their composition
gNtr ◦ fNtr : (U, τNtr) −→ (W,ωNtr) is also a NtrΛP -homeomorphism.
Proof. Let K be a neutrosophic set in W. Since gNtr is a NtrΛP -homeomorphism,
gNtr is NtrΛP -continuous. This implies g−1

Ntr
(K) is NtrΛP -open in V. By hypothesis,
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g−1
Ntr

(K) is Ntr-open in V. Also, since fNtr is a NtrΛP -homeomorphism, fNtr is NtrΛP -

continuous. Hence (gNtr ◦ fNtr)
−1 = f−1

Ntr
(g−1

Ntr
(K)) is NtrΛP -open in U. Therefore

gNtr◦fNtr isNtrΛP -continuous. Similarly, (gNtr ◦ fNtr)
−1 isNtrΛP -continuous. Hence

gNtr ◦ fNtr is a NtrΛP -homeomorphism.

5. Neutrosophic ΛP-i homeomorphism

Definition 5.1. A bijective map fNtr : (U, τNtr) −→ (V, ρNtr) is said to be a neu-
trosophic ΛP-i homeomorphism if fNtr and f

−1
Ntr

are NtrΛP -irresolute.

Example 5.2. Let U = {a, b} , V = {x, y} , τNtr = {0Ntr , 1Ntr , K} and ρNtr =
{0Ntr , 1Ntr ,M} Where K = {< a, 0.7, 0.8, 0.2 >< b, 0.9, 0.6, 0.4 >} and M =
{< x, 0.9, 0.6, 0.4 >< y, 0.7, 0.8, 0.2 >} . Consider the collection
A =

{
A : KC ⊂ A ⊂ K

}
and B = {B : K ⊂ B ⊂ 1Ntr} of neutrosophic sets in U

and V respectively. Here, NtrΛPO(U, τNtr) = {0Ntr , K,A,1Ntr} andNtrΛPO (V, ρNtr)
= {0Ntr ,M,B,1Ntr} .Define fNtr : (U, τNtr) −→ (V, ρNtr) as fNtr(a) = y and fNtr(b) =
x. Then f−1

Ntr
: (V, ρNtr) −→ (U, τNtr) is defined as f−1

Ntr
(x) = b and f−1

Ntr
(y) =

a. Now, f−1
Ntr

(M) = {< a, 0.7, 0.8, 0.2 >< b, 0.9, 0.6, 0.4 >} = K and for every
neutrosophicset B∈ B, there exists someA ∈ A such that f−1

Ntr
(B) = A. Also,

(f−1
Ntr

)
−1
(K) = {< x, 0.9, 0.6, 0.4 >< y, 0.7, 0.8, 0.2 >} =M and for every neutro-

sophic set A ∈ A, there exists some B∈ B such that (f−1
Ntr

)
−1
(A) = B. Clearly,

fNtr is a bijection and both fNtr and f−1
Ntr

are NtrΛP -irresolute. Hence fNtr is a
NtrΛP -i homeomorphism.

Theorem 5.3. Every NtrΛP -i homeomorphism is a NtrΛP -homeomorphism.
Proof. Let fNtr : (U, τNtr) −→ (V, ρNtr) be a NtrΛP -i homeomorphism. Then, both
fNtr and f−1

Ntr
are NtrΛP -irresolute. Now, by theorem 2.15, both fNtr and f−1

Ntr
are

NtrΛP -continuous. Hence fNtr is a NtrΛP -homeomorphism.

Remark 5.4. The converse of theorem 5.3 does not hold in general.

Example 5.5. Consider the topological spaces and bijection fNtr defined in
example 4.2. Here both fNtr and f−1

Ntr
are NtrΛP -continuous. However fNtr is

not NtrΛP -irresolute since f−1
Ntr

(M c) = {< a, 0.8, 0.7, 0.2 >< b, 0.9, 0.8, 0.3 >} /∈
NtrΛPO (U, τNtr) . Hence fNtr is a NtrΛP - homeomorphism but not a NtrΛP -i home-
omorphism. We denote the family of all Ntr-homeomorphisms (resp. NtrΛP -
homeomorphism, NtrΛP -i homeomorphism) from the topological space (U, τNtr)
into (U, τNtr) by Ntrh (U, τNtr) (resp.NtrΛPh (U, τNtr) , N trΛP ih (U, τNtr)).

Theorem 5.6. Let fNtr : (U, τNtr) −→ (V, ρNtr) be a bijection between two neutro-
sophic topological spaces. Then, the following are equivalent:
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i. fNtr is a NtrΛP -ihomeomorphism.

ii. f−1
Ntr

(NtrΛP int(K)) = NtrΛP int
(
f−1
Ntr

(K)
)
for every neutrosophic set K in V.

iii. fNtr (NtrΛP int(K)) = NtrΛP int (fNtr(K)) for every neutrosophic set K in U.

iv. NtrΛP cl (fNtr(K)) = fNtr (NtrΛP cl(K)) for every neutrosophic set K in U.

v. NtrΛP cl
(
f−1
Ntr

(K)
)
= f−1

Ntr
(NtrΛP cl(K)) for every neutrosophic set K in V.

Proof. (i)=⇒(ii) SincefNtr is a NtrΛP -ihomeomorphism, fNtr is NtrΛP -irresolute.
Now, let K be a neutrosophic set in V. Then NtrΛP int(K) is NtrΛP -open set in
V. Since fNtr is NtrΛP - irresolute, f−1

Ntr
(NtrΛP int(K)) is NtrΛP -open in U. Also,

f−1
Ntr

(NtrΛP int(K)) ⊆ f−1
Ntr

(K). Thus, f−1
Ntr

(NtrΛP int(K)) ⊆ NtrΛP int
(
f−1
Ntr

(K)
)

for every neutrosophic set K in V. Again, since fNtr is a NtrΛP -ihomeomorphism,
f−1
Ntr

: (V, ρNtr) −→ (U, τNtr) is NtrΛP -irresolute. Now, for any neutrosophic set K

in V,NtrΛP int
(
f−1
Ntr

(K)
)
is NtrΛP -open in U.Then,

(
f−1
Ntr

)−1 (
NtrΛP int

(
f−1
Ntr

(K)
))

=
fNtr

(
NtrΛP int

(
f−1
Ntr

(K)
))

is NtrΛP -open in V. Also, fNtr

(
NtrΛP int

(
f−1
Ntr

(K)
))

⊆
fNtr

(
f−1
Ntr

(K)
)

⊆ K. Therefore, fNtr

(
NtrΛP int

(
f−1
Ntr

(K)
))

⊆ NtrΛP int(K) =⇒
NtrΛP int

(
f−1
Ntr

(K)
)
⊆ f−1

Ntr
(NtrΛP int(K)) for every neutrosophic set K in V. Hence

f−1
Ntr

(NtrΛP int(K)) = NtrΛP int
(
f−1
Ntr

(K)
)
for every neutrosophic set K in V.

(ii)=⇒(iii) Let M = fNtr(K) be a neutrosophic set in V.

By (ii), f−1
Ntr

(NtrΛP int (fNtr(K))) = f−1
Ntr

(NtrΛP int(M)) = NtrΛP int
(
f−1
Ntr

(M)
)
=

NtrΛP int
(
f−1
Ntr

(fNtr(K))
)
= NtrΛP int(K).

This implies NtrΛP int (fNtr(K)) = fNtr (NtrΛP int(K)) for every neutrosophic set
K in U.

(iii)=⇒(iv) For any neutrosophic set K in U,NtrΛP cl(K) = (N trΛP int(K
C))

C
.

Then, fNtr (NtrΛP cl(K)) = fNtr(N trΛP int(K
C))

C
= (fNtr

(N trΛP int(K
C)))

C

=(NtrΛP int(fNtr

(
KC

)
)
C
=NtrΛP cl

(
fNtr

(
KC

)C)
= NtrΛP cl (fNtr(K)) .

Hence fNtr (NtrΛP cl(K)) = NtrΛP cl (fNtr(K)) for every neutrosophic set K in U.

(iv)=⇒(v) Let K = fNtr(M) be a neutrosophic set in V. By (iv),
fNtr

(
NtrΛP cl

(
f−1
Ntr

(K)
))

= NtrΛP cl
(
fNtr

(
f−1
Ntr

(K)
))

= NtrΛP cl(K) implies
NtrΛP cl

(
f−1
Ntr

(K)
)
= f−1

Ntr
(NtrΛP cl(K)) for every neutrosophic set K in V.

(v)=⇒(i) By theorem 2.16,fNtr is NtrΛP -irresolute if
NtrΛP cl

(
f−1
Ntr

(K)
)
⊆ f−1

Ntr
(NtrΛP cl(K)) for every neutrosophic set K in V. Simi-

larly, f−1
Ntr

is NtrΛP -irresolute if f−1
Ntr

(NtrΛP cl(K)) ⊆ NtrΛP cl
(
f−1
Ntr

(K)
)
for every
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neutrosophic set K in V. Now, by assumption, both fNtr and f−1
Ntr

are NtrΛP -
irresolute. Hence fNtr is a NtrΛP -i homeomorphism.

Theorem 5.7. Let fNtr : (U, τNtr) −→ (V, ρNtr) and gNtr : (V, ρNtr) −→ (W,ωNtr) be
two NtrΛP -i homeomorphisms. Then, their composition gNtr ◦fNtr is also a NtrΛP -i
homeomorphism.
Proof. By hypothesis, the functions fNtr , gNtr and f−1

Ntr
, g−1

Ntr
are all NtrΛP -

irresolute. Then, by theorem 2.17, both gNtr ◦ fNtr and (gNtr ◦ fNtr)
−1 = f−1

Ntr
◦ g−1

Ntr

are NtrΛP -irresolute. Hence gNtr ◦ fNtr is a NtrΛP -i homeomorphism.

6. Conclusion
This article defined and examined some of the properties of NtrΛP - homeomor-

phism and NtrΛP -i homeomorphism in neutrosophic topological spaces. Addition-
ally, the study was expanded to include discussion of NtrΛP -open and NtrΛP -closed
mappings. Numerous instances are provided to support the findings. This concept
can be used to drive few more new results of NtrΛP -connectedness and compactness
in neutrosophic topological spaces. Also, this study will be extended to separation
axioms, normal and regular spaces using NtrΛP -open sets in neutrosophic topolog-
ical spaces
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