South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 389-404

DOI: 10.56827/SEAJMMS.2024.2001.30

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

NEUTROSOPHIC Λ_{P} -HOMEOMORPHISM IN NEUTROSOPHIC TOPOLOGICAL SPACES

C. Reena and M. Karthika

Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi - 628001, Tamil Nadu, INDIA

E-mail : reenastephany@gmail.com, karthikamarimuthu97@gmail.com

(Received: Feb. 03, 2024 Accepted: Apr. 28, 2024 Published: Apr. 30, 2024)

Abstract: In this article, we have defined neutrosophic Λ_P -open, neutrosophic Λ_P closed mappings and neutrosophic Λ_P -homeomorphism in neutrosophic topological spaces. Finally, we have extended our study to neutrosophic Λ_P -*i*homeomorphism which is a stronger form of neutrosophic Λ_P -homeomorphism.

Keywords and Phrases: Neutrosophic Λ_P -open, neutrosophic Λ_P -continuous, neutrosophic Λ_P -open map, neutrosophic Λ_P -closed map, neutrosophic Λ_P - homeomorphism, neutrosophic Λ_P -i homeomorphism.

2020 Mathematics Subject Classification: 54C10.

1. Introduction

Since its introduction by Zadeh [12], fuzzy sets have been prevalent in nearly every field of mathematics. Florentine Smarandache [10] created the concept of neutrosophy and neutorsophic sets at the beginning of 20th century. Later Salama [8] and Alblowi initiated the neutrosophic sets in a topology entitled as neutrosophic topological space. Recently, the authors [6] of this paper defined a new notion of neutrosophic sets namely neutrosophic Λ_P -open and neutrosophic Λ_P -closed sets. Also, we have studied about novel concept of neutrosophic Λ_P -neighbourhood with quasi coincident. Also extended the neutrosophic continuous functions to neutrosophic topological space. The topological isomorphism commonly called homeomorphism plays a vital role in the properties of topological spaces. Parimala et.al [4] introduced the concept of neutrosophic homeomorphism and neutrosophic $\alpha\psi$ -homeomorphism in neutrosophic topological spaces. This paper aspires to overly erunicate the thought of neutrosophic Λ_P -homeomorphism which is extended to neutrosophic Λ_P -ihomeomorphism in neutrosophic topological spaces. Initially the article gives brief explanation on neutrosophic Λ_P -open and neutrosophic Λ_P -closed mapping.

2. Preliminaries

Definition 2.1. [8] Let U be a non-empty fixed set. A Neutrosophic set K is an object having the form $K = \{ \langle u, \mu_K(u), \sigma_K(u), \gamma_K(u) \rangle : u \in U \}$ where $\mu_K(u)$, $\sigma_K(u)$ and $\gamma_K(u)$ represents the degree of membership, the degree of indeterminacy and the degree of non-membership respectively of each element $u \in U$ to the setU. A neutrosophic set $K = \{ \langle u, \mu_K(u), \sigma_K(u), \gamma_K(u) \rangle : u \in U \}$ can be identified to an ordered triple $\langle \mu_K(u), \sigma_K(u), \gamma_K(u) \rangle$ in on U.

Definition 2.2. [8] Let U be a non-empty set and $K = \{ \langle u, \mu_K(u), \sigma_K(u), \gamma_K(u) \rangle : u \in U \}$ and $M = \{ \langle u, \mu_M(u), \sigma_M(u), \gamma_M(u) \rangle : u \in U \}$ are neutrosophic sets, then

i.
$$K \subseteq M \Leftrightarrow \mu_K(u) \le \mu_M(u), \ \sigma_K(u) \le \sigma_M(u) \ and \ \gamma_K(u) \ge \gamma_M(u) \forall u \in U$$

ii. $K \bigcup M = \{ \langle u, \max(\mu_K(u), \mu_M(u)), \max(\sigma_K(u), \sigma_M(u)) \}$

$$\min\left(\gamma_K(u), \gamma_M(u)\right) : u \in U \rangle \}$$

iii. $K \cap M = \{ \langle u, \min(\mu_K(u), \mu_M(u)), \min(\sigma_K(u), \sigma_M(u)) \}$

$$max\left(\gamma_K(u),\gamma_M(u)\right): u \in U \rangle \}$$

iv. $K^C = \{ \langle u, (\gamma_K(u), 1 - \sigma_K(u), \mu_K(u)) \rangle : u \in U \}$

$$v. \ 0_{N_{tr}} = \{ \langle u, \ 0, \ 0, \ 1 \rangle : u \in U \} \text{ and } 1_{N_{tr}} = \{ \langle u, \ 1, \ 1, \ 0 \rangle : u \in U \}$$

Definition 2.3. [8] A Neutrosophic topology on a non-empty set U is a family $\tau_{N_{tr}}$ of neutrosophic sets in U satisfying the following axioms:

- *i.* $0_{N_{tr}}, 1_{N_{tr}} \in \tau_{N_{tr}}$.
- *ii.* $K_1 \bigcap K_2 \in \tau_{N_{tr}}$ for any $K_1, K_2 \in \tau_{N_{tr}}$.
- *iii.* $\bigcup K_i \in \tau_{N_{tr}}$ for every $\{K_i : i \in I\} \subseteq \tau_{N_{tr}}$.

In this case the ordered pair $(U, \tau_{N_{tr}})$ is called a neutrosophic topological space. The members of $\tau_{N_{tr}}$ are neutrosophic open set and its complements are neutrosophic closed.

Definition 2.4. [3] Let $(U, \tau_{N_{tr}})$ be a neutrosophic topological space and S be a non-empty subset of U. Then, a neutrosophic relative topology on S is defined by

$$\tau_{N_{tr}}^{S} = \{ K \cap 1_{N_{tr}}^{S} : K \in \tau_{N_{tr}} \}$$

where

$$\mathbf{l}_{N_{tr}}^{S} = \begin{cases} <1, 1, 0>, & \text{if } s \in S \\ <0, 0, 1>, & \text{otherwise} \end{cases}$$

Thus, $(S, \tau_{N_{tr}}^S)$ is called a **neutrosophic subspace** of $(U, \tau_{N_{tr}})$.

Definition 2.5. [9] $(U, \tau_{N_{tr}})$ and $(V, \rho_{N_{tr}})$ be neutrosophic topological spaces. Then the function $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is said to be **neutrosophicopen** if $f_{N_{tr}}(K)$ is N_{tr} -open in $(V, \rho_{N_{tr}})$ for every N_{tr} -open set K in $(U, \tau_{N_{tr}})$.

Definition 2.6. [4] A bijective function $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is said to be a *neutrosophic homeomorphism* if $f_{N_{tr}}$ and $f_{N_{tr}}^{-1}$ are N_{tr} -continuous.

Definition 2.7. [6] A neutrosophic set K of a neutrosophic topological space $(U, \tau_{N_{tr}})$ is said to be **neutrosophic** $\Lambda_{\mathbf{P}}$ **-open** if there exist a neutrosophicpre-open set $E \neq 0_{N_{tr}}, 1_{N_{tr}}$ such that $K \subseteq N_{tr} cl(K \cap E)$. The complement of neutrosophic Λ_{P} -open set is neutrosophic Λ_{P} -closed. The class of neutrosophic Λ_{P} -open sets is denoted by $N_{tr}\Lambda_{P}O(U, \tau_{N_{tr}})$.

Theorem 2.8. [6] A neutrosophic set K in a neutrosophic topological space $(U, \tau_{N_{tr}})$ is $N_{tr}\Lambda_P$ -open if and only if for every neutrosophic point $u_{a,b,c} \in K$, there exists a $N_{tr}\Lambda_P$ -open set $M_{u_{a,b,c}}$ such that $u_{a,b,c} \in M_{u_{a,b,c}} \subseteq K$.

Theorem 2.9. [6] Every N_{tr} -open set is $N_{tr}\Lambda_P$ -open.

Definition 2.10. [7] Let $u_{a,b,c}$ be a neutrosophic point in a neutrosophic topological space $(U, \tau_{N_{tr}})$. Then a neutrosophic set N in U is said to be **neutrosophic** $\Lambda_{\mathbf{P}}$ -**neighbourhood** $(N_{tr}\Lambda_{P}$ -nbhd) of $u_{a,b,c}$ if there exists a $N_{tr}\Lambda_{P}$ -open set M such that $u_{a,b,c} \in M \subseteq N$.

Definition 2.11. [7] A neutrosophic topological space $(U, \tau_{N_{tr}})$ is said to be $\mathbf{N}_{tr}\mathbf{T}_{\mathbf{A}_{\mathbf{P}}}$ space if every $N_{tr}\Lambda_{P}$ -open set in $(U, \tau_{N_{tr}})$ is N_{tr} -open.

Definition 2.12. [7] Let $(U, \tau_{N_{tr}})$ and $(V, \rho_{N_{tr}})$ be neutrosophic topological spaces. Then the function $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is said to be **neutrosophic** $\Lambda_{\mathbf{P}}$ continuous if $f_{N_{tr}}^{-1}(M)$ is $N_{tr}\Lambda_{P}$ -open in $(U, \tau_{N_{tr}})$ for every N_{tr} -open set M in $(V, \rho_{N_{tr}})$.

Theorem 2.13. [7] Every N_{tr} -continuous function is $N_{tr}\Lambda_P$ -continuous.

Definition 2.14. [7] Let $(U, \tau_{N_{tr}})$ and $(V, \rho_{N_{tr}})$ be neutrosophic topological spaces. Then the function $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is said to be **neutrosophic** $\Lambda_{\mathbf{P}}$ *irresolute* if $f_{N_{tr}}^{-1}(M)$ is $N_{tr}\Lambda_{P}$ -open in $(U, \tau_{N_{tr}})$ for every $N_{tr}\Lambda_{P}$ -open set M in $(V, \rho_{N_{tr}})$.

Theorem 2.15. [7] Every $N_{tr}\Lambda_P$ -irresolute function is $N_{tr}\Lambda_P$ -continuous.

Theorem 2.16. [7] Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ be a function between two neutrosophic topological spaces. Then the following statements are equivalent:

i. $f_{N_{tr}}$ *is* $N_{tr}\Lambda_P$ *-irresolute.*

ii. $f_{N_{tr}}(N_{tr}\Lambda_P cl(K)) \subseteq N_{tr}\Lambda_P cl(f_{N_{tr}}(K))$ for every neutrosophic set K in U.

iii. $N_{tr}\Lambda_P cl\left(f_{N_{tr}}^{-1}(M)\right) \subseteq f_{N_{tr}}^{-1}(N_{tr}\Lambda_P cl(M))$ for every neutrosophic set M in V.

Theorem 2.17. [7] If $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ and $g_{N_{tr}}: (V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ are $N_{tr}\Lambda_P$ -irresolute functions, then their composition $g_{N_{tr}} \circ f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ is also $N_{tr}\Lambda_P$ -irresolute.

3. Neutrosophic $\Lambda_{\rm P}$ -open and $\Lambda_{\rm P}$ -closed Maps

Definition 3.1. Let $(U, \tau_{N_{tr}})$ and $(V, \rho_{N_{tr}})$ be neutrosophic topological spaces. Then the mapping $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is said to be a **neutrosophic** $\Lambda_{\mathbf{P}}$ **-open** if $f_{N_{tr}}(K)$ is $N_{tr}\Lambda_{\mathbf{P}}$ -open in $(V, \rho_{N_{tr}})$ for every N_{tr} -open set K in $(U, \tau_{N_{tr}})$.

Example 3.2. Let $U = \{a, b\}$, $V = \{x, y\}$, $\tau_{N_{tr}} = \{0_{N_{tr}}, 1_{N_{tr}}, K_1, K_2\}$, $\rho_{N_{tr}} = \{0_{N_{tr}}, 1_{N_{tr}}, M\}$ where $K_1 = \{< a, 0.1, 0.2, 0.5 > < b, 0.3, 0.3, 0.6 >\}$, $K_2 = \{< a, 0.1, 0.1, 0.4 > < b, 0.2, 0.3, 0.7 >\}$ and $M = \{< x, 0.1, 0.1, 0.6 > < y, 0.1, 0.2, 0.8 >\}$. Consider the collections $\mathcal{A} = \{A : 0_{N_{tr}} \subset A \subset K^C\}$, $\mathcal{B} = \{B : K^C \subset B \subset K\}$ and $\mathcal{C} = \{C : K \subset C \subset 1_{N_{tr}}\}$ of neutrosophic sets in V. Then $N_{tr}\Lambda_PO(V, \rho_{N_{tr}}) = \{0_{N_{tr}}, M, M^c, \mathcal{A}, \mathcal{B}, \mathcal{C}, 1_{N_{tr}}\}$. Define $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ as $f_{N_{tr}}(a) = x$ and $f_{N_{tr}}(b) = y$. Then $f_{N_{tr}}(K_1) = \{< x, 0.1, 0.2, 0.5 > < y, 0.3, 0.3, 0.6 >\} \in \mathcal{B}$ and $f_{N_{tr}}(K_2) = \{< x, 0.1, 0.1, 0.4 > < y, 0.2, 0.3, 0.7 >\} \in \mathcal{C}$. Hence $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ -open.

Theorem 3.3. Every N_{tr} -open map is $N_{tr}\Lambda_P$ -open.

Proof. Let $f_{N_{\text{tr}}} : (U, \tau_{N_{\text{tr}}}) \longrightarrow (V, \rho_{N_{\text{tr}}})$ be a N_{tr} -open map and K be a N_{tr} -open set in U. Then, $f_{N_{\text{tr}}}(K)$ is N_{tr} -open in V. By theorem 2.9, $f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_P$ -open in V. Hence $f_{N_{\text{tr}}}$ is a $N_{\text{tr}}\Lambda_P$ -open map.

Remark 3.4. The converse of theorem 3.3 does not hold in general.

Example 3.5. Let $U = \{a, b\}$, $V = \{x, y\}$, $\tau_{N_{tr}} = \{0_{N_{tr}}, 1_{N_{tr}}, K\}$ and $\rho_{N_{tr}} = \{0_{N_{tr}}, 1_{N_{tr}}, M\}$ where $K = \{\langle a, 0.7, 0.5, 0.3 \rangle \langle b, 0.6, 0.3, 0.3 \rangle \}$, $M = \{\langle a, 0.3, 0.7, 0.6 \rangle \langle b, 0.3, 0.5, 0.7\}$. Consider the collections $\mathcal{A} = \{A : K^C \subset A \subset K\}$ and $\mathcal{B} = \{B : K^C \subset B \subsetneq K\}$ of neutrosophic sets in V. Then $N_{tr}\Lambda_PO(V, \rho_{N_{tr}}) = \{0_{N_{tr}}, M, M^c, \mathcal{A}, \mathcal{B}, 1_{N_{tr}}\}$. Define $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ as $f_{N_{tr}}(a) = y$ and $f_{N_{tr}}(b) = x$. Then $f_{N_{tr}}(K) = \{\langle x, 0.6, 0.3, 0.3 \rangle \langle y, 0.7, 0.5, 0.3 \rangle \}$ $= M^c$ is $N_{tr}\Lambda_P$ -open but not N_{tr} -open in V. Hence $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ -open but not N_{tr} open.

Theorem 3.6. Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ be a mapping between neutrosophic topological spaces. Then, the following are equivalent:

- i. $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ -open.
- ii. $f_{N_{tr}}(N_{tr}int(K)) \subseteq N_{tr}\Lambda_Pint(f_{N_{tr}}(K))$ for every neutrosophic set K in U.
- iii. $N_{tr}int(f_{N_{tr}}^{-1}(M)) \subseteq f_{N_{tr}}^{-1}(N_{tr}\Lambda_{P}int(M))$ for every neutrosophic set M in V.

(i) \Longrightarrow (ii) Let K be a neutrosophic set in U and $f_{N_{\text{tr}}}$ be a $N_{\text{tr}}\Lambda_P$ -open function. Then $f_{N_{\text{tr}}}(N_{\text{tr}}\text{int}(K))$ is a $N_{\text{tr}}\Lambda_P$ -open set in V which implies $f_{N_{\text{tr}}}(N_{\text{tr}}\text{int}(K)) \subseteq f_{N_{\text{tr}}}(K)$. Also, $N_{\text{tr}}\Lambda_P$ -int $(f_{N_{\text{tr}}}(K))$ is the largest $N_{\text{tr}}\Lambda_P$ -open set contained in $f_{N_{\text{tr}}}(K)$. Hence $f_{N_{\text{tr}}}(N_{\text{tr}}\text{int}(K)) \subseteq N_{\text{tr}}\Lambda_P$ -int $(f_{N_{\text{tr}}}(K))$ for every neutrosophic set K in U.

(ii) \Longrightarrow (iii) Let M be a neutrosophic set in V. Then, by assumption $f_{N_{\text{tr}}}\left(N_{\text{tr}}\inf\left(f_{N_{\text{tr}}}^{-1}(M)\right)\right) \subseteq N_{\text{tr}}\Lambda_{P}\inf\left(f_{N_{\text{tr}}}\left(f_{N_{\text{tr}}}^{-1}(M)\right)\right) \subseteq N_{\text{tr}}\Lambda_{P}\inf(M).$ Hence $N_{\text{tr}}\inf\left(f_{N_{\text{tr}}}^{-1}(M)\right) \subseteq f_{N_{\text{tr}}}^{-1}\left(N_{\text{tr}}\Lambda_{P}\inf(M)\right).$

(iii) \Longrightarrow (i) Let K be a N_{tr} -open set in U. By assumption, N_{tr} int $(f_{N_{\text{tr}}}^{-1}(f_{N_{\text{tr}}}(K))) \subseteq f_{N_{\text{tr}}}^{-1}(N_{\text{tr}}\Lambda_{P}$ int $(f_{N_{\text{tr}}}(K)))$. Now, $K = N_{\text{tr}}$ int $(K) \subseteq N_{\text{tr}}$ int $(f_{N_{\text{tr}}}^{-1}(f_{N_{\text{tr}}}(K)))$ implies $f_{N_{\text{tr}}}(K) \subseteq N_{\text{tr}}\Lambda_{P}$ int $(f_{N_{\text{tr}}}(K))$. Also, $N_{\text{tr}}\Lambda_{P}$ int $(f_{N_{\text{tr}}}(K)) \subseteq f_{N_{\text{tr}}}(K)$. Consequently $f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_{P}$ -open in V. Hence $f_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_{P}$ -open.

Theorem 3.7. A mapping $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is $N_{tr}\Lambda_P$ -open if and only if for each neutrosophic set K in $(V, \rho_{N_{tr}})$ and for each N_{tr} -closed set M in $(U, \tau_{N_{tr}})$ containing $f_{N_{tr}}^{-1}(K)$, there is a $N_{tr}\Lambda_P$ -closed set N in $(V, \rho_{N_{tr}})$ such that $K \subseteq N$ and $f_{N_{tr}}^{-1}(N) \subseteq M$.

Proof. Let $f_{N_{\text{tr}}} : (U, \tau_{N_{\text{tr}}}) \longrightarrow (V, \rho_{N_{\text{tr}}})$ is a $N_{\text{tr}}\Lambda_P$ -open map. Let K be a neutrosophic set in V and M be a N_{tr} -closed set in U such that $f_{N_{\text{tr}}}^{-1}(K) \subseteq M$. Then, $N = (f_{N_{\text{tr}}}(M^C))^C$ is $N_{\text{tr}}\Lambda_P$ -closed in V and $f_{N_{\text{tr}}}^{-1}(N) \subseteq M$ since $N = (f_{N_{\text{tr}}}(M^C))^C \subseteq f_{N_{\text{tr}}}(M^C)^C = f_{N_{\text{tr}}}(M)$. Conversely, let O be a N_{tr} -open set in U. Then, O^C is N_{tr} - closed in U and $f_{N_{\mathrm{tr}}}^{-1}(f_{N_{\mathrm{tr}}}(O))^C \subseteq O^C$. Now by assumption, there is a $N_{\mathrm{tr}}\Lambda_{P^-}$ closed set N in V such that $(f_{N_{\mathrm{tr}}}(O))^C \subseteq N$ and $f_{N_{\mathrm{tr}}}^{-1}(N) \subseteq O^C$. Hence $N^C \subseteq f_{N_{\mathrm{tr}}}(O) \subseteq f_{N_{\mathrm{tr}}}\left(\left(f_{N_{\mathrm{tr}}}^{-1}(N)\right)^C\right) = f_{N_{\mathrm{tr}}}\left(f_{N_{\mathrm{tr}}}^{-1}(N^C)\right) \subseteq N^C$ implies $f_{N_{\mathrm{tr}}}(O) = N^C$. Consequently $f_{N_{\mathrm{tr}}}(O)$ is $N_{\mathrm{tr}}\Lambda_{P^-}$ open in V.Hence $f_{N_{\mathrm{tr}}}$ is $N_{\mathrm{tr}}\Lambda_{P^-}$ open.

Theorem 3.8. A mapping $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is $N_{tr}\Lambda_{P}$ -open if and only if $f_{N_{tr}}^{-1}(N_{tr}\Lambda_{P}cl(K)) \subseteq N_{tr}cl(f_{N_{tr}}^{-1}(K))$ for every neutrosophic set K in $(V, \rho_{N_{tr}})$. **Proof.** Suppose $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is a $N_{tr}\Lambda_{P}$ -open function. For any neutrosophic set K in $V, f_{N_{tr}}^{-1}(K) \subseteq N_{tr}cl(f_{N_{tr}}^{-1}(K))$. Then, by theorem 3.7, there exists a $N_{tr}\Lambda_{P}$ -closed set N in V such that $K \subseteq N$ and $f_{N_{tr}}^{-1}(N) \subseteq N_{tr}cl(f_{N_{tr}}^{-1}(K))$. Now, since N is $N_{tr}\Lambda_{P}$ -closed and $K \subseteq N, f_{N_{tr}}^{-1}(N_{tr}\Lambda_{P}cl(K)) \subseteq f_{N_{tr}}^{-1}(N_{tr}\Lambda_{P}cl(N)) =$ $f_{N_{tr}}^{-1}(N) \subseteq N_{tr}cl(f_{N_{tr}}^{-1}(K))$. Hence $f_{N_{tr}}^{-1}(N_{tr}\Lambda_{P}cl(K)) \subseteq N_{tr}cl(f_{N_{tr}}^{-1}(K))$ for every neutrosophic set K in V. Conversely, assume that K is a neutrosophic set in Vand M is N_{tr} -closed set in U containing $f_{N_{tr}}^{-1}(K)$. Now, let $N = N_{tr}\Lambda_{P}cl(K)$. Then N is a $N_{tr}\Lambda_{P}$ -closed set in V such that $K \subseteq N$ and by assumption $f_{N_{tr}}^{-1}(N) =$ $f_{N_{tr}}^{-1}(N_{tr}\Lambda_{P}cl(K)) \subseteq N_{tr}cl(f_{N_{tr}}^{-1}(K)) \subseteq N_{tr}cl(M) = M$. Hence, by theorem 3.7, $f_{N_{tr}}$ is $N_{tr}\Lambda_{P}$ -open.

Remark 3.9. The composition of two $N_{tr}\Lambda_P$ -open maps need not be $N_{tr}\Lambda_P$ -open.

Example 3.10. Let $U = \{a, b\}$, $V = \{x, y\}$ and $W = \{p, q\}$. Consider the neutrosophic topologies $\tau_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, K\}$, $\rho_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, M\}$ and $\omega_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, N\}$ where $K = \{< a, 0.6, 0.5, 0.2 > < b, 0.7, 0.6, 0.1 >\}$, $M = \{< x, 0.1, 0.4, 0.7 > < y, 0.2, 0.5, 0.6 >\}$ and $N = \{< p, 0.1, 0.3, 0.8 > < q, 0.2, 0.4, 0.7 > \}$ Consider the collections $\mathcal{A} = \{A : 0_{N_{\text{tr}}} \subset A \subset K^c\}, \mathcal{B} = \{B : M^c \subset B \subset 1_{N_{\text{tr}}}\}$ and $\mathcal{C} = \{C : M \subset C \subset M^c\}$ of neutrosophic sets in V and $\mathcal{P} = \{P : 0_{N_{\text{tr}}} \subset P \subset K^c\}, \mathcal{Q} = \{Q : M^c \subset Q \subset 1_{N_{\text{tr}}}\}, \mathcal{R} = \{R : M \subset R \subset M^c\}$ the collection of neutrosophic sets in W.

Then, $N_{\text{tr}}\Lambda_P O(V, \rho_{N_{\text{tr}}}) = \{0_{N_{\text{tr}}}, M, M^c, \mathcal{A}, \mathcal{B}, \mathcal{C}, 1_{N_{\text{tr}}}\}$ and

 $N_{\rm tr}\Lambda_P O\left(W,\omega_{N_{\rm tr}}\right) = \{0_{N_{\rm tr}}, N, N^c, \mathcal{P}, \mathcal{Q}, \mathcal{R}, 1_{N_{\rm tr}}\} \text{ . Define } f_{N_{\rm tr}}: (U,\tau_{N_{\rm tr}}) \longrightarrow (V,\rho_{N_{\rm tr}}) \text{ as } f_{N_{\rm tr}}(a) = y \text{ and } f_{N_{\rm tr}}(b) = x.$

Then $f_{N_{tr}}(K) = \{\langle x, 0.7, 0.6, 0.1 \rangle \langle y, 0.6, 0.5, 0.2 \rangle\} = M^c$ is $N_{tr}\Lambda_P$ -open in $(V, \rho_{N_{tr}})$. Also, define $g_{N_{tr}}: (V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ as $g_{N_{tr}}(x) = q \operatorname{and} g_{N_{tr}}(y) = p$. Then $g_{N_{tr}}(M) = \{\langle p, 0.2, 0.5, 0.6 \rangle \langle q, 0.1, 0.4, 0.7 \rangle\} \in \mathcal{R}$ which implies $g_{N_{tr}}(M)$ is $N_{tr}\Lambda_P$ -open in $(W, \omega_{N_{tr}})$. This implies that both $f_{N_{tr}}$ and $g_{N_{tr}}$ are $N_{tr}\Lambda_P$ -open. Now, let $g_{N_{tr}} \circ f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ be the composition of two $N_{tr}\Lambda_P$ -open functions. Then, $g_{N_{tr}} \circ f_{N_{tr}}$ is not $N_{tr}\Lambda_P$ -open since $g_{N_{tr}} \circ f_{N_{tr}}(K) = g_{N_{tr}}(f_{N_{tr}}(K)) = \{\langle p, 0.6, 0.5, 0.2 \rangle \langle q, 0.7, 0.6, 0.1 \rangle\}$ is not $N_{tr}\Lambda_P$ -open in $(W, \omega_{N_{tr}})$.

Theorem 3.11. Let $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ and $g_{N_{tr}}: (V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$

be $N_{tr}\Lambda_P$ -open and let $(V, \rho_{N_{tr}})$ be a $N_{tr}T_{\Lambda_P}$ -space. Then $g_{N_{tr}} \circ f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ is also $N_{tr}\Lambda_P$ -open.

Proof. Let K be any $N_{\rm tr}$ -open set in U. Since $f_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -open, $f_{N_{\rm tr}}(K)$ is $N_{\rm tr}\Lambda_P$ -open in V. Then, by assumption $f_{N_{\rm tr}}(K)$ is $N_{\rm tr}$ -open in V. Again, since $g_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -open $g_{N_{\rm tr}}(f_{N_{\rm tr}}(K)) = g_{N_{\rm tr}} \circ f_{N_{\rm tr}}(K)$ is $N_{\rm tr}\Lambda_P$ -open in W. Hence $g \circ f$ is $N_{\rm tr}\Lambda_P$ -open.

Theorem 3.12. Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ be a bijective map between two neutrosophic topological spaces. Then, the following are equivalent

- *i.* $f_{N_{tr}}$ *is* $N_{tr}\Lambda_P$ -open.
- ii. For each $(u_{a,b,c}) \in (U, \tau_{N_{tr}})$ and for every $N_{tr}nbhdK$ of $u_{a,b,c}$ in $(U, \tau_{N_{tr}})$, there exists a $N_{tr}\Lambda_P$ -nbhdM of $f_{N_{tr}}(u_{a,b,c})$ in $(V, \rho_{N_{tr}})$ such that $M \subseteq f_{N_{tr}}(K)$.

Proof. (i) \Rightarrow (ii) Let $f_{N_{\text{tr}}}$ be a $N_{\text{tr}}\Lambda_P$ -open map and K be an arbitrary N_{tr} nbhd of $u_{a,b,c}$ in U. Then, there exists a N_{tr} -open set N in U such that $u_{a,b,c} \in N \subseteq K$. Since $f_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_P$ -open, $f_{N_{\text{tr}}}(N)$ is $N_{\text{tr}}\Lambda_P$ -open in V. Now, let $f_{N_{\text{tr}}}(N) = M$. Then, $f_{N_{\text{tr}}}(u_{a,b,c}) \in M \subseteq f_{N_{\text{tr}}}(K)$. This implies M is a $N_{\text{tr}}\Lambda_P$ -nbhd of $f_{N_{\text{tr}}}(u_{a,b,c})$ and $M \subseteq f_{N_{\text{tr}}}(K)$.

(ii) \Rightarrow (i) Let K be a N_{tr} -open set in $U, u_{a,b,c} \in K$ and $f_{N_{\text{tr}}}(u_{a,b,c}) = v_{x,y,z} \in f_{N_{\text{tr}}}(K)$. By assumption, there exists a $N_{\text{tr}}\Lambda_P$ -nbhd $M_{v_{x,y,z}}$ of $v_{x,y,z}$ such that $M_{v_{x,y,z}} \subseteq f_{N_{\text{tr}}}(K)$. Since $M_{v_{x,y,z}}$ is a $N_{\text{tr}}\Lambda_P$ -nbhd, there exists a $N_{\text{tr}}\Lambda_P$ -open set $N_{v_{x,y,z}}$ in V such that $v_{x,y,z} \in N_{v_{x,y,z}} \subseteq M_{v_{x,y,z}}$. By theorem 2.8, $f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_P$ -open. Hence $f_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_P$ -open.

Theorem 3.13. Let $(U, \tau_{N_{tr}})$ and $(V, \rho_{N_{tr}})$ be neutrosophic topological spaces and $(S, \tau_{N_{tr}}^*)$ be a subspace of $(U, \tau_{N_{tr}})$. If $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is a $N_{tr}\Lambda_{P}$ -open map and $1_{N_{tr}}^S$ is N_{tr} -open in $(U, \tau_{N_{tr}})$, then the restriction $f_{N_{tr}}|_S : (S, \tau_{N_{tr}}^*) \longrightarrow (V, \rho_{N_{tr}})$ is also $N_{tr}\Lambda_{P}$ -open.

Proof. Let K be N_{tr} -open in S. Then, $K = 1_{N_{\text{tr}}}^S \bigcap M$ for some N_{tr} -open set M in U. Now, K is N_{tr} -open in U and since $f_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_P$ -open, $f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_P$ -open in V. But $f_{N_{\text{tr}}}(K) = f_{N_{\text{tr}}}|_S(K)$. Therefore $f_{N_{\text{tr}}}|_S$ is $N_{\text{tr}}\Lambda_P$ -open.

Definition 3.14. A mapping $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ between two neutrosophic topological spaces is said to be **neutrosophic** $\Lambda_{\mathbf{P}}$ -closed if $f_{N_{tr}}(K)$ is $N_{tr}\Lambda_{P}$ -closed in $(V, \rho_{N_{tr}})$ for every N_{tr} -closed set K in $(U, \tau_{N_{tr}})$.

Example 3.15. Consider the neutrosophic topological spaces defined in example 3.2. Here $K_1^C = \{ < a, 0.5, 0.8, 0.1 > < b, 0.6, 0.7, 0.3 > \}$, $K_2^C = \{ < a, 0.4, 0.9, 0.1 > < b, 0.7, 0.7, 0.2 > \}$ and

 $N_{\mathrm{tr}}\Lambda_{P}C\left(V,\ \rho_{N_{\mathrm{tr}}}\right) = \left\{0_{N_{\mathrm{tr}}}, M, M^{c}, \mathcal{A}^{'}, \mathcal{B}, \mathcal{C}^{'}, 1_{N_{\mathrm{tr}}}\right\} \text{ where } \mathcal{A}^{'} = \left\{A^{c} : A \in \mathcal{A}\right\} \text{ and }$ $\mathcal{C}' = \{C^C : C \in \mathcal{C}\}$. Now, define $f_{N_{\mathrm{tr}}} : (U, \tau_{N_{\mathrm{tr}}}) \longrightarrow (V, \rho_{N_{\mathrm{tr}}})$ as $f_{N_{\mathrm{tr}}}(a) = y$ and $f_{N_{\text{tr}}}(b) = x$. Then $f_{N_{\text{tr}}}(K_1^C) = \{ \langle x, 0.6, 0.7, 0.3 \rangle \langle y, 0.5, 0.8, 0.1 \rangle \} \in \mathcal{B}$ and $f_{N_{\rm tr}}(K_2^C) = \{ \langle x, 0.7, 0.7, 0.2 \rangle \langle y, 0.4, 0.9, 0.1 \rangle \} \in \mathcal{C}'$. Hence $f_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_{P}$ closed.

Theorem 3.16. A mapping $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ between two neutrosophic topological spaces is $N_{tr}\Lambda_P$ -closed if and only if $N_{tr}\Lambda_P cl(f_{N_{tr}}(K)) \subseteq f_{N_{tr}}(N_{tr}cl(K))$ for every neutrosophic set K in U.

Proof. Let K be a neutrosophic set in U and $f_{N_{tr}}$ be a $N_{tr}\Lambda_P$ -closed map. Then, $f_{N_{\rm tr}}(N_{\rm tr}{\rm cl}(K))$ is a $N_{\rm tr}\Lambda_P$ -closed set in V and $f_{N_{\rm tr}}(K) \subseteq f_{N_{\rm tr}}(N_{\rm tr}{\rm cl}(K))$. Also, $N_{\rm tr}\Lambda_P {\rm cl}\left(f_{N_{\rm tr}}(K)\right)$ is the smallest $N_{\rm tr}\Lambda_P$ -closed set containing $f_{N_{\rm tr}}(K)$.

Hence $N_{\rm tr}\Lambda_P {\rm cl}\left(f_{N_{\rm tr}}(K)\right) \subseteq f_{N_{\rm tr}}\left(N_{\rm tr} {\rm cl}(K)\right)$ for every neutrosophic set K in U. Conversely, let K be a $N_{\rm tr}$ -closed set in U. Then $K = N_{\rm tr} cl(K)$ implies $f_{N_{\rm tr}}(K) =$ $f_{N_{\rm tr}}(N_{\rm tr} {\rm cl}(K))$. Hence, by assumption $N_{\rm tr} \Lambda_P {\rm cl}(f_{N_{\rm tr}}(K)) \subseteq f_{N_{\rm tr}}(K)$. Also, since $f_{N_{\rm tr}}(K) \subseteq N_{\rm tr}\Lambda_P \operatorname{cl}\left(f_{N_{\rm tr}}(K)\right), f_{N_{\rm tr}}(K) = N_{\rm tr}\Lambda_P \operatorname{cl}\left(f_{N_{\rm tr}}(K)\right)$ which implies $f_{N_{\rm tr}}(K)$ is $N_{\rm tr}\Lambda_P$ -closed in V. Hence $f_{N_{\rm tr}}$ is a $N_{\rm tr}\Lambda_P$ -closed map.

Theorem 3.17. A bijective map $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ between two neutrosophic topological spaces is $N_{tr}\Lambda_P$ -closed if and only if $f_{N_{tr}}^{-1}(N_{tr}\Lambda_P cl(K)) \subseteq$ $N_{tr}cl\left(f_{N_{tr}}^{-1}(K)\right)$ for every neutrosophic set K in V.

Proof. Let K be a neutrosophic set in V and $f_{N_{tr}}$ be a $N_{tr}\Lambda_P$ -closed map. Then $f_{N_{\rm tr}}\left(N_{\rm tr} \operatorname{cl}\left(f_{N_{\rm tr}}^{-1}(K)\right)\right)$ is $N_{\rm tr}\Lambda_P$ -closed in V which implies

 $N_{\text{tr}}\Lambda_{P}\text{cl}\left(f_{N_{\text{tr}}}^{-1}(N_{\text{tr}}\text{cl}\left(f_{N_{\text{tr}}}^{-1}(K)\right)\right) = f_{N_{\text{tr}}}\left(N_{\text{tr}}\text{cl}\left(f_{N_{\text{tr}}}^{-1}(K)\right)\right). \text{ Also, since } K = f_{N_{\text{tr}}}\left(f_{N_{\text{tr}}}^{-1}(K)\right) \text{ and } f_{N_{\text{tr}}}^{-1}(K) \subseteq N_{tr}\text{cl}\left(f_{N_{\text{tr}}}^{-1}(K)\right) \text{ implies}$

$$f_{N_{\mathrm{tr}}}\left(f_{N_{\mathrm{tr}}}^{-1}(K)\right) \subseteq f_{N_{\mathrm{tr}}}\left(N_{\mathrm{tr}}\mathrm{cl}\left(f_{N_{\mathrm{tr}}}^{-1}(K)\right)\right)$$

 $N_{\rm tr} \Lambda_P {\rm cl}(K) \subseteq N_{\rm tr} \Lambda_P {\rm cl}\left(f_{N_{\rm tr}}(K)\right) = f_{N_{\rm tr}}\left(N_{\rm tr} {\rm cl}\left(f_{N_{\rm tr}}(K)\right)\right) = f_{N_{\rm tr}}\left(N_{\rm tr} {\rm cl}\left(f_{N_{\rm tr}}^{-1}(K)\right)\right).$ Hence $f_{N_{\rm tr}}^{-1}\left(N_{\rm tr} \Lambda_P {\rm cl}(K)\right) \subseteq N_{\rm tr} {\rm cl}\left(f_{N_{\rm tr}}^{-1}(K)\right) \text{ for every neutrosophic set } K \text{ in V. Con$ versely, let K be a $N_{\rm tr}$ -closed set in U. By assumption, $f_{N_{\rm tr}}^{-1}(N_{\rm tr}\Lambda_P {\rm cl}(f_{N_{\rm tr}}(K))) \subseteq$ $N_{\rm tr} {\rm cl}\left(f_{N_{\rm tr}}^{-1}\left(f_{N_{\rm tr}}(K)\right)\right) = N_{\rm tr} {\rm cl}(K) = K.$

Consequently, $N_{\rm tr}\Lambda_P {\rm cl}\left(f_{N_{\rm tr}}(K)\right) \subseteq f_{N_{\rm tr}}(K)$. Also, $f_{N_{\rm tr}}(K) \subseteq N_{\rm tr} {\rm cl}\left(f_{N_{\rm tr}}(K)\right)$. Hence $f_{N_{\rm tr}}(K)$ is $N_{\rm tr}\Lambda_P$ -closed which implies $f_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -closed.

Remark 3.18. The composition of two $N_{tr}\Lambda_P$ -closed maps need not be $N_{tr}\Lambda_P$ closed.

Example 3.19. Let $U = \{a, b\}, V = \{x, y\}$ and $W = \{p, q\}$. Consider the neutrosophic topologies $\tau_{N_{\rm tr}} = \{0_{N_{\rm tr}}, 1_{N_{\rm tr}}, K_1, K_2\}, \rho_{N_{\rm tr}} = \{0_{N_{\rm tr}}, 1_{N_{\rm tr}}, M\}$ and $\omega_{N_{\rm tr}} =$ $\{0_{N_{tr}}, 1_{N_{tr}}, N\}$ where $K_1 = \{ \langle a, 0.8, 0.7, 0.1 \rangle \langle b, 0.8, 0.5, 0.2 \rangle \}, K_2 = \{ \langle a, 0.8, 0.7, 0.1 \rangle \langle b, 0.8, 0.5, 0.2 \rangle \}$ $a, 0.5, 0.7, 0.2 > \langle b, 0.6, 0.5, 0.5 \rangle M = \{\langle x, 0.1, 0.2, 0.8 \rangle \langle y, 0.1, 0.1, 0.7 \rangle \}$ and $N = \{\langle p, 0.1, 0.1, 0.7 \rangle \langle q, 0.1, 0.2, 0.8 \rangle\}$ Consider the collections $\mathcal{A} = \{A : A \subset M^c, A \subset K\}, \mathcal{B} = \{B : B \subset M^c, M \subsetneq B, B \subsetneq K^c\}, \mathcal{C} = \{C : K \subset C \subsetneq K^c\}$ of neutrosophic sets in V and $\mathcal{P} = \{P : M^c \subset P \subset 1_{N_{\mathrm{tr}}}\}, \mathcal{Q} = \{Q : M \subset Q \subset M^c\}, \mathcal{R} = \{R : M \subset R \subsetneq M^c\}$ the collection of neutrosophic sets in W. Then, $N_{\mathrm{tr}}\Lambda_P C(V, \rho_{N_{\mathrm{tr}}}) = \{0_{N_{\mathrm{tr}}}, M, M^c, \mathcal{A}, \mathcal{B}, \mathcal{C}, 1_{N_{\mathrm{tr}}}\}, N_{\mathrm{tr}}\Lambda_P C(W, \omega_{N_{\mathrm{tr}}}) = \{0_{N_{\mathrm{tr}}}, N, N^c, \mathcal{P}, \mathcal{Q}, \mathcal{R}, 1_{N_{\mathrm{tr}}}\}$. Define $f_{N_{\mathrm{tr}}} : (U, \tau_{N_{\mathrm{tr}}}) \longrightarrow (V, \rho_{N_{\mathrm{tr}}})$ as $f_{N_{\mathrm{tr}}}(a) = y$ and $f_{N_{\mathrm{tr}}}(b) = x$. Then $f_{N_{\mathrm{tr}}}(K_1^C) = \{\langle x, 0.1, 0.3, 0.8 \rangle \langle y, 0.2, 0.5, 0.8 \rangle\}$ and $f_{N_{\mathrm{tr}}}(K_2^C) = \{\langle x, 0.5, 0.5, 0.6 \rangle \langle y, 0.2, 0.3, 0.5 \rangle\} \in \mathcal{B}$. Also, define $g_{N_{\mathrm{tr}}} : (V, \rho_{N_{\mathrm{tr}}}) \rightarrow (W, \omega_{N_{\mathrm{tr}}})$ as $g_{N_{\mathrm{tr}}}(x) = p$ and $g_{N_{\mathrm{tr}}}(y) = q$. Then, $g_{N_{\mathrm{tr}}}(M^c) = \{\langle p, 0.8, 0.8, 0.1 \rangle \} < q, 0.7, 0.9, 0.1 \rangle \in \mathbb{R}$. This implies that both $f_{N_{\mathrm{tr}}}$ and $g_{N_{\mathrm{tr}}} \alpha F_{N_{\mathrm{tr}}} \Lambda_P$ -closed. Now, let $g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}} : (U, \tau_{N_{\mathrm{tr}}}) \longrightarrow (W, \omega_{N_{\mathrm{tr}}})$ be the composition of two $N_{\mathrm{tr}}\Lambda_P$ -closed. Now, let $g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}} (K_1^C) = g_{N_{\mathrm{tr}}} (f_{N_{\mathrm{tr}}} (K_1^C)) = \{\langle p, 0.2, 0.5, 0.6 \rangle \langle q, 0.2, 0.3, 0.5 \rangle\}$ are not $N_{\mathrm{tr}}\Lambda_P$ -closed in $(W, \omega_{N_{\mathrm{tr}}})$. Hence $g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}}$ is not $N_{\mathrm{tr}}\Lambda_P$ -closed.

Theorem 3.20. Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ and $g_{N_{tr}} : (V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ be $N_{tr}\Lambda_P$ -closed map and let $(V, \rho_{N_{tr}})$ be a $N_{tr}T_{\Lambda_P}$ -space. Then $g_{N_{tr}} \circ f_{N_{tr}} : (U, \tau_{N_{tr}})$ $\longrightarrow (W, \omega_{N_{tr}})$ is also $N_{tr}\Lambda_P$ -closed map. **Proof.** The proof is similar to theorem 3.11.

Theorem 3.21. Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ be a bijective map between two neutrosophic topological spaces. Then, the following are equivalent

- i. $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ -open.
- ii. $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ -closed.
- *iii.* $f_{N_{tr}}^{-1}$ is $N_{tr}\Lambda_P$ -continuous.

Proof. (i) \Longrightarrow (ii) Let $f_{N_{\text{tr}}}$ be a $N_{\text{tr}}\Lambda_P$ -open function and let K be a N_{tr} -closed set in U. Then K^c is N_{tr} -open in U and by assumption, $f_{N_{\text{tr}}}(K^c)$ is $N_{\text{tr}}\Lambda_P$ -open in V. That is, $(f_{N_{\text{tr}}}(K))^c$ is $N_{\text{tr}}\Lambda_P$ -open in V. Hence $f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_P$ -closed in V. Therefore $f_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_P$ -closed.

(ii) \Longrightarrow (iii) Let K be a N_{tr} -closed set in U. Then, by assumption $f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_{P}$ closed in V. Hence $(f_{N_{\text{tr}}}^{-1})^{-1}(K) = f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_{P}$ -closed in V. Therefore $f_{N_{\text{tr}}}^{-1}$ is $N_{\text{tr}}\Lambda_{P}$ -continuous.

(iii) \Longrightarrow (i) Let K be a N_{tr} -open set in U. Then, by assumption $(f_{N_{\text{tr}}}^{-1})^{-1}(K) = f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_P$ -open in V. Hence $f_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_P$ -open.

Theorem 3.22. Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ and $g_{N_{tr}} : (V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$

be mappings between neutrosophic topological spaces such that their composition $g_{N_{tr}} \circ f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ is $N_{tr}\Lambda_P$ -open. Then the following are true

- *i.* If $f_{N_{tr}}$ is N_{tr} -continuous and surjective, then $g_{N_{tr}}$ is $N_{tr}\Lambda_P$ -open.
- ii. If $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -continuous, surjective and $(V, \rho_{N_{tr}})$ is a $N_{tr}T_{\Lambda_P}$ -space, then $g_{N_{tr}}$ is $N_{tr}\Lambda_P$ -open.
- iii. If $g_{N_{tr}}$ is $N_{tr}\Lambda_P$ -irresolute and injective, then $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ -open.

Proof.

- i. Let K be a $N_{\rm tr}$ -open set in V. Since $f_{N_{\rm tr}}$ is $N_{\rm tr}$ -continuous, $f_{N_{\rm tr}}^{-1}(K)$ is $N_{\rm tr}$ open in U. Now, since $g_{N_{\rm tr}} \circ f_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -open, $g_{N_{\rm tr}} \circ f_{N_{\rm tr}}(f_{N_{\rm tr}}^{-1}(K)) = g_{N_{\rm tr}}(f_{N_{\rm tr}}^{-1}(K)) = g_{N_{\rm tr}}(f_{N_{\rm tr}}^{-1}(K)) = g_{N_{\rm tr}}(K)$ is $N_{\rm tr}\Lambda_P$ -open in W. Hence $g_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -open.
- ii. Let K be a $N_{\rm tr}$ -open set in V. Since $f_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -continuous, $f_{N_{\rm tr}}^{-1}(K)$ is $N_{\rm tr}\Lambda_P$ -open in U. Now, since V is a $N_{\rm tr}T_{\Lambda_P}$ -space, $f_{N_{\rm tr}}^{-1}(K)$ is $N_{\rm tr}$ -open in U and since $g_{N_{\rm tr}} \circ f_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -open, $g_{N_{\rm tr}} \circ f_{N_{\rm tr}}(f_{N_{\rm tr}}^{-1}(K)) = g_{N_{\rm tr}}(f_{N_{\rm tr}}^{-1}(K)) = g_{N_{\rm tr}}(f_{N_{\rm tr}}^{-1}(K)) = g_{N_{\rm tr}}(K)$ is $N_{\rm tr}\Lambda_P$ -open in W. Hence $g_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -open.
- iii. Let K be a $N_{\rm tr}$ -open set in U. Since $g_{N_{\rm tr}} \circ f_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -open, $(g_{N_{\rm tr}} \circ f_{N_{\rm tr}})(K)$ is $N_{\rm tr}\Lambda_P$ -open. Now, since $g_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -irresolute injective function, $g_{N_{\rm tr}}^{-1}(g_{N_{\rm tr}} \circ f_{N_{\rm tr}}(K)) = g_{N_{\rm tr}}^{-1}(g_{N_{\rm tr}}(f_{N_{\rm tr}}(K))) = f_{N_{\rm tr}}(K)$ is $N_{\rm tr}\Lambda_P$ -open in V. Hence $f_{N_{\rm tr}}$ is $N_{\rm tr}\Lambda_P$ -open.

Theorem 3.23. If $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is a $N_{tr}\Lambda_P$ -open function and $g_{N_{tr}}: (V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ is a surjection such that their composition is N_{tr} -open, then $g_{N_{tr}}$ is $N_{tr}\Lambda_P$ -continuous.

Proof. Let K be a N_{tr} -open set in U. Since $g_{N_{\text{tr}}} \circ f_{N_{\text{tr}}}$ is N_{tr} -open, $g_{N_{\text{tr}}} \circ f_{N_{\text{tr}}}(K)$ is N_{tr} -open in W. Now, $g_{N_{\text{tr}}}^{-1}(g_{N_{\text{tr}}} \circ f_{N_{\text{tr}}}(K)) = g_{N_{\text{tr}}}^{-1}(g_{N_{\text{tr}}}(f_{N_{\text{tr}}}(K))) = f_{N_{\text{tr}}}(K)$. Since $f_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_P$ -open, $f_{N_{\text{tr}}}(K)$ is $N_{\text{tr}}\Lambda_P$ -open in V and hence $g_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_P$ -continuous.

4. Neutrosophic $\Lambda_{\rm P}$ -homeomorphism

Definition 4.1. A bijective map $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is said to be a *neutrosophic* $\Lambda_{\mathbf{P}}$ -homeomorphism if $f_{N_{tr}}$ and $f_{N_{tr}}^{-1}$ are $N_{tr}\Lambda_{P}$ -continuous.

Example 4.2. Let $U = \{a, b\}$, $V = \{x, y\}$, $\tau_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, K_1, K_2\}$, $\rho_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, M\}$ where $K_1 = \{< a, 0.3, 0.4, 0.5 > < b, 0.6, 0.5, 0.6 >\}$, $K_2 = \{< a, 0.3, 0.3, 0.8 > < b, 0.5, 0.2, 0.6 >\}$ and $M = \{< x, 0.2, 0.3, 0.8 > < y, 0.3, 0.2, 0.9 >\}$. Consider the collections $\mathcal{A} = \{A : 0_{N_{tr}} \subset A \subset K\}, \mathcal{B} = \{B : K \subset B \subset K^c\}$ and $\mathcal{C} = \{C : C \subsetneq K, K \subsetneq C, C \subset K^c\}$ of neutrosophic sets in U and the collections $\mathcal{P} = \{P : 0_{N_{tr}} \subset P \subset K_2\}, \mathcal{Q} = \{Q : K_1 \subset Q \subset K_1^C\}$ and $\mathcal{R} = \{R : R \subsetneq K_1; K_1 \subsetneq R; R \subset K_1^C\}$ of neutrosophic sets in V. Then $N_{tr}\Lambda_PO(U, \tau_{N_{tr}}) = \{0_{N_{tr}}, K_1, K_2, K_1^C, \mathcal{A}, \mathcal{B}, \mathcal{C}, 1_{N_{tr}}\}$ and $N_{tr}\Lambda_PO(V, \rho_{N_{tr}}) = \{0_{N_{tr}}, M, M^c, \mathcal{P}, \mathcal{Q}, \mathcal{R}, 1_{N_{tr}}\}$. Define $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ as $f_{N_{tr}}(a) = x$ and $f_{N_{tr}}(b) = y$. Then $f_{N_{tr}}^{-1} : (V, \rho_{N_{tr}}) \longrightarrow (U, \tau_{N_{tr}})$ is defined as $f_{N_{tr}}^{-1}(x) = a$ and $f_{N_{tr}}^{-1}(y) = b$. Now, $f_{N_{tr}}^{-1}(M) = \{\langle a, 0.2, 0.3, 0.8 \rangle \langle b, 0.3, 0.2, 0.9 \rangle\}$ $\} \in \mathcal{A}, (f_{N_{tr}}^{-1})^{-1}(K_1) = \{\langle x, 0.3, 0.4, 0.5 \rangle \langle y, 0.6, 0.5, 0.6 \rangle\} \in \mathcal{Q}$ and $(f_{N_{tr}}^{-1})^{-1}(K_2) = \{\langle x, 0.3, 0.3, 0.8 \rangle \langle y, 0.5, 0.2, 0.6 \rangle\} \in \mathcal{R}$. Clearly, $f_{N_{tr}}$ is a bijection and both $f_{N_{tr}}$ and $f_{N_{tr}}^{-1}$ are $N_{tr}\Lambda_P$ -continuous. Hence $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ homeomorphism.

Theorem 4.3. Every N_{tr} -homeomorphism is a $N_{tr}\Lambda_P$ -homeomorphism. **Proof.** Let a bijective map $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ be a N_{tr} -homeomorphism. Then both $f_{N_{tr}}$ and $f_{N_{tr}}^{-1}$ are N_{tr} -continuous. By theorem 2.13, both $f_{N_{tr}}$ and $f_{N_{tr}}^{-1}$ are $N_{tr}\Lambda_P$ -continuous. Hence $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -homeomorphism.

Remark 4.4. The converse of theorem 4.3 does not hold in general.

Example 4.5. Let $U = \{a, b\}$, $V = \{x, y\}$, $\tau_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, K\}$ and $\rho_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, M\}$ Where $K = \{\langle a, 0.3, 0.4, 0.9 \rangle \langle b, 0.2, 0.3, 0.8 \rangle\}$ and $M = \{\langle a, 0.4, 0.5, 0.8 \rangle \langle b, 0.3, 0.5, 0.4 \rangle\}.$

Consider the collections $\mathcal{A} = \{A : 0_{N_{tr}} \subset A \subset K\}, \mathcal{B} = \{B : K \subset B \subset K^C\}$, $\mathcal{C} = \{C : C \subsetneq K; K \subsetneq C; C \subset K^C\}$ of neutrosophic sets in U and the collections $\mathcal{P} = \{P : 0_{N_{tr}} \subset P \subset M\}, \mathcal{Q} = \{Q : M \subset Q \subset M^C\}, \mathcal{R} = \{R : R \subsetneq M; M \subsetneq R; R \subset M^C\}$ of neutrosophic sets in V.

Then, $N_{\mathrm{tr}}\Lambda_P O(U, \tau_{N_{\mathrm{tr}}}) = \{0_{N_{\mathrm{tr}}}, K, K^c, \mathcal{A}, \mathcal{B}, \mathcal{C}, 1_{N_{\mathrm{tr}}}\},$ $N_{\mathrm{tr}}\Lambda_P O(V, \rho_{N_{\mathrm{tr}}}) = \{0_{N_{\mathrm{tr}}}, M, M^c, \mathcal{P}, \mathcal{Q}, \mathcal{R}, 1_{N_{\mathrm{tr}}}\}.$ Define $f_{N_{\mathrm{tr}}} : (U, \tau_{N_{\mathrm{tr}}}) \longrightarrow (V, \rho_{N_{\mathrm{tr}}})$ as $f_{N_{\mathrm{tr}}}(a) = y$ and $f_{N_{\mathrm{tr}}}(b) = x$. Then $f_{N_{\mathrm{tr}}}^{-1} : (V, \rho_{N_{\mathrm{tr}}}) \longrightarrow (U, \tau_{N_{\mathrm{tr}}})$ is defined as $f_{N_{\mathrm{tr}}}^{-1}(x) = b$ and $f_{N_{\mathrm{tr}}}^{-1}(y) = a$. Now, $f_{N_{\mathrm{tr}}}^{-1}(M) = \{\langle a, 0.3, 0.5, 0.4 \rangle \langle b, 0.4, 0.5, 0.8 \rangle\} \in \mathcal{B}$ and $(f_{N_{\mathrm{tr}}}^{-1})^{-1}(K) = \{\langle x, 0.2, 0.3, 0.8 \rangle \langle y, 0.3, 0.4, 0.9 \rangle\} \in \mathcal{P}.$ Clearly, $f_{N_{\mathrm{tr}}}$ is a bijection and both $f_{N_{\mathrm{tr}}}$ and $f_{N_{\mathrm{tr}}}^{-1}$ are $N_{\mathrm{tr}}\Lambda_P$ -continuous but not N_{tr} -continuous. Hence $f_{N_{\mathrm{tr}}}$ is a $N_{\mathrm{tr}}\Lambda_P$ -homeomorphism but not N_{tr} -homeomorphism.

Theorem 4.6. Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ be a bijective $N_{tr}\Lambda_P$ -continuous function between two neutrosophic topological spaces. Then, the following are equivalent

- i. $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -open map.
- ii. $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -closed map.
- *iii.* $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -homeomorphism.

Proof. Proof follows from theorem 3.21.

Remark 4.7. The composition of two $N_{tr}\Lambda_P$ -homeomorphisms need not be $N_{tr}\Lambda_P$ -homeomorphism.

Example 4.8. Let $U = \{a, b\}$, $V = \{x, y\}$ and $W = \{p, q\}$. Consider the neutrosophic topologies $\tau_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, K_1, K_2\}, \rho_{N_{\text{tr}}} = \{0_{N_{\text{tr}}}, 1_{N_{\text{tr}}}, M\}$ and $\omega_{N_{\text{tr}}} =$ $\{0_{N_{\rm tr}}, 1_{N_{\rm tr}}, N\}$ where $K_1 = \{ \langle a, 0.4, 0.5, 0.1 \rangle \langle b, 0.6, 0.7, 0.2 \rangle \}, K_2 = \{ \langle a, 0.4, 0.5, 0.1 \rangle \langle b, 0.6, 0.7, 0.2 \rangle \}$ $a, 0.1, 0.5, 0.4 > < b, 0.2, 0.3, 0.6 > \}, M = \{ < x, 0.2, 0.4, 0.7 > < y, 0.2, 0.3, 0.8 > \}$ and $N = \{ < p, 0.1, 0.4, 0.7 > < q, 0.3, 0.7, 0.8 > \}.$ Consider $\mathcal{A} = \{A : 0_{N_{tr}} \subset A \subset K_2\}$, the collection of neutrosophic sets in $U, \mathcal{X} = \{X : 0_{N_{\text{tr}}} \subset X \subset M\}, \ \mathcal{Y} = \{Y : M \subset Y \subset M^C\},\$ $\mathcal{Z} = \{Z : Z \subsetneq M; M \subsetneq Z; Z \subset M^C\}$ the collection of neutrosophic sets in V and $\mathcal{P} = \{ P : 0_{N_{\text{tr}}} \subset P \subset N \}, \mathcal{Q} = \{ Q : N \subset Q \subset N^C \},\$ $\mathcal{R} = \{R : R \subseteq N; N \subseteq R; R \subset N^C\}$, the collection of neutrosophic sets in W. Then, $N_{\text{tr}} \Lambda_P O(U, \tau_{N_{\text{tr}}}) = \{0_{N_{\text{tr}}}, K_1, K_2, \mathcal{A}, 1_{N_{\text{tr}}}\},\$ $N_{\mathrm{tr}}\Lambda_P O\left(V,\rho_{N_{\mathrm{tr}}}\right) = \{0_{N_{\mathrm{tr}}}, M, M^c, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, 1_{N_{\mathrm{tr}}}\}$ and $N_{\text{tr}}\Lambda_P O(W,\omega_{N_{\text{tr}}}) = \{0_{N_{\text{tr}}}, N, N^c, \mathcal{P}, \mathcal{Q}, \mathcal{R}, 1_{N_{\text{tr}}}\}$. Define $f_{N_{\text{tr}}}: (U, \tau_{N_{\text{tr}}}) \longrightarrow (V, \rho_{N_{\text{tr}}})$ as $f_{N_{tr}}(a) = x$ and $f_{N_{tr}}(b) = y$. Then $f_{N_{\text{tr}}}(K_1) = \{ \langle x, 0.4, 0.5, 0.1 \rangle \langle y, 0.6, 0.7, 0.2 \rangle \}$ and $f_{N_{\text{tr}}}(K_2) = \{ \langle x, 0.1, 0.5, 0.4 \rangle \langle y, 0.2, 0.3, 0.6 \rangle \} \in \mathcal{Y}.$ Also, $f_{N_{\text{tr}}}^{-1}(M) = \{ \langle a, 0.2, 0.4, 0.7 \rangle \langle b, 0.2, 0.3, 0.8 \rangle \} \in \mathcal{A}$. Now, define $g_{N_{\text{tr}}}$:

Also, $f_{N_{tr}}^{-1}(M) = \{ \langle a, 0.2, 0.4, 0.7 \rangle \langle b, 0.2, 0.3, 0.8 \rangle \} \in \mathcal{A}$. Now, define $g_{N_{tr}}$: $(V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ as $g_{N_{tr}}(x) = p$ and $g_{N_{tr}}(y) = q$. Then $g_{N_{tr}}(M) = \{ \langle p, 0.2, 0.4, 0.7 \rangle \langle q, 0.2, 0.3, 0.8 \rangle \} \in \mathcal{P}$ and

$$\begin{split} g_{N_{\mathrm{tr}}}^{-1}(N) &= \{ < x, 0.1, 0.4, 0.7 > < y, 0.3, 0.7, 0.8 > \} \in \mathcal{Y}. \text{ This implies that both } f_{N_{\mathrm{tr}}} \\ \text{and } g_{N_{\mathrm{tr}}} \text{ are } N_{\mathrm{tr}} \Lambda_P \text{-homeomorphism. Now, let } g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}} : (U, \tau_{N_{\mathrm{tr}}}) \longrightarrow (W, \omega_{N_{\mathrm{tr}}}) \text{ be the composition of two } N_{\mathrm{tr}} \Lambda_P \text{-homeomorphisms. Then, } g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}} \text{ is not a } N_{\mathrm{tr}} \Lambda_P \text{-homeomorphisms ince } (g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}})^{-1}(N) = f_{N_{\mathrm{tr}}}^{-1}(g_{N_{\mathrm{tr}}}^{-1}(N)) = \{ < a, 0.1, 0.4, 0.7 > < b, 0.3, 0.7, 0.8 > \} \text{ is not } N_{\mathrm{tr}} \Lambda_P \text{-open in } (U, \tau_{N_{\mathrm{tr}}}) . \end{split}$$

Theorem 4.9. Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ and $g_{N_{tr}} : (V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ be $N_{tr}\Lambda_P$ -homeomorphisms where $(V, \rho_{N_{tr}})$ is a $N_{tr}T_{\Lambda_P}$ -space. Then, their composition $g_{N_{tr}} \circ f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ is also a $N_{tr}\Lambda_P$ -homeomorphism.

Proof. Let K be a neutrosophic set in W. Since $g_{N_{\text{tr}}}$ is a $N_{\text{tr}}\Lambda_P$ -homeomorphism, $g_{N_{\text{tr}}}$ is $N_{\text{tr}}\Lambda_P$ -continuous. This implies $g_{N_{\text{tr}}}^{-1}(K)$ is $N_{\text{tr}}\Lambda_P$ -open in V. By hypothesis,

 $g_{N_{\mathrm{tr}}}^{-1}(K)$ is N_{tr} -open in V. Also, since $f_{N_{\mathrm{tr}}}$ is a $N_{\mathrm{tr}}\Lambda_P$ -homeomorphism, $f_{N_{\mathrm{tr}}}$ is $N_{\mathrm{tr}}\Lambda_P$ continuous. Hence $(g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}})^{-1} = f_{N_{\mathrm{tr}}}^{-1}(g_{N_{\mathrm{tr}}}^{-1}(K))$ is $N_{\mathrm{tr}}\Lambda_P$ -open in U. Therefore $g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}}$ is $N_{\mathrm{tr}}\Lambda_P$ -continuous. Similarly, $(g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}})^{-1}$ is $N_{\mathrm{tr}}\Lambda_P$ -continuous. Hence $g_{N_{\mathrm{tr}}} \circ f_{N_{\mathrm{tr}}}$ is a $N_{\mathrm{tr}}\Lambda_P$ -homeomorphism.

5. Neutrosophic $\Lambda_{\mathbf{P}}$ -*i* homeomorphism

Definition 5.1. A bijective map $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ is said to be a **neu**trosophic $\Lambda_{\mathbf{P}}$ -*i* homeomorphism if $f_{N_{tr}}$ and $f_{N_{tr}}^{-1}$ are $N_{tr}\Lambda_{P}$ -irresolute.

Example 5.2. Let $U = \{a, b\}$, $V = \{x, y\}$, $\tau_{N_{tr}} = \{0_{N_{tr}}, 1_{N_{tr}}, K\}$ and $\rho_{N_{tr}} = \{0_{N_{tr}}, 1_{N_{tr}}, M\}$ Where $K = \{\langle a, 0.7, 0.8, 0.2 \rangle \langle b, 0.9, 0.6, 0.4 \rangle \}$ and $M = \{\langle x, 0.9, 0.6, 0.4 \rangle \langle y, 0.7, 0.8, 0.2 \rangle \}$. Consider the collection $\mathcal{A} = \{A : K^C \subset A \subset K\}$ and $\mathcal{B} = \{B : K \subset B \subset 1_{N_{tr}}\}$ of neutrosophic sets in U and V respectively. Here, $N_{tr}\Lambda_PO(U, \tau_{N_{tr}}) = \{0_{N_{tr}}, K, \mathcal{A}, 1_{N_{tr}}\}$ and $N_{tr}\Lambda_PO(V, \rho_{N_{tr}}) = \{0_{N_{tr}}, M, \mathcal{B}, 1_{N_{tr}}\}$. Define $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ as $f_{N_{tr}}(a) = y$ and $f_{N_{tr}}(b) = x$. Then $f_{N_{tr}}^{-1} : (V, \rho_{N_{tr}}) \longrightarrow (U, \tau_{N_{tr}})$ is defined as $f_{N_{tr}}^{-1}(x) = b$ and $f_{N_{tr}}^{-1}(y) = a$. Now, $f_{N_{tr}}^{-1}(M) = \{\langle a, 0.7, 0.8, 0.2 \rangle \langle b, 0.9, 0.6, 0.4 \rangle\} = K$ and for every neutrosophicset $B \in \mathcal{B}$, there exists some $A \in \mathcal{A}$ such that $f_{N_{tr}}^{-1}(B) = A$. Also, $(f_{N_{tr}}^{-1})^{-1}(K) = \{\langle x, 0.9, 0.6, 0.4 \rangle \langle y, 0.7, 0.8, 0.2 \rangle\} = M$ and for every neutrosophic set $A \in \mathcal{A}$, there exists some $B \in \mathcal{B}$ such that $(f_{N_{tr}}^{-1})^{-1}(A) = B$. Clearly, $f_{N_{tr}}\Lambda_P$ -*i* homeomorphism.

Theorem 5.3. Every $N_{tr}\Lambda_P$ -*i* homeomorphism is a $N_{tr}\Lambda_P$ -homeomorphism. **Proof.** Let $f_{N_{tr}} : (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ be a $N_{tr}\Lambda_P$ -*i* homeomorphism. Then, both $f_{N_{tr}}$ and $f_{N_{tr}}^{-1}$ are $N_{tr}\Lambda_P$ -irresolute. Now, by theorem 2.15, both $f_{N_{tr}}$ and $f_{N_{tr}}^{-1}$ are $N_{tr}\Lambda_P$ -continuous. Hence $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -homeomorphism.

Remark 5.4. The converse of theorem 5.3 does not hold in general.

Example 5.5. Consider the topological spaces and bijection $f_{N_{\rm tr}}$ defined in example 4.2. Here both $f_{N_{\rm tr}}$ and $f_{N_{\rm tr}}^{-1}$ are $N_{\rm tr}\Lambda_P$ -continuous. However $f_{N_{\rm tr}}$ is not $N_{\rm tr}\Lambda_P$ -irresolute since $f_{N_{\rm tr}}^{-1}(M^c) = \{ < a, 0.8, 0.7, 0.2 > < b, 0.9, 0.8, 0.3 > \} \notin N_{\rm tr}\Lambda_P O(U, \tau_{N_{\rm tr}})$. Hence $f_{N_{\rm tr}}$ is a $N_{\rm tr}\Lambda_P$ - homeomorphism but not a $N_{\rm tr}\Lambda_P$ -*i* homeomorphism. We denote the family of all $N_{\rm tr}$ -homeomorphisms (resp. $N_{\rm tr}\Lambda_P$ -homeomorphism) from the topological space $(U, \tau_{N_{\rm tr}})$ into $(U, \tau_{N_{\rm tr}})$ by $N_{\rm tr}h(U, \tau_{N_{\rm tr}})$ (resp. $N_{\rm tr}\Lambda_P h(U, \tau_{N_{\rm tr}})$, $N_{\rm tr}\Lambda_P$ -ih $(U, \tau_{N_{\rm tr}})$).

Theorem 5.6. Let $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ be a bijection between two neutrosophic topological spaces. Then, the following are equivalent: *i.* $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -ihomeomorphism.

ii.
$$f_{N_{tr}}^{-1}(N_{tr}\Lambda_Pint(K)) = N_{tr}\Lambda_Pint(f_{N_{tr}}^{-1}(K))$$
 for every neutrosophic set K in V.

iii.
$$f_{N_{tr}}(N_{tr}\Lambda_Pint(K)) = N_{tr}\Lambda_Pint(f_{N_{tr}}(K))$$
 for every neutrosophic set K in U.

- iv. $N_{tr}\Lambda_P cl(f_{N_{tr}}(K)) = f_{N_{tr}}(N_{tr}\Lambda_P cl(K))$ for every neutrosophic set K in U.
- v. $N_{tr}\Lambda_P cl\left(f_{N_{tr}}^{-1}(K)\right) = f_{N_{tr}}^{-1}\left(N_{tr}\Lambda_P cl(K)\right)$ for every neutrosophic set K in V.

Proof. (i) \Longrightarrow (ii) Since $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -*i*homeomorphism, $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ -irresolute. Now, let K be a neutrosophic set in V. Then $N_{tr}\Lambda_P$ -*int*(K) is $N_{tr}\Lambda_P$ -open set in V. Since $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ - irresolute, $f_{N_{tr}}^{-1}(N_{tr}\Lambda_P$ -*int*(K)) is $N_{tr}\Lambda_P$ -open in U. Also, $f_{N_{tr}}^{-1}(N_{tr}\Lambda_P$ -*int*(K)) $\subseteq f_{N_{tr}}^{-1}(K)$. Thus, $f_{N_{tr}}^{-1}(N_{tr}\Lambda_P$ -*int*(K)) $\subseteq N_{tr}\Lambda_P$ -*int*($f_{N_{tr}}^{-1}(K)$) for every neutrosophic set K in V. Again, since $f_{N_{tr}}$ is a $N_{tr}\Lambda_P$ -*i*homeomorphism, $f_{N_{tr}}^{-1}$: $(V, \rho_{N_{tr}}) \longrightarrow (U, \tau_{N_{tr}})$ is $N_{tr}\Lambda_P$ -*i*rresolute. Now, for any neutrosophic set K in V, $N_{tr}\Lambda_P$ -*i*nt $(f_{N_{tr}}^{-1}(K))$ is $N_{tr}\Lambda_P$ -open in U.Then, $(f_{N_{tr}}^{-1})^{-1}(N_{tr}\Lambda_P$ -*int*($f_{N_{tr}}^{-1}(K)$)) $= f_{N_{tr}}(N_{tr}\Lambda_P$ -*int*($f_{N_{tr}}^{-1}(K)$)) is $N_{tr}\Lambda_P$ -open in V. Also, $f_{N_{tr}}(N_{tr}\Lambda_P$ -*int*($f_{N_{tr}}^{-1}(K)$)) $\subseteq K$. Therefore, $f_{N_{tr}}(N_{tr}\Lambda_P$ -*int*($f_{N_{tr}}^{-1}(K)$)) $\subseteq N_{tr}\Lambda_P$ *int*(K) $\Longrightarrow N_{tr}\Lambda_P$ -*int*(K) $\Longrightarrow N_{tr}\Lambda_P$ -*int*(K)) $\subseteq N_{tr}\Lambda_P$ *int*(K) $\Longrightarrow N_{tr}\Lambda_P$ -*int*(K)) $\subseteq N_{tr}\Lambda_P$ *int*(K) $\Longrightarrow N_{tr}\Lambda_P$ -*int*(K_{T})) is $N_{tr}\Lambda_P$ -open in V. Also, $f_{N_{tr}}(N_{tr}\Lambda_P$ *int*($f_{N_{tr}}^{-1}(K)$)) $\subseteq N_{tr}\Lambda_P$ *int*(K)) $\cong N_{tr}\Lambda_P$ -*int*(K)) $\subseteq N_{tr}\Lambda_P$ *int*(K)) $\cong N_{tr}\Lambda_P$ *int*(K)) $\subseteq N_{tr}\Lambda_P$ *int*(K) $\Longrightarrow N_{tr}\Lambda_P$ *int*(K)) $\subseteq N_{tr}\Lambda_P$ *int*(K)) $\cong N_{tr}\Lambda_P$ *int*(K)) $\cong N_{tr}\Lambda_P$ *int*(K)) $\subseteq N_{tr}\Lambda_P$ *int*(K)) $\cong N$

(ii) \Longrightarrow (iii) Let $M = f_{N_{tr}}(K)$ be a neutrosophic set in V.

By (ii), $f_{N_{\text{tr}}}^{-1}(N_{\text{tr}}\Lambda_{P}\operatorname{int}(f_{N_{\text{tr}}}(K))) = f_{N_{\text{tr}}}^{-1}(N_{\text{tr}}\Lambda_{P}\operatorname{int}(M)) = N_{\text{tr}}\Lambda_{P}\operatorname{int}(f_{N_{\text{tr}}}^{-1}(K)) = N_{\text{tr}}\Lambda_{P}\operatorname{int}(K).$ This implies $N_{\text{tr}}\Lambda_{P}\operatorname{int}(f_{N_{\text{tr}}}(K)) = f_{N_{\text{tr}}}(N_{\text{tr}}\Lambda_{P}\operatorname{int}(K))$ for every neutrosophic set K in U.

(iii) \Longrightarrow (iv) For any neutrosophic set K in $U, N_{tr}\Lambda_P cl(K) = (N_{tr}\Lambda_P int(K^C))^C$. Then, $f_{N_{tr}}(N_{tr}\Lambda_P cl(K)) = f_{N_{tr}}(N_{tr}\Lambda_P int(K^C))^C = (f_{N_{tr}}(N_{tr}\Lambda_P int(K^C)))^C$ $= (N_{tr}\Lambda_P int(f_{N_{tr}}(K^C))^C = N_{tr}\Lambda_P cl(f_{N_{tr}}(K^C)^C) = N_{tr}\Lambda_P cl(f_{N_{tr}}(K))$. Hence $f_{N_{tr}}(N_{tr}\Lambda_P cl(K)) = N_{tr}\Lambda_P cl(f_{N_{tr}}(K))$ for every neutrosophic set K in U. (iv) \Longrightarrow (v) Let $K = f_{N_{tr}}(M)$ be a neutrosophic set in V. By (iv), $f_{N_{tr}}(N_{tr}\Lambda_P cl(f_{N_{tr}}^{-1}(K))) = N_{tr}\Lambda_P cl(f_{N_{tr}}(f_{N_{tr}}^{-1}(K))) = N_{tr}\Lambda_P cl(K)$ implies $N_{tr}\Lambda_P cl(f_{N_{tr}}^{-1}(K)) = f_{N_{tr}}^{-1}(N_{tr}\Lambda_P cl(K))$ for every neutrosophic set K in V. (v) \Longrightarrow (i) By theorem 2.16, $f_{N_{tr}}$ is $N_{tr}\Lambda_P$ -irresolute if $N_{tr}\Lambda_P cl(f_{N_{tr}}^{-1}(K)) \subseteq f_{N_{tr}}^{-1}(N_{tr}\Lambda_P cl(K))$ for every neutrosophic set K in V. Similarly, $f_{N_{tr}}^{-1}$ is $N_{tr}\Lambda_P$ -irresolute if $f_{N_{tr}}^{-1}(N_{tr}\Lambda_P cl(K))$ for every neutrosophic set K in V. Now, by assumption, both $f_{N_{\text{tr}}}$ and $f_{N_{\text{tr}}}^{-1}$ are $N_{\text{tr}}\Lambda_{P}$ -irresolute. Hence $f_{N_{\text{tr}}}$ is a $N_{\text{tr}}\Lambda_{P}$ -i homeomorphism.

Theorem 5.7. Let $f_{N_{tr}}: (U, \tau_{N_{tr}}) \longrightarrow (V, \rho_{N_{tr}})$ and $g_{N_{tr}}: (V, \rho_{N_{tr}}) \longrightarrow (W, \omega_{N_{tr}})$ be two $N_{tr}\Lambda_{P}$ -*i* homeomorphisms. Then, their composition $g_{N_{tr}} \circ f_{N_{tr}}$ is also a $N_{tr}\Lambda_{P}$ -*i* homeomorphism.

Proof. By hypothesis, the functions $f_{N_{\text{tr}}}$, $g_{N_{\text{tr}}}$ and $f_{N_{\text{tr}}}^{-1}$, $g_{N_{\text{tr}}}^{-1}$ are all $N_{\text{tr}}\Lambda_{P}$ irresolute. Then, by theorem 2.17, both $g_{N_{\text{tr}}} \circ f_{N_{\text{tr}}}$ and $(g_{N_{\text{tr}}} \circ f_{N_{\text{tr}}})^{-1} = f_{N_{\text{tr}}}^{-1} \circ g_{N_{\text{tr}}}^{-1}$ are $N_{\text{tr}}\Lambda_{P}$ -irresolute. Hence $g_{N_{\text{tr}}} \circ f_{N_{\text{tr}}}$ is a $N_{\text{tr}}\Lambda_{P}$ -*i* homeomorphism.

6. Conclusion

This article defined and examined some of the properties of $N_{\rm tr}\Lambda_P$ - homeomorphism and $N_{\rm tr}\Lambda_P$ -*i* homeomorphism in neutrosophic topological spaces. Additionally, the study was expanded to include discussion of $N_{\rm tr}\Lambda_P$ -open and $N_{\rm tr}\Lambda_P$ -closed mappings. Numerous instances are provided to support the findings. This concept can be used to drive few more new results of $N_{\rm tr}\Lambda_P$ -connectedness and compactness in neutrosophic topological spaces. Also, this study will be extended to separation axioms, normal and regular spaces using $N_{\rm tr}\Lambda_P$ -open sets in neutrosophic topological spaces

References

- Dhavaseelan, R., and Saied Jafari, Generalized Neutrosophic closed sets, Infinite Study, 2017.
- [2] Hanif, P. A. G. E., and Qays Hatem Imran., Neutrosophic generalized homeomorphism, Infinite Study, 35 (2020), 340-346.
- [3] Karatas, S., Kuru, C., Neutrosophic Topology, Neutrosophic Sets and Systems, 13 (2016), 90-95.
- [4] Parimala, M., Jeevitha, R., Jafari, S., Smarandache F., Udhayakumar, R., Neutrosophic $\alpha\psi$ -homeomorphisms in Neutrosophic Topological Spaces, Information, 9 (2019).
- [5] Ray, G. C., Sudeep Dey., Neutrosophic point and its neighbourhood structure, Neutrosophic sets and Systems, 43 (2021), 156-168.
- [6] Reena C. and Karthika M., On Neutrosophic Λ_P -Open sets in Neutrosophic Topoloical Space, Indian Journal of Pure and Applied Mathematics (Communicated).

- [7] Reena, C. and Karthika M., On Neutrosophic Λ_P -Neighbourhood and Its Functions In Neutrosophic Topological Spaces, Indian Journal of Natural Sciences, 15 (2024), 72850-72860.
- [8] Salama A. A., Alblowi S. A., Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, 3 (2012).
- [9] Salama A. A., Smarandache F., Kromov V., Neutrosophic Closed Set and Neutrosophic Continuous Functions, Neutrosophic Sets and Systems, 4 (2014), 4-8.
- [10] Smarandache F., A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehaboth, 1999.
- [11] Smarandache F., Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA, 2002.
- [12] Zadeh L. A., Fuzzy set, Information and control, 8 (1965), 338-353.