South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 365-372

DOI: 10.56827/SEAJMMS.2024.2001.28

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

INTUITIONISTIC FUZZY SEMI γ^* GENERALIZED IRRESOLUTE MAPPING

Abinaya M. and Jayanthi D.*

Department of Mathematics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, INDIA

E-mail : abisugan84@gmail.com

*Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, INDIA

E-mail : jayanthimathss@gmail.com

(Received: Mar. 11, 2022 Accepted: Apr. 12, 2024 Published: Apr. 30, 2024)

Abstract: In this paper we have introduced intuitionistic fuzzy semi γ^* generalized irresolute mappings and investigated some of their properties. Also we have provided some characterization of intuitionistic fuzzy semi γ^* generalized irresolute mappings.

Keywords and Phrases: Intuitionistic fuzzy sets, Intuitionistic fuzzy topology, Intuitionistic fuzzy semi γ^* generalized closed sets, intuitionistic fuzzy semi γ^* generalized irresolute mappings.

2020 Mathematics Subject Classification: 54A40, 03E72, 03F55.

1. Introduction

The concept of fuzzy set is introduced by Zadeh [7] in 1965 and later Atanassov [4] generalized this idea to intuitionistic fuzzy sets. Coker [5] has introduced intuitionistic fuzzy topological space using the notion of intuitionistic fuzzy sets. Abinaya and Jayanthi [1, 2] introduced intuitionistic fuzzy semi γ^* generalized closed sets and intuitionistic fuzzy semi γ^* generalized continuous mappings. In this paper, we have introduced intuitionistic fuzzy semi γ^* generalized irresolute mappings and investigated some of their properties. Also we have provided some characterization of intuitionistic fuzzy semi γ^* generalized irresolute mappings.

2. Preliminaries

Definition 2.1. [4] An intuitionistic fuzzy set (IFS) A is of the form

 $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$

Where the function $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and degree of non membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

An intuitionistic fuzzy set A in X is simply denoted by $A = \langle x, \mu_A, \nu_A \rangle$ instead of denoting $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}.$

Definition 2.2. [4] Let A and B be two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$. Then,

- (a) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,
- (b) A = B if and only if $A \subseteq B$ and $A \supseteq B$,

(c)
$$A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle : x \in X \},\$$

(d)
$$A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \},\$$

(e) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0_{\sim} = \langle x, 0, 1 \rangle$ and $1_{\sim} = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X.

Definition 2.3. [5] An intuitionistic fuzzy topology (IFT) on X is a family τ of IFSs in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (iii) $\cup G_i \in \tau$ for any family $\{G_i : i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called the intuitionistic fuzzy topological space (IFTS) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.4. [6] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy γ closed set (IF γ CS) if $cl(int(A)) \cap int(cl(A)) \subseteq A$

(ii) intuitionistic fuzzy γ open set (IF γOS) if $A \subseteq cl(int(A)) \cup int(cl(A))$.

Definition 2.5. [1] An IFS A of an IFTS (X, τ) is said to be an intuitionistic fuzzy semi γ^* generalized closed set (IF semi γ^*GCS) if $int(cl(A)) \cap cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is an IFSOS in (X, τ) .

Definition 2.6. [2] A mapping $f : (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy semi γ^* generalized (IF semi γ^*G) continuous mapping if $f^{-1}(V)$ is an IF semi γ^*GCS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.7. [1] An IFTS (X, τ) is an intuitionistic fuzzy semi $\gamma_c^* T_{1/2}$ (IF semi $\gamma_c^* T_{1/2}$) space if every IF semi $\gamma^* GCS$ is an IFCS in X.

Definition 2.8. [1] An IFTS (X, τ) is an intuitionistic fuzzy semi $\gamma_{\gamma}^* T_{1/2}$ (IF semi $\gamma_{\gamma}^* T_{1/2}$) space if every IF semi $\gamma^* GCS$ is an IF γCS in X.

Definition 2.9. [3] A mapping $f : (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy almost semi γ^* generalized (IF almost semi γ^*G) continuous mapping if $f^{-1}(V)$ is an IF semi γ^*GCS in (X, τ) for every IFRCS V of (Y, σ) .

Proposition 2.10. [1] Every IFCS is an IF semi $\gamma^* GCS$ in (X, τ) . **Proof.** Let A be an IFCS in (X, τ) . Let $A \subseteq U$ where U is an IFSOS in (X, τ) . Since A is an IFCS, cl(A) = A. Now $int(cl(A)) \cap cl(int(A)) = int(A) \cap cl(int(A)) \subseteq A \cap cl(A) = A \cap A = A \subseteq U$. Hence A is an IF semi $\gamma^* GCSin(X, \tau)$.

3. Intuitionistic fuzzy semi γ^* generalized irresolute mapping

In this section we have introduced intuitionistic fuzzy semi γ^* generalized irresolute mappings and investigated some of their properties.

Definition 3.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy semi γ^* generalized (IF semi γ^*G) irresolute mapping if $f^{-1}(V)$ is an IF semi γ^*GCS in (X, τ) for every IF semi γ^*GCS V of (Y, σ) .

Example 3.2. Let $X = \{a, b\}, Y = \{u, v\}, G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle, G_2 = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ and $G_3 = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_3, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Here,

 $IFSO(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0, 1], \mu_b \in [0, 1], \nu_a \in [0, 1], \nu_b \in [0, 1]/0.4 \le \mu_a \le 0.5, 0.4 \le \mu_b \le 0.6, 0.5 \le \nu_a \le 0.6, 0.4 \le \nu_b \le 0.7 \text{ and } 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$

 $IFSO(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0, 1], \mu_v \in [0, 1], \nu_u \in [0, 1], \nu_v \in [0, 1] | \mu_u \ge 0.5, \mu_v \ge 0.6, \nu_u \le 0.5, \nu_v \le 0.4 \text{ and } 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\}.$

Let $A = \langle y, (0.3_u, 0.6_v), (0.7_u, 0.4_v) \rangle$. Then A is an IF semi γ^* GCS in Y and $f^{-1}(A) = \langle x, (0.3_a, 0.6_b), (0.7_a, 0.4_b) \rangle$ is also an IF semi γ^* GCS in (X, τ) . Therefore f is an IF semi $\gamma^* G$ irresolute mapping.

Theorem 3.3. Let $f : (X, \tau) \to (Y, \sigma)$ be an IF semi γ^*G irresolute mapping, then f is an IF semi γ^*G continuous mapping but not conversely in general.

Proof. Let f be an IF semi γ^*G irresolute mapping. Let V be any IFCS in Y. Then V is an IF semi γ^*G CS and by hypothesis $f^{-1}(V)$ is an IF semi γ^*G CS in X. Hence f is an IF semi γ^*G continuous mapping.

Example 3.4. Let $X = \{a, b\}, Y = \{u, v\}, G_1 = \langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$, and $G_2 = \langle y, (0.8_u, 0.7_v), (0.2_u, 0.3_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Here,

 $IFSO(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0, 1], \mu_b \in [0, 1], \nu_a \in [0, 1], \nu_b \in [0, 1]/\mu_a \ge 0.5, \mu_b \ge 0.6, \nu_a \le 0.5, \nu_b \le 0.4 \text{ and } 0 \le \mu_a + \mu_b \le 1 \text{ and } 0 \le \mu_a + \mu_b \le 1\}.$

 $IFSO(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0, 1], \mu_v \in [0, 1], \nu_u \in [0, 1], \nu_v \in [0, 1]/\mu_u \ge 0.8, \mu_v \ge 0.7, \nu_u \le 0.2, \nu_v \le 0.3 \text{ and } 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\}.$

Then f is an IF semi γ^*G continuous mapping but not an IF semi γ^*G irresolute mapping, since the IFS $A = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ is an IF semi γ^*GCS in Y but $f^{-1}(A) = \langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$ is not an IF semi γ^*GCS in X, as $int(cl(f^{-1}(A))) \cap cl(int(f^{-1}(A))) = 1_{\sim} \subsetneq G_1$, but $f^{-1}(A) \subseteq G_1$.

Theorem 3.5. A mapping $f : (X, \tau) \to (Y, \sigma)$ be an IF semi γ^*G irresolute mapping if and only if the inverse image of each IF semi γ^*GOS in Y is an IF semi γ^*GOS in X.

Proof. Necessity: Let A be an IF semi $\gamma^* GOS$ in Y. This implies A^c is an IF semi $\gamma^* GCS$ in Y. Then $f^{-1}(A^c)$ is an IF semi $\gamma^* GCS$ in X, by hypothesis. Since $f^{-1}(A^c) = (f^{-1}(A))^c, f^{-1}(A)$ is an IF semi $\gamma^* GOS$ in X.

Sufficiency: Let A be an IF semi γ^*GCS in Y. Then A^c is an IF semi γ^*GOS in Y. By hypothesis $f^{-1}(A^c)$ is an IF semi γ^*GOS in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c, (f^{-1}(A))^c$ is an IF semi γ^*GOS in X. Therefore $f^{-1}(A)$ is an IF semi γ^*GCS in X. Hence f is an IF semi γ^*G irresolute mapping.

Theorem 3.6. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \delta)$ be any two IF semi γ^*G irresolute mappings, then $g \circ f : (X, \tau) \to (Z, \delta)$ is an IF semi γ^*G irresolute mapping.

Proof. Let V be an IF semi γ^* GCS in Z. Then $g^{-1}(V)$ is an IF semi γ^* GCS in Y, by hypothesis. Since f is an IF semi γ^*G irresolute mapping, $f^{-1}(g^{-1}(V))$ is an IF semi γ^* GCS in X. Hence g o f is an IF semi γ^*G irresolute mapping.

Theorem 3.7. Composition of IF semi γ^*G irresolute mapping and IF semi γ^*G continuous mapping is an IF semi γ^* continuous mapping.

Proof. Let V be an IFCS in Z. Then $g^{-1}(V)$ is an IF semi γ^*GCS in Y. Since f is an IF semi γ^*G irresolute, $f^{-1}(g^{-1}(V))$ is an IF semi γ^*GCS in X. Hence g o f is an IF semi γ^*G continuous mapping.

Theorem 3.8. Let $f : (X, \tau) \to (Y, \sigma)$ be an IF semi γ^*G continuous mapping and $g : (Y, \sigma) \to (Z, \delta)$ is an IF semi γ^*G irresolute mapping, then $g \circ f : (X, \tau) \to (Z, \delta)$ is an IF semi γ^*G irresolute mapping if Y is an IF semi $\gamma^*_c T_{1/2}$ space.

Proof. Let V be an IF semi γ^* GCS in Z. Then $g^{-1}(V)$ is an IF semi γ^* GCS in Y as g is an IF semi γ^* G irresolute mapping. Since Y is an IF semi $\gamma^*_c T_{1/2}$ space, $g^{-1}(V)$ is an IFCS in Y. Since f is an IF semi γ^*G continuous mapping, $f^{-1}(g^{-1}(V))$ is an IF semi γ^* GCS in X. Hence g o f is an IF semi γ^*G irresolute mapping.

Theorem 3.9. If (Y, σ) is an IF semi $\gamma_c^* T_{1/2}$ space and $f : (X, \tau) \to (Y, \sigma)$ be an IF semi $\gamma^* G$ continuous mapping, then f is an IF semi $\gamma^* G$ irresolute mapping. **Proof.** Let A be an IF semi $\gamma^* GCS$ in Y. Since Y is an IF semi $\gamma_c^* T_{1/2}$ space, A is an IFCS in Y. By hypothesis $f^{-1}(A)$ is an IF semi $\gamma^* GCS$ in X. Therefore f is an IF semi $\gamma^* G$ irresolute mapping.

Theorem 3.10. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping. Then the following conditions are equivalent if X and Y are IF semi $\gamma_{\gamma}^* T_{1/2}$ spaces:

(i) f is an IF semi γ^*G irresolute mapping,

(ii) $f^{-1}(B)$ is an IF semi $\gamma^* GOS$ in X for each IF semi $\gamma^* GOS$ B in Y

(iii)
$$f^{-1}(\gamma int(B)) \subseteq \gamma int(f^{-1}(B))$$
 for each IFS B of Y,

(iv)
$$\gamma cl(f^{-1}(B)) \subseteq f^{-1}(\gamma cl(B))$$
 for each IFS B of Y.

Proof. (i) \Leftrightarrow (ii) is obvious from Theorem 3.5.

(ii) \Rightarrow (iii) Let *B* be any IFS in *Y* and $\gamma int(B) \subseteq B$. Also $f^{-1}(\gamma int(B)) \subseteq f^{-1}(B)$. Since $\gamma int(B)$ is an IF γ OS in *Y*, it is an IF semi γ^* GOS in *Y*. Therefore $f^{-1}(\gamma int(B))$ is an IF semi γ^* GOS in *X*, by hypothesis. Since *X* is an IF semi $\gamma^*_{\gamma}T_{1/2}$ spaces, $f^{-1}(\gamma int(B))$ is an IF γ OS in *X*. Hence $f^{-1}(\gamma int(B)) = \gamma int(f^{-1}(\gamma int(B))) \subseteq \gamma int(f^{-1}(B))$.

(iii) \Rightarrow (iv) is obvious by taking complement in (iii).

(iv) \Rightarrow (i) Let *B* be an IF semi γ^* GCS in *Y*. Since *Y* is an IF semi $\gamma^*_{\gamma}T_{1/2}$ space, *B* is an IF γ CS in *Y* and $\gamma cl(B) = B$. Hence $f^{-1}(B) = f^{-1}(\gamma cl(B)) \supseteq \gamma cl(f^{-1}(B)) \supseteq f^{-1}(B)$. Therefore $\gamma cl(f^{-1}(B)) = f^{-1}(B)$. This implies $f^{-1}(B)$ is an IF γ CS and

hence it is an IF semi γ^* GCS in X. Thus f is an IF semi γ^*G irresolute mapping.

Theorem 3.11. Let $f : (X, \tau) \to (Y, \sigma)$ be an IF semi γ^*G irresolute mapping. Then $f^{-1}(B) \subseteq \gamma int(f^{-1}(int(cl(B)) \cup cl(int(B))))$ for every IF semi $\gamma^*GOS B$ in Y, if X and Y are IF semi $\gamma^*_{\gamma}T_{1/2}$ spaces.

Proof. Let *B* an IF semi $\gamma^* GOS$ in *Y*. Then by hypothesis $f^{-1}(B)$ is an IF semi $\gamma^* GOS$ in *X*. Since *X* is an IF semi $\gamma^*_{\gamma} T_{1/2}$ space, $f^{-1}(B)$ is an IF γOS in *X*. Therefore $\gamma int(f^{-1}(B)) = f^{-1}(B)$. Since *Y* is an IF semi $\gamma^*_{\gamma} T_{1/2}$ space, *B* is an IF γOS in *Y*, $B \subseteq int(cl(B)) \cup cl(int(B))$. Now $f^{-1}(B) = \gamma int(f^{-1}(B)) \subseteq \gamma int(f^{-1}(int(cl(B)) \cup cl(int(B))))$.

Theorem 3.12. Let $f : (X, \tau) \to (Y, \sigma)$ be an IF semi γ^*G irresolute mapping and $g : (Y, \sigma) \to (Z, \delta)$ be an IF almost semi γ^*G continuous mapping, then $g \circ f : (X, \tau) \to (Z, \delta)$ is an IF almost semi γ^*G continuous mapping.

Proof. Let V be an IFRCS in Z. Then $g^{-1}(V)$ is an IF semi γ^* GCS in Y. Since f is an IF semi γ^*G irresolute, $f^{-1}(g^{-1}(V))$ is an IF semi γ^* GCS in X. Hence g o f is an IF almost semi γ^*G continuous mapping.

Theorem 3.13. Let $f : (X, \tau) \to (Y, \sigma)$ be an IF semi γ^*G irresolute mapping. Then $f^{-1}(B) \subseteq \gamma int(f^{-1}(int(cl(f^{-1}(B))) \cup cl(int(f^{-1}(B))))))$ for every IF semi $\gamma^*GOS B$ in Y, if X and Y are IF semi $\gamma^*_{\gamma}T_{1/2}$ spaces.

Proof. Let *B* an IF semi γ^* GOS in *Y*. Then by hypothesis $f^{-1}(B)$ is an IF semi γ^* GOS in *X*. Since *X* is an IF semi $\gamma^*_{\gamma}T_{1/2}$ space, $f^{-1}(B)$ is an IF γ OS in *X*. Therefore $\gamma int(f^{-1}(B)) = f^{-1}(B)$ and $f^{-1}(B) \subseteq int(cl(f^{-1}(B))) \cup cl(int(f^{-1}(B)))$. Hence $f^{-1}(B) = \gamma int(f^{-1}(B)) \subseteq \gamma int(int(cl(f^{-1}(B))) \cup cl(int(f^{-1}(B))))$.

4. Conclusion

In this paper, we have introduced intuitionistic fuzzy semi γ^* generalized irresolute mappings and investigated some of their properties. In future we have analyzed completeness in intuitionistic fuzzy semi γ^* generalized continuous mapping.

References

- [1] Abinaya, M. and Jayanthi, D., Intuitionistic Fuzzy Semi γ^* Generalized Closed Sets, Journal of Shanghai Jiaotong University, (2020), 373-387.
- [2] Abinaya, M. and Jayanthi, D., Intuitionistic fuzzy semi γ^* generalized continuous mappings, Advances in Fuzzy Mathematics, (2021), 17-26.
- [3] Abinaya, M. and Jayanthi, D., Intuitionistic fuzzy almost semi γ^* generalized continuous mappings, Malaya Journal of Matematik, 1 (2021), 278-282.

- [4] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 12 (1986), 87-96.
- [5] Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81-89.
- [6] Hanafy, I. M., Intuitionistic fuzzy γ -continuity, Canad. Math. Bull, 52 (2009), 544-554.
- [7] Zadeh, L. A., Fuzzy sets, Information and control, (1965), 338-353.

This page intentionally left blank.