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Abstract: In this paper, the development and analysis of a proposed method for
solving physical models arising from real-life scenarios are presented. The proposed
method is derived via the transcendental function of exponential type, examined
and studied for its properties. In addition, the effectiveness of the method is eval-
uated by applying it to three numerical examples that originated from real-world
scenarios. Moreover, this study presents a comparison of the outcomes generated
by the proposed method and the existing method, in the context of the exact so-
lution. The study concludes that the proposed method solves real life problems
with the expected level of accuracy and, therefore, can be considered among the
numerous methods that are appropriate and suitable for solving first-order initial
value problems (IVPs).
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1. Introduction
Differential equations are mathematical representations of the relationship be-

tween a quantity’s current value and its rate of change [4]. Differential equations
can be classified as ordinary or partial. Partial differential equations explain the
behavior of functions of many variables, whereas ordinary differential equations
deal with functions of a single variable [6]. To correctly solve the equations, a va-
riety of approaches, including analytical, numerical, and qualitative ones, are used
in the study of differential equations. It is widely recognized that a large propor-
tion of differential equations that represent real-world problems cannot be solved
using analytical methods, and an alternative is to use numerical method to get
approximate solutions of the differential equations. The development and analysis
of new numerical methods for solving ordinary differential equations (ODEs) is an
active area of research, and there is ongoing work towards improving the accuracy,
stability, and efficiency of these methods. In this regard, numerous algorithms have
been suggested in scholarly works, taking into consideration the characteristics and
specific form of the differential equations such as

y′(x) = f(x, y), y(x0) = y0, x ∈ [a, b] , y ∈ (−∞,∞) . (1.1)

that need to be solved. Examples of these algorithms can be found in literature [1,
2, 3, 5] - [7 - 21] just to mention few. In this paper, we assessed the effectiveness of
a new numerical method involving exponential transcendental functions for solving
first-order initial value problems in ordinary differential equations. What follows is
a summary of the remaining sections of this study. The second section outlines how
the proposed method was derived, while the third section examines the properties
of the method. The fourth section includes numerical examples and a discussion
of the results, and the fifth section provides a conclusion for the paper.

2. Development of the Proposed Numerical Method
Let us examine an interpolating function with a particular form

F (x) = α0 + α1x+ α2x
2 + α3e

−4x , (2.1)

for the solution of the initial value problem (1.1), where α0, α1, α2, α3 represent
constants that are not specified. The range of values [a, b] over which the integration
is performed is defined as a = x0 ≤ x ≤ xn = b. We define the step size as

h =
b− a

N
. (2.2)

We define the mesh point as

xn = x0 + nh, n = 1, 2, ..., N , xn+1 = x0 + (n+ 1)h, n = 0, 1, .., N − 1 . (2.3)
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From (2.3), setting x0 = 0, we have that:

xn = nh, n = 1, 2, ..., N , xn+1 = (n+ 1)h, n = 0, 2, ..., N − 1 . (2.4)

Substituting x = xn and x = xn+1 into (2.1) yields, respectively

F (xn) = α0 + α1xn + α2x
2
n + α3e

−4xn , (2.5)

and
F (xn+1) = α0 + α1xn+1 + α2x

2
n+1 + α3e

−4xn+1 . (2.6)

Differentiating (2.5) three times with respect to xn, gives

F ′(xn) = fn = α1 + 2α2xn − 4α3e
−4xn

F ′′(xn) = f (1)
n = 2α2 + 16α3e

−4xn

F ′′′(xn) = f (2)
n = −64α3e

−4xn .

(2.7)

Solving (2.7), yields

α1 = fn−xnf
(1)
n − 1

16
(1+4xn)f

(2)
n , α2 =

1

2
f (1)
n +

1

8
f (2)
n α3 = − 1

64
e4xnf (2)

n . (2.8)

Subtracting (2.5) from (2.6), we obtain

F (xn+1)− F (xn) = α1(xn+1 − xn) + α2(x
2
n+1 − x2

n) + α3(e
−4xn+1 − e−4xn) . (2.9)

Substituting (2.4) and (2.8) into (2.9), we get

F (xn+1)− F (xn) =
1

64
(1− e−4h)f (2)

n +
1

16
h(16fn − f (2)

n )

+
1

8
h2(4f (1)

n + f (2)
n )

≡ yn+1 − yn.

(2.10)

Setting

D1 =
1

64
(1− e−4h)f (2)

n , D2 =
1

2
(16fn − f (2)

n ) , D3 = h(4f (1)
n + f (2)

n ) , (2.11)

Therefore, (2.10) becomes

yn+1 = yn +D1 +
1

8
h(D2 +D3) . (2.12)
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Equation (2.12) is the newly proposed numerical method.

3. Analysis of the Properties of the proposed method

3.1. Local truncation error analysis of the proposed method
Let us consider the Taylor’s series expansion of the form,

y(xn + h) = y(xn) + hf(xn, y(xn)) +
1

2!
h2f (1)(xn, y(xn)) +

1

3!
h3f (2)(xn, y(xn))

+
1

4!
h4f (3)(xn, y(xn)) +O(h5) . (3.1)

The expression for the local truncation error of the proposed scheme is as follows:

τn+1 = y(xn + h)− yn+1 . (3.2)

Substituting (2.11), (2.12) and (3.1) into (3.2), we get

τn+1 = y(xn) + hf(xn, y(xn)) +
1

2!
h2f (1)(xn, y(xn)) +

1

3!
h3f (2)(xn, y(xn))

+
1

4!
h4f (3)(xn, y(xn)) +O(h5)−

(
yn +D1 +

1

8
h(D2 +D3)

)
.

(3.3)

Using the Maclaurin’s series of e−4h and the application of localizing assumptions
that led to the removal of terms up to h3, (3.3) becomes

τn+1 =
1

4!
h4

(
f (3)(xn, y(xn))− 4f (2)

n

)
+O(h5) . (3.4)

3.2. Order of accuracy and consistency analysis of the proposed method
Based on (3.4), it can be determined that the proposed scheme possesses a third-

order accuracy. In other words, the order of accuracy of the proposed method is
3. In accordance with [18], for a numerical method to be considered consistent, it
must have a minimum accuracy of p = 1. From equation (3.4), it is evident that the
method being proposed demonstrates consistency because its accuracy is of order

p = 3, the increment function ϕ(xn, yn; 0) = f(xn, yn) = fn . and limh→0
τn+1

h
= 0.

3.3. Stability analysis of the proposed method
Numerical stability refers to the ability of a method to reduce or eliminate small

variations in the input data [20]. To discuss the stability of the proposed method,
consider the IVP with its exact solution given by

y′ = µy , y(0) = 1 , y(x) = eµx , µ < 0 , (3.5)
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where µ is a complex constant. Using the proposed method (2.12), we arrive at
the numerical approximation

yn+1 = λyn . (3.6)

where the proposed method’s stability region λ is given by

λ = 1 +
1

192
h

(
192µ+ 96hµ2 + 32h2µ3

)
= 1 +

1

192

(
192z + 96z2 + 32z3

)
, z = µh.

(3.7)

By comparing the exact solution at x = xn+1 in (3.5) and (3.6), it is evident that
(3.7) constitutes the fourth component in the series expansion of eµh. Hence, for
the proposed method to maintain stability, it is required that

||λ|| < 1 . (3.8)

The proposed third-order method is considered stable based on the information
conveyed in equations (3.7) and (3.8). The stability region of the proposed method
is plotted in the Figure 1.

Figure 1: The stability region for the proposed numerical method (shaded).

3.4. Zero stability analysis of the proposed method
From the LHS of (2.12), it is readily established that

ρ0 = −1 and ρ1 = 1 . (3.9)
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So, the first characteristic polynomial is obtained as

β(r) = ρ1r + ρ0

= r − 1 .
(3.10)

This implies that

r − 1 = 0

r = 1 .
(3.11)

Since (2.12) satisfies the Dahlquist root condition, hence this confirms the zero
stability property of the method.

3.5. Convergence analysis of the proposed method
Simplifying (2.12) further yields,

yn+1 − yn
h

= f(xn, yn) +
h

2
f (1)(xn, yn) +

h2

3!
f (2)(xn, yn). (3.12)

The increment function of (2.12) is given by

ϕ(xn, yn;h) = f(xn, yn)+C1f
(1)
n (xn, yn)+C2f

(2)
n (xn, yn) , C1 =

h

2
, C2 =

h2

3!
. (3.13)

Suppose

ϕ(xn, ȳn;h) = f(xn, ȳn) + C1f
(1)
n (xn, ȳn) + C2f

(2)
n (xn, ȳn) . (3.14)

Subtracting (3.14) from (3.13), we get

ϕ(xn, yn;h)− ϕ(xn, ȳn;h) = f(xn, yn)− f(xn, ȳn) + C1[f
(1)
n (xn, yn)− f (1)

n (xn, ȳn)]

+ C2[f
(2)
n (xn, yn)− f (2)

n (xn, ȳn)] .

(3.15)

Let ŷn be defined as a point in the interior of the interval whose end points are yn
and ȳn. Applying the mean value theorem, (3.14) becomes

ϕ(xn, yn;h)− ϕ(xn, ȳn;h) = [P +Q+R](yn − ȳn) . (3.16)

Taking the norm of (3.16), one gets

||ϕ(xn, yn;h)− ϕ(xn, ȳn;h)|| = ||(P +Q+R)(yn − ȳn)||
≤ L||yn − ȳn|| ,

(3.17)
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with

P = sup
(xn,yn)∈D

∂f

∂y
(xn, ŷn), Q = C1 sup

(xn,yn)∈D

∂f (1)

∂y
(xn, ŷn), R = C2 sup

(xn,yn)∈D

∂f (2)

∂y
(xn, ŷn),

where the Lipschitz constant is given by

L = ||P +Q+R|| .

Equation (3.17) shows that (2.12) is convergent and the increment function (3.13)
is Lipschitzian.

4. Numerical Examples and Discussion of Results

4.1. Numerical Examples
Consider the following physical models with their exact solutions:

Example 4.1.

V ′(t) = rV (t), V (0) = 100, V (t) = 100 e0.05t, 0 ≤ t ≤ 7 (4.1)

The comparative results and errors analyses of the proposed method (PNM) and
FIM [14] are displayed in Figures 2 and 3, respectively.

Figure 2: The comparative results analyses of PNM, FIM [14] and exact solution ES.
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Figure 3: The error incurred in PNM and FIM.

Example 4.2.

N ′(t) = − ln(2)

10
N(t) , N(0) = 500 , 0 ≤ t ≤ 30, N(t) = 500 e−0.0693t . (4.2)

The comparative results and errors analyses of the proposed method (PNM) and
FIM [14] are displayed in Figures 4 and 5, respectively.

Figure 4: The comparative results analyses of PNM, FIM [14] and exact solution ES.
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Figure 5: The error incurred in PNM and FIM.

Example 4.3.

C ′(t) = −0.001C2, C(0) = 10, 0 ≤ t ≤ 5, C(t) =
10

1 + 10kt
. (4.3)

The comparative results and errors analyses of the proposed method (PNM) and
FIM [14] are displayed in Figures 6 and 7, respectively.

Figure 6: The comparative results analyses of PNM, FIM [14] and exact solution ES.
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Figure 7: The error incurred in PNM and FIM [14].

4.2. Discussion of Results

As demonstrated by Figures 2, 4 and 6, the proposed numerical method aligns
with the exact solution as the step size becomes smaller. The progression of the
computation with various step sizes, as shown in Figures 3, 5 and 7, clearly indicates
that the error incurred by the proposed numerical method is smaller as compared
to FIM [14] but both errors approach to 0 as the step size becomes smaller.

5. Conclusion

In this paper, we developed a new method for solving physical models arising
from real-life scenarios by using the transcendental function of exponential type.
The properties of developed numerical method were analyzed in terms of its con-
sistency, order of accuracy, convergence, zero stability, and linear stability. It was
discovered that the method was linearly stable, consistent, convergent and had
a third-order accuracy. The method used a single step approach that employed
MATLAB software to obtain numerical solutions. To evaluate the performance of
the method, three real-life models were solved and the absolute relative errors at
the final nodal point were calculated. The findings showed that the new method
outperformed the existing method and gave good results for the test problems con-
sidered as shown in Figures 2 - 7. The results further revealed that the derived
method performed well as the step size, h, decreases. In fact the proposed numeri-
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cal method is an improvement of [14]. This indicates that the proposed numerical
method can be considered suitable for solving initial value problem of first order,
with the expected level of accuracy.
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