South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 261-272

ISSN (Print): 0972-7752

A NOTE ON CONNECTIVITY PRESERVING SPLITTING OPERATION FOR MATROIDS REPRESENTABLE OVER GF(p)

Sachin Gunjal, Prashant Malavadkar and Uday Jagadale

Department of Mathematics and Statistics,
Dr. Vishwanath Karad MIT World Peace University,
Pune - 411038, Maharashtra, INDIA

E-mail: sachin.gunjal@mitwpu.edu.in, prashant.malavadkar@mitwpu.edu.in, uday.jagdale@mitwpu.edu.in

(Received: Sep. 08, 2023 Accepted: Apr. 21, 2024 Published: Apr. 30, 2024)

Abstract: The splitting operation on a p-matroid does not necessarily preserve connectivity. It is observed that there exists a single element extension of the splitting matroid which is connected. In this paper, we define the element splitting operation on p-matroids which consist of a splitting operation followed by a single element extension. It is proved that the element splitting operation on a connected p-matroid yields a connected p-matroid. We give a sufficient condition to yield Eulerian p-matroid from Eulerian p-matroid under the element splitting operation. A sufficient condition to obtain Hamiltonian p-matroid by applying the element splitting operation on p-matroid is also provided. The characterization of the paving p-matroid which are closed under the element splitting operation, is also obtained.

Keywords and Phrases: p-matroid, element splitting operation, Eulerian matroid, connected matroid, hamiltonian matroid, elementary lift, paving matroid.

2020 Mathematics Subject Classification: 05B35, 05C50, 05C83.

1. Introduction

We discuss loopless and coloopless p-matroids, by a p-matroid we mean a vector matroid $M \cong M[A]$ for some matrix A of size $m \times n$ over the field F = GF(p), for prime p. We denote the set of column labels of M (viz. the ground set of M) by E,

the set of circuits of M by $\mathcal{C}(M)$, and the set of independent sets of M by $\mathcal{I}(M)$. For undefined, standard terminology in graphs and matroids, see Oxley [13].

Malavadkar et al. [9] defined the splitting operation for p-matroids in the following way:

Definition 1.1. Let $M \cong M[A]$ be a p-matroid on the ground set E, let $\{a,b\} \subset E$, and $\alpha \neq 0$ in GF(p). The matrix $A_{a,b}$ is constructed from A by appending an extra row to A, which has coordinates equal to α in the columns corresponding to the elements a,b, and zero elsewhere. Define the splitting matroid $M_{a,b}$ to be the vector matroid $M[A_{a,b}]$. The transition of M to $M_{a,b}$ is called the splitting operation.

A circuit $C \in \mathcal{C}(M)$ containing $\{a, b\}$ is said to be a p-circuit of M, if $C \in \mathcal{C}(M_{a,b})$. And if C is a circuit of M containing either a or b, but it is not a circuit of $M_{a,b}$, then we say that C is an np-circuit of M. For $a, b \in E$, if the matroid M contains no np-circuit, then splitting operation on M with respect to a, b is called trivial splitting.

Note that the class of connected p-matroids is not closed under the splitting operation. This fact is illustrated with the following example.

Example 1.2. The vector matroid $M \cong M[A]$ represented by the matrix A over the field GF(3) is connected, whereas the splitting matroid $M_{1,4} \cong M[A_{1,4}]$ is not connected.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad A_{1,4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

It is interesting to see that the vector matroid $M'_{1,4} \cong M[A'_{1,4}]$, which is a single element extension of $M_{1,4}$, is connected.

$$A'_{1,4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

This example motivates us to investigate the question: If M is a connected p-matroid and $M_{a,b}$ is the splitting matroid of M, then does there exist a single element extension of the splitting matroid that is connected? In the next section, we answer this question by defining the element splitting operation on a p-matroid M which is a splitting operation on M followed by a single element extension.

2. Element Splitting Operation

In this section, we define the element splitting operation on a p-matroid M and characterize its circuits.

Definition 2.1. Let $M \cong M[A]$ be a p-matroid on the ground set $E, \{a, b\} \subset E$, and $M_{a,b}$ be the corresponding splitting matroid. Let the matrix $A_{a,b}$ represent $M_{a,b}$ on GF(p). Construct the matrix $A'_{a,b}$ from $A_{a,b}$ by adding an extra column to $A_{a,b}$, labeled as z, which has the last coordinate equal to $\alpha \neq 0$ and the rest are equal to zero. Define the element splitting matroid $M'_{a,b}$ to be the vector matroid $M[A'_{a,b}]$. The transformation of M to $M'_{a,b}$ is called the element splitting operation.

Various splitting operations on binary matroids are closely studied in [8, 10, 11, 15, 16, 17, 18, 19]. A matroid L is a lift of the matroid M, if there exists a matroid N, and $X \subset E(N)$ such that N/X = M, and $N \setminus X = L$. If X is a singleton set, then L is called an elementary lift of M. In the following result, Mundhe et al. [12] showed the equivalence of splitting matroids with elementary lift for binary matroids:

Lemma 2.2. Let M and L be binary matroids. Then L is an elementary lift of M if and only if L is isomorphic to M_T for some $T \subset E(M)$.

Lemma 2.2 can be extended to p-matroids by using the similar arguments used to prove it in [12]. Thus a splitting matroid $M_{a,b}$ of p-matroid M is an elementary lift of M. In-depth study on lifted graphic matroid is done in [3, 4, 6].

Remark 2.3. $rank(A) < rank(A'_{a,b}) = rank(A) + 1$. If the rank functions of M and $M'_{a,b}$ are denoted by r and r', respectively, then $r(M) < r'(M'_{a,b}) = r(M) + 1$.

Let $C = \{v_1, v_2, \dots, v_k\}$, where $v_i, i = 1, 2, \dots, k$ are column vectors of the matrix A, be an np-circuit of M containing only a. Assume $v_1 = a$, without loss of generality. Then there exist non-zero scalars $\alpha_1, \alpha_2, \dots, \alpha_k \in GF(p)$ such that $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k \equiv 0 \pmod{p}$. Let $\alpha_z \in GF(p)$ be such that $\alpha_z + \alpha_1 \equiv 0 \pmod{p}$. Note that $\alpha_z \neq 0$. Then in the matrix $A'_{a,b}$, we have $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k + \alpha_z z \equiv 0 \pmod{p}$. Therefore the set $C \cup z = \{v_1, v_2, \dots, v_k, z\}$ is a dependent set of $M'_{a,b}$. If both $a, b \in C$, then by the similar arguments, we can show that $C \cup z$ is a dependent set of $M'_{a,b}$.

In the next Lemma, we characterize the circuits of $M'_{a,b}$ containing the element z.

Lemma 2.4. Let C be a circuit of p-matroid M. Then $C \cup z$ is a circuit of $M'_{a,b}$ if and only if C is an np-circuit of M.

Proof. First assume that $C \cup z$ is a circuit of $M'_{a,b}$. If C is not an np-circuit of M, then it is a p-circuit of M, and hence it is also a circuit of $M_{a,b}$ and $M'_{a,b}$, as well. Thus we get a circuit C contained in $C \cup z$, a contradiction.

Conversely, suppose C is an np-circuit of M. Then C is an independent set of $M'_{a,b}$. As noted earlier, $C \cup z$ is a dependent set of $M'_{a,b}$. On the contrary, assume that $C \cup z$ is not a circuit of $M'_{a,b}$, and $C_1 \subset C \cup z$ be a circuit of $M'_{a,b}$. One of the following two cases occurs.

Case 1: $z \notin C_1$. Then C_1 is a circuit contained in C, which is contradictory to the fact that C is independent in $M'_{a,b}$.

Case 2: $z \in C_1$. Then $C_1 \setminus z$ is a dependent set of M contained in the circuit C which is not possible. Thus $C \cup z$ is a circuit of $M'_{a,b}$.

We denote the collection of circuits described in Lemma 2.4 by C_z .

Theorem 2.5. Let M be a p-matroid on the ground set E and $\{a,b\} \subset E$. Then $\mathcal{C}(M'_{a,b}) = \mathcal{C}(M_{a,b}) \cup \mathcal{C}_z$.

Proof. The inclusion $C(M_{a,b}) \cup C_z \subset C(M'_{a,b})$ follows from the Definition 2.1 and Lemma 2.4. For the other inclusion, let $C \in C(M'_{a,b})$. If $z \notin C$, then $C \in C(M_{a,b})$. Otherwise, $C \in C_z$.

Example 2.6. Consider the matroid R_8 , the vector matroid of the following matrix A over field GF(3).

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 0 & 0 & 2 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 \end{pmatrix} \qquad A'_{3,5} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

For a=3, b=5 and $\alpha=1$ the representation of element splitting matroid $M'_{3,5}$ over GF(3) is given by the matrix $A'_{3,5}$. The collections of circuits of M, $M_{3,5}$ and $M'_{3,5}$ are given in the following table.

Circuits of M	Circuits of $M_{3,5}$	Circuits of $M'_{3,5}$
$\{1, 2, 3, 4, 5\},\$	$\{1, 2, 3, 4, 5\},\$	$\{1, 2, 3, 4, 5\}, \{1, 2, 7, 8\},\$
$\{1,2,7,8\}, \{1,4,6,7\}$	$\{1, 2, 7, 8\}, \{1, 4, 6, 7\}$	$\{1,4,6,7\}$
${2,4,6,8},{3,5,6,7,8}$	${2,4,6,8},{3,5,6,7,8}$	${2,4,6,8},{3,5,6,7,8}$
	$\{1, 2, 3, 5, 6, 7\},\$	$\{1, 2, 3, 5, 6, 7\},\$
-	$\{1, 2, 3, 5, 6, 8\}$	$\{1, 2, 3, 5, 6, 8\}$
	$\{1, 3, 4, 5, 6, 8\},\$	$\{1, 3, 4, 5, 6, 8\},\$
_	$\{1, 3, 4, 5, 7, 8\}$	$\{1, 3, 4, 5, 7, 8\}$
	${2,3,4,5,6,7},$	${2,3,4,5,6,7},$
-	$\{2, 3, 4, 5, 7, 8\}$	${2,3,4,5,7,8}$
$\{1, 2, 3, 4, 6\},\$		$\{1, 2, 3, 4, 6, 9\},\$
$\{1, 2, 3, 4, 7\}$	_	$\{1, 2, 3, 4, 7, 9\}$
$\{1, 2, 3, 4, 8\},\$		{1, 2, 3, 4, 8, 9}, {1, 2, 5, 6, 9}
$\{1, 2, 5, 6\}$	_	$\{1, 2, 9, 4, 0, 9\}, \{1, 2, 9, 0, 9\}$
$\{1,3,5,7\}, \{1,3,6,8\}$	-	$\{1,3,5,7,9\}, \{1,3,6,8,9\}$
$\{1,4,5,8\},$		{1, 4, 5, 8, 9}, {1, 5, 6, 7, 8, 9}
$\{1, 5, 6, 7, 8\}$	_	11, 4, 0, 0, 9 5, 11, 0, 0, 1, 0, 9 5
${2,3,5,8}, {2,3,6,7}$	-	${2,3,5,8,9}, {2,3,6,7,9}$
${2,4,5,7},$	_	{2,4,5,7,9}, {2,5,6,7,8,9}
$\{2, 5, 6, 7, 8\}$		[2, 4, 0, 1, 0], [2, 0, 0, 1, 0, 0]
$\{3,4,5,6\}, \{3,4,7,8\}$	-	${3,4,5,6,9}, {3,4,7,8,9}$
${4,5,6,7,8}$	-	${4,5,6,7,8,9}$

3. Independent sets, Bases and Rank function of $M'_{a,b}$

In this section, we describe independent sets, bases and rank function of $M'_{a,b}$. Let $\mathcal{I}_z = \{I \cup z : I \in \mathcal{I}(M)\}.$

Lemma 3.1. Let $M \cong M[A]$ be a p-matroid with the ground set E and $M'_{a,b}$ be its element splitting matroid. Then $\mathcal{I}(M'_{a,b}) = \mathcal{I}(M_{a,b}) \cup \mathcal{I}_z$

Proof. Notice that $\mathcal{I}(M_{a,b}) \cup \mathcal{I}_z \subseteq \mathcal{I}(M'_{a,b})$. For other inclusion, assume $T \in \mathcal{I}(M'_{a,b})$. If $z \notin T$, then $T \in \mathcal{I}(M_{a,b})$. And if $z \in T$, then $T \setminus \{z\} \in \mathcal{I}(M_{a,b})$. That is $T = I \cup z$ for some $I \in \mathcal{I}(M_{a,b})$.

Case 1 : $I \in \mathcal{I}(M)$. Then $T \in \mathcal{I}_z$.

Case 2: $I = C \cup I'$ where C is an np-circuit of M and $I' \in \mathcal{I}(M)$. Then by Lemma 2.4, $C \cup z$ is a circuit of $M'_{a,b}$ contained in T, a contradiction.

Lemma 3.2. Let M be a p-matroid and $\{a,b\} \subset E$. Then $\mathcal{B}(M'_{a,b}) = \mathcal{B}(M_{a,b}) \cup \mathcal{B}_z$, where $\mathcal{B}_z = \{B \cup z : B \in \mathcal{B}(M)\}$.

Proof. It is easy to observe that $\mathcal{B}(M_{a,b}) \cup \mathcal{B}_z \subseteq \mathcal{B}(M'_{a,b})$. Next assume that $B \in \mathcal{B}(M'_{a,b})$. Then rank(B) = rank(M) + 1. If B contains z, then $B \setminus z$ is an independent set of $M_{a,b}$ of size rank(M). Then by similar arguments given in the proof of Lemma 3.1, $B = I \cup z$, for some $I \in \mathcal{I}(M)$. Therefore $B \setminus z$ is a basis of M and $B \in \mathcal{B}_z$. If $z \notin B$, then B is an independent set of size rank(M) + 1. Therefore $B \in \mathcal{B}(M_{a,b})$.

In the following lemma, we provide the rank function of $M'_{a,b}$ in terms of the rank function of M.

Lemma 3.3. Let r and r' be the rank functions of the matroids M and $M'_{a,b}$, respectively. Suppose $S \subseteq E(M)$. Then $r'(S \cup z) = r(S) + 1$, and

$$r'(S) = r(S)$$
, if S contains no np-circuit of M; and $= r(S) + 1$, if S contains an np-circuit of M. (3.1)

Proof. The equality $r'(S \cup z) = r(S) + 1$ follows from the definition. The proof of the Equation (1) is discussed in Corollary 2.13 of [9].

4. Connectivity of element splitting p-matroids

Let M be a matroid having the ground set E, and k be a positive integer. The k-separation of matroid M is a partition $\{S,T\}$ of E such that $|S|, |T| \ge k$ and r(S) + r(T) - r(M) < k. For an integer $n \ge 2$, we say M is an n-connected if M has no k- separation, where $1 \le k \le n - 1$.

In the following theorem, we provide a necessary and sufficient condition to preserve the connectedness of a p-matroid under element splitting operation. For $a, b \in E$, if the matroid M contains at least one np-circuit, then splitting operation on M with respect to a, b is called a non-trivial splitting operation.

Theorem 4.1. Let M be a connected p-matroid on the ground set E. Then $M'_{a,b}$ is a connected p-matroid on the ground set $E \cup \{z\}$ if and only if $M_{a,b}$ is the splitting matroid obtained by applying non-trivial splitting operation on M.

Proof. First assume that $M'_{a,b}$ is a connected p-matroid on the ground set $E \cup \{z\}$. On the contrary, suppose $M_{a,b}$ is obtained by applying trivial splitting operation. Then M contains no np circuits with respect to the splitting by elements a, b. Now, let $S = \{z\}$ and T = E. Then $r'(S) + r'(T) - r'(M'_{a,b}) = 1 + r(E) - (r(M) + 1) = 0 < 1$ gives a 1-separation of $M'_{a,b}$, which is a contradiction.

For converse part, assume that $M_{a,b}$ is the splitting matroid obtained by applying non-trivial splitting operation on M. Suppose that, $M'_{a,b}$ is not connected. It means

 $M'_{a,b}$ has 1-separation, say $\{S,T\}$. Then $|S|,|T| \geq 1$ and

$$r'(S) + r'(T) - r'(M'_{a,b}) < 1. (4.1)$$

Case 1: Assume $S = \{z\}$. Then T contains an np circuit. Then Equation (4.1) gives, $1 + (1 + r(T)) - r(M) - 1 < 1 \implies r(T) < r(M)$, which is not possible.

Case 2: Assume $|S| \geq 2$, $z \in S$. If T contains no np-circuit then Equation (4.1) yields, $(r(S \setminus z) + 1) + r(T) - r(M) - 1 < 1$, that is $r(S \setminus z) + r(T) - r(M) < 1$. Therefore $\{S \setminus z, T\}$ gives 1—separation of M, a contradiction. Further, if T contains an np-circuit, then $r'(S) = r(S \setminus z) + 1$, r'(T) = r(T) + 1. By Equation (4.1), we get $(r(S \setminus z) + 1) + (r(T) + 1) - r(M) - 1 < 1$, which gives $r(S \setminus z) + r(T) - r(M) < 0$, which is not possible. So in either case such separation does not exist. Therefore $M'_{a,b}$ is connected.

For p = 2, the following sufficient condition for the element splitting operation to preserve the connectedness of the binary matroid by Shikare [17] follows immediately.

Corollary 4.2. Let M be a connected binary matroid on a set E and $\{a,b\} \subseteq E$ such that there is a circuit of M containing exactly one member of $\{a,b\}$. Then the matroid $M'_{a,b}$ is connected.

In Example 2.6, the *p*-matroid $R_8 \cong M[A]$ and its element splitting *p*-matroid $M'_{3,5} \cong M[A'_{3,5}]$ both are connected. In the next result we give a necessary and sufficient condition to preserve 3-connectedness of a *p*-matroid under the element splitting operation.

Theorem 4.3. Let M be a 3-connected p-matroid. Then $M'_{a,b}$ is 3-connected p-matroid if and only if for every $t \in E(M)$ there is an np-circuit of M not containing t.

Proof. Let $M'_{a,b}$ be 3-connected p-matroid. On contrary, if there is an element $t \in E(M)$ contained in every np-circuit of M. Take $S = \{z, t\}$ and $T = E \setminus S$. Then $r'(S) + r'(T) - r'(M'_{a,b}) = r(\{t\}) + 1 + r(T) - r(M) - 1 = r(\{t\}) + r(T) - r(M) = 1 < 2$. Because, in this case, $t \in cl(T)$ hence r(T) = r(M). That is $\{S, T\}$ forms a 2-separation of $M'_{a,b}$, a contradiction.

For converse part suppose, for every $t \in E(M)$ there is an np-circuit of M not containing t. On the contrary assume that $M'_{a,b}$ is not a 3-connected matroid. Then there exists a k separation, for $k \leq 2$, of $M'_{a,b}$. By Theorem 4.1, k can not be equal to 1. For k = 2, let $\{S, T\}$ be a 2-separation of $M'_{a,b}$. Then $\{S, T\}$ is a partition of $E \cup \{z\}$ such that $|S|, |T| \geq 2$ and

$$r'(S) + r'(T) - r'(M'_{ab}) < 2. (4.2)$$

Case 1 :Suppose $S = \{z, t\}$, $t \in E(M)$. By hypothesis, T contains an np-circuit not containing t. Then Equation (4.2) gives, $(r(\{t\})+1)+(1+r(T))-r(M)-1<2$ $\implies r(t)+r(T)-r(M)<1$. Thus $\{\{t\},T\}$ forms a 1-separation of M, which is a contradiction.

Case 2: Suppose $z \in S$ and $|S| \ge 3$. If T contains no np-circuit then Equation (4.2) yields $(r(S \setminus z) + 1) + r(T) - r(M) - 1 < 2 \implies r(S \setminus z) + r(T) - r(M) < 2$. Therefore $\{S \setminus z, T\}$ gives a 2-separation of M, a contradiction.

Further, if T contains an np-circuit, then $r'(S) = r(S \setminus z) + 1$, r'(T) = r(T) + 1. By Equation (4.2), we get $(r(S \setminus z) + 1) + (r(T) + 1) - r(M) - 1 < 2 \implies r(S \setminus z) + r(T) - r(M) < 1$. Thus, $\{S \setminus z, T\}$ gives a 1-separation of M, a contradiction. So in either case such partition does not exist. Therefore $M'_{a,b}$ is 3-connected.

5. Applications

For Eulerian matroid M on the ground set E there exists disjoint circuits C_1, C_2, \ldots, C_k of M such that $E = C_1 \cup C_2 \cup \ldots \cup C_k$. We call the collection $\{C_1, C_2, \ldots, C_k\}$ a circuit decomposition of M.

Let $\{a,b\} \subset E$. We say a circuit decomposition $\tilde{C} = \{C_1, C_2, \dots, C_k\}$ of M an ep-decomposition of M if it contains exactly one np-circuit with respect to the a,b splitting of M. In the next proposition, we give a sufficient condition to yield Eulerian p-matroids from Eulerian p-matroids after the element splitting operation.

Proposition 5.1. Let M be Eulerian p-matroid and $a, b \in E$. If M has an epdecomposition, then $M'_{a,b}$ is Eulerian p-matroid.

Proof. Let $C = \{C_1, C_2, \dots, C_k\}$ be an *ep-decomposition* of M and C_1 be an np-circuit in it. Then $C_1 \cup z$ is a circuit of $M'_{a,b}$. Thus $\{C_1 \cup z, C_2, \dots, C_k\}$ is the desired circuit decomposition of $M'_{a,b}$.

Proposition 5.2. Let $M'_{a,b}$ is Eulerian p-matroid and $\tilde{C} = \{C_1, C_2, \dots, C_k\}$ be a circuit decomposition of $M'_{a,b}$. If \tilde{C} contains no member which be a union of an np-circuit and an independent set of M, then M is Eulerian and has an epdecomposition.

Proof. Assume, without loss of generality, $z \in C_1$. Then $C_1 \in C_z$ and $C_1 \setminus z$ is an np-circuit of M. We will show $C_1 \setminus z$ contains both a and b. On the contrary assume that $C_1 \setminus z$ contains only a. Then $b \in C_i$ for some $i \in \{2, 3, ..., k\}$. Since C_i is also a circuit of $M_{a,b}$ containing only b, by Theorem 2.10 of [9] it must be a union of an np-circuit and an independent set of M, which is a contradiction to the hypothesis. Therefore $C_1 \setminus z$ contains both a and b and the collection $\{C_1 \setminus z, C_2, ..., C_k\}$ forms an ep-decomposition of M.

In Example 2.6, the matroid R_8 is Eulerian with ep-decomposition $E = C_1 \cup C_2$,

where $C_1 = \{2, 4, 6, 8\}$ is a *p*-circuit and $C_2 = \{1, 3, 5, 7\}$ is an *np*-circuit. An element splitting matroid $M'_{3,5}$ is also Eulerian with circuit decomposition $E \cup z = C_1 \cup (C_2 \cup z)$.

M. Borowiecki [2] defined Hamiltonian matroid as a matroid containing a circuit of size r(M) + 1. This circuit is called the Hamiltonian circuit of the matroid M. In the next corollary, we give a sufficient condition to yield Hamiltonian matroid from Hamiltonian matroid after the element splitting operation.

Corollary 5.3. If M is Hamiltonian matroid with an np-circuit of size r(M) + 1, then $M'_{a,b}$ is Hamiltonian.

Proof. Let C be an np-circuit of M of size r(M) + 1. Then by Proposition 2.4, $C \cup z$ is a circuit in $M'_{a,b}$ of size r(M) + 2.

In Example 2.6, the matroid $R_8 \cong M[A]$ is Hamiltonian and its element splitting matroid $M'_{3.5} \cong M[A'_{3.5}]$ is also Hamiltonian.

Let M be a matroid of rank r. M is called a paving matroid, if every circuit of M is of the size r or r+1. All binary paving matroids are characterized by Acketa [1]. Oxley [14] gave a characterization of ternary paving matroids. A paving matroid M does not always yield a paving matroid after splitting. In the next proposition, we characterize the element splitting p-matroids $M'_{a,b}$ that are paving.

Proposition 5.4. Let M be a paving p-matroid of rank r, $\{a,b\} \subset E(M)$. Then the element splitting matroid $M'_{a,b}$ is also paving if and only if every circuit $C \in \mathcal{C}(M)$ of size r is an np-circuit.

We conclude this paper by proposing following problem:

Rota conjectured that the family of matroids that are representable over finite fields has only finitely many excluded minors [7]. For example, the 4-point line, $U_{2,4}$, is the only excluded minor for the class of binary matroids. In the following example, we demonstrate that there exist a splitting of the ternary matroid $U_{2,4}$, which yields a graphic matroid.

Example 5.5. Let the matrix A represents the ternary matroid $U_{2,4}$ and the vector matroid of $A_{1,3}$ represents the splitting matroid $M[A_{1,3}]$.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix} \qquad A_{1,3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix} \qquad A'_{1,3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Observe that

- the splitting matroid $M[A_{1,3}]$ is binary and matrix $B = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ gives its binary representation.
- $A'_{1,3}/5 = U_{2,4}$.

However, the element splitting operation on $U_{2,4}$ does not give a binary matroid. With this observation, we propose the following question:

For a given ternary matroid M, does there always exist a pair of elements $\{a, b\}$ in E(M) such that the splitting matroid $M_{a,b}$ is binary (graphic)?

Acknowledgement

Authors are grateful to the anonymous referee for their helpful comments which have improved the quality of the paper.

References

- [1] Acketa D. M., On Binary Paving Matroids, Discrete Mathematics, 70 (1988), 109–110.
- [2] Borowiecki M., Kennedy J. W. and Sysło M. M., Graph Theory: Proceedings of a Conference held in Łagów, Poland, February 10-13, 1981, eds. Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg, 1018 (1983), 248–256.
- [3] Chen R., Geelen J., Infinitely many excluded minors for frame matroids and for lifted-graphic matroids, J. Comb. Theory, Ser. B, 133 (2018), 46-53.
- [4] Chen R., Whittle G., On recognizing frame and lifted-graphic matroids, J. Graph Theory, 87(1) (2018), 72–76.
- [5] Fleischner H., Eulerian graphs and related topics, Part 1, Vol 1, North Holland, Amsterdam, 1990.
- [6] Funk D., Mayhew D., On excluded minors for classes of graphical matroids, Discrete Math., 341(6) (2018), 1509–1522.
- [7] Geelen J., Gerards B., Whittle G., Solving Rota's conjecture, Not. Am. Math. Soc., 61(7) (2014), 736–743.

- [8] Malavadkar P. P., Dhotre S. B., and Shikare M. M., Forbidden-minors for the class of cographic matroids which yield the graphic element splitting matroids, Southeast Asian Bull. Math., 43(1) (2019), 105–119.
- [9] Malavadkar P. P., Jagadale U. V., and Gunjal S. S., On the circuits of splitting matroids representable over GF(p) (Preprint).
- [10] Malavadkar P. P., Shikare M. M., and Dhotre S. B., A characterization of n-connected splitting matroids, Asian-European J. Math., 7(4) (2014), 1–7.
- [11] Mills A., On the cocircuits of a splitting matroid, Ars Comb., 89 (2008), 243–253.
- [12] Mundhe G., Borse Y. M., Dalvi K. V., On graphic elementary lifts of graphic matroids, Discrete Mathematics, 345(10) (2022), 113014.
- [13] Oxley J. G., Matroid theory, Oxford University Press, Oxford, 1992.
- [14] Oxley J. G., Ternary paving matroids, Discrete Mathematics, 91 (1991), 77–86.
- [15] Raghunathan T. T., Shikare M. M., and Waphare B. N., Splitting in a binary matroid, Discrete Mathematics, 184 (1998), 267–271.
- [16] Shikare M. M., Splitting lemma for binary matroids, Southeast Asian Bull. Math., 32 (2008), 151–159.
- [17] Shikare M. M., The element splitting operation for graphs, binary matroids and its applications, The Math. Student, 80 (2010), 85–90.
- [18] Shikare M. M., Dhotre S. B., and Malavadkar P. P., A Forbidden-minor characterization for the class of regular matroids which yield the cographic es-splitting Matroids, Lobachevskii J. Math., 34(2) (2013), 173–180.
- [19] Shikare M. M. and Azadi G., Determination of bases of a splitting matroid, European J. Combin., 24 (2003), 45–52.
- [20] Tutte W. T., Lectures on matroids, J. Res. Nat. Bur. Standards, B69 (1965), 1–47.
- [21] Tutte W. T., Connectivity in matroids, Canad. J. Math., 18 (1966), 1301-1324.

- [22] Wagner D. K., Bipartite and Eulerian minors, European J. Combin., 74 (2018), 1–10.
- [23] Welsh D. J. A., Euler and bipartite matroids, J. Combin. Theory, 6 (1969), 375–377.