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Abstract: The splitting operation on a p-matroid does not necessarily preserve
connectivity. It is observed that there exists a single element extension of the
splitting matroid which is connected. In this paper, we define the element split-
ting operation on p-matroids which consist of a splitting operation followed by a
single element extension. It is proved that the element splitting operation on a
connected p-matroid yields a connected p-matroid. We give a sufficient condition
to yield Eulerian p-matroid from Eulerian p-matroid under the element splitting
operation. A sufficient condition to obtain Hamiltonian p-matroid by applying the
element splitting operation on p-matroid is also provided. The characterization of
the paving p-matroid which are closed under the element splitting operation, is
also obtained.
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1. Introduction
We discuss loopless and coloopless p-matroids, by a p-matroid we mean a vector

matroid M ∼= M [A] for some matrix A of size m× n over the field F = GF (p), for
prime p. We denote the set of column labels of M (viz. the ground set of M) by E,
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the set of circuits of M by C(M), and the set of independent sets of M by I(M).
For undefined, standard terminology in graphs and matroids, see Oxley [13].

Malavadkar et al. [9] defined the splitting operation for p-matroids in the following
way:

Definition 1.1. Let M ∼= M [A] be a p-matroid on the ground set E, let {a, b} ⊂ E,
and α ̸= 0 in GF (p). The matrix Aa,b is constructed from A by appending an extra
row to A, which has coordinates equal to α in the columns corresponding to the
elements a,b, and zero elsewhere. Define the splitting matroid Ma,b to be the vector
matroid M [Aa,b]. The transition of M to Ma,b is called the splitting operation.

A circuit C ∈ C(M) containing {a, b} is said to be a p-circuit of M, if C ∈ C(Ma,b).
And if C is a circuit of M containing either a or b, but it is not a circuit of Ma,b,
then we say that C is an np-circuit of M. For a, b ∈ E, if the matroid M contains
no np-circuit, then splitting operation on M with respect to a, b is called trivial
splitting.
Note that the class of connected p-matroids is not closed under the splitting oper-
ation. This fact is illustrated with the following example.

Example 1.2. The vector matroid M ∼= M [A] represented by the matrix A over
the field GF (3) is connected, whereas the splitting matroid M1,4

∼= M [A1,4] is not
connected.

A =


1 0 0 0 0 1 1 2
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 2 1 1 0
0 1 1 0 0 0 0 0



1 2 3 4 5 6 7 8

A1,4 =


1 0 0 0 0 1 1 2
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 2 1 1 0
0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0



1 2 3 4 5 6 7 8

It is interesting to see that the vector matroid M ′
1,4

∼= M [A′
1,4], which is a single

element extension of M1,4, is connected.

A′
1,4 =


1 0 0 0 0 1 1 2 0
0 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1 0
0 0 0 1 2 1 1 0 0
0 1 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1



1 2 3 4 5 6 7 8 9
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This example motivates us to investigate the question: If M is a connected p-
matroid and Ma,b is the splitting matroid of M, then does there exist a single
element extension of the splitting matroid that is connected? In the next section,
we answer this question by defining the element splitting operation on a p-matroid
M which is a splitting operation on M followed by a single element extension.

2. Element Splitting Operation

In this section, we define the element splitting operation on a p-matroid M and
characterize its circuits.

Definition 2.1. Let M ∼= M [A] be a p-matroid on the ground set E,{a, b} ⊂ E,
and Ma,b be the corresponding splitting matroid. Let the matrix Aa,b represent Ma,b

on GF (p). Construct the matrix A′
a,b from Aa,b by adding an extra column to Aa,b,

labeled as z, which has the last coordinate equal to α ̸= 0 and the rest are equal to
zero. Define the element splitting matroid M ′

a,b to be the vector matroid M [A′
a,b].

The transformation of M to M ′
a,b is called the element splitting operation.

Various splitting operations on binary matroids are closely studied in [8, 10, 11,
15, 16, 17, 18, 19]. A matroid L is a lift of the matroid M, if there exists a matroid
N, and X ⊂ E(N) such that N/X = M, and N \X = L. If X is a singleton set,
then L is called an elementary lift of M. In the following result, Mundhe et al.
[12] showed the equivalence of splitting matroids with elementary lift for binary
matroids:

Lemma 2.2. Let M and L be binary matroids. Then L is an elementary lift of
M if and only if L is isomorphic to MT for some T ⊂ E(M).

Lemma 2.2 can be extended to p-matroids by using the similar arguments used to
prove it in [12]. Thus a splitting matroid Ma,b of p-matroid M is an elementary lift
of M. In-depth study on lifted graphic matroid is done in [3, 4, 6].

Remark 2.3. rank(A) < rank(A′
a,b) = rank(A)+1. If the rank functions of M and

M ′
a,b are denoted by r and r′, respectively, then r(M) < r′(M ′

a,b) = r(M) + 1.

Let C = {v1, v2, . . . , vk}, where vi, i = 1, 2, . . . , k are column vectors of the ma-
trix A, be an np-circuit of M containing only a. Assume v1 = a, without loss of
generality. Then there exist non-zero scalars α1, α2, . . . , αk ∈ GF (p) such that
α1v1 + α2v2 + . . . + αkvk ≡ 0( mod p). Let αz ∈ GF (p) be such that αz + α1 ≡ 0(
mod p). Note that αz ̸= 0. Then in the matrix A′

a,b, we have α1v1 + α2v2 + . . . +
αkvk + αzz ≡ 0( mod p). Therefore the set C ∪ z = {v1, v2, . . . , vk, z} is a depen-
dent set of M ′

a,b. If both a, b ∈ C, then by the similar arguments, we can show that
C ∪ z is a dependent set of M ′

a,b.
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In the next Lemma, we characterize the circuits of M ′
a,b containing the element z.

Lemma 2.4. Let C be a circuit of p-matroid M. Then C ∪ z is a circuit of M ′
a,b

if and only if C is an np-circuit of M.
Proof. First assume that C ∪ z is a circuit of M ′

a,b. If C is not an np-circuit of M,
then it is a p-circuit of M, and hence it is also a circuit of Ma,b and M ′

a,b, as well.
Thus we get a circuit C contained in C ∪ z, a contradiction.

Conversely, suppose C is an np-circuit of M. Then C is an independent set of M ′
a,b.

As noted earlier, C ∪ z is a dependent set of M ′
a,b. On the contrary, assume that

C ∪ z is not a circuit of M ′
a,b, and C1 ⊂ C ∪ z be a circuit of M ′

a,b. One of the
following two cases occurs.
Case 1: z /∈ C1. Then C1 is a circuit contained in C, which is contradictory to the
fact that C is independent in M ′

a,b.
Case 2: z ∈ C1. Then C1 \ z is a dependent set of M contained in the circuit C
which is not possible. Thus C ∪ z is a circuit of M ′

a,b.

We denote the collection of circuits described in Lemma 2.4 by Cz.
Theorem 2.5. Let M be a p-matroid on the ground set E and {a, b} ⊂ E. Then
C(M ′

a,b) = C(Ma,b) ∪ Cz.
Proof. The inclusion C(Ma,b) ∪ Cz ⊂ C(M ′

a,b) follows from the Definition 2.1 and
Lemma 2.4. For the other inclusion, let C ∈ C(M ′

a,b). If z /∈ C, then C ∈ C(Ma,b).
Otherwise, C ∈ Cz.
Example 2.6. Consider the matroid R8, the vector matroid of the following matrix
A over field GF (3).

A =


1 0 0 0 2 1 1 1
0 1 0 0 1 2 1 1
0 0 1 0 1 1 2 1
0 0 0 1 1 1 1 2


1 2 3 4 5 6 7 8

A′
3,5 =


1 0 0 0 2 1 1 1 0
0 1 0 0 1 2 1 1 0
0 0 1 0 1 1 2 1 0
0 0 0 1 1 1 1 2 0
0 0 1 0 1 0 0 0 1



1 2 3 4 5 6 7 8 9

For a = 3, b = 5 and α = 1 the representation of element splitting matroid M ′
3,5

over GF (3) is given by the matrix A′
3,5. The collections of circuits of M, M3,5 and

M ′
3,5 are given in the following table.
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Circuits of M Circuits of M3,5 Circuits of M ′
3,5

{1, 2, 3, 4, 5},
{1, 2, 7, 8}, {1, 4, 6, 7}

{1, 2, 3, 4, 5},
{1, 2, 7, 8}, {1, 4, 6, 7}

{1, 2, 3, 4, 5}, {1, 2, 7, 8},
{1, 4, 6, 7}

{2, 4, 6, 8},{3, 5, 6, 7, 8} {2, 4, 6, 8},{3, 5, 6, 7, 8} {2, 4, 6, 8},{3, 5, 6, 7, 8}

-
{1, 2, 3, 5, 6, 7},
{1, 2, 3, 5, 6, 8}

{1, 2, 3, 5, 6, 7},
{1, 2, 3, 5, 6, 8}

-
{1, 3, 4, 5, 6, 8},
{1, 3, 4, 5, 7, 8}

{1, 3, 4, 5, 6, 8},
{1, 3, 4, 5, 7, 8}

-
{2, 3, 4, 5, 6, 7},
{2, 3, 4, 5, 7, 8}

{2, 3, 4, 5, 6, 7},
{2, 3, 4, 5, 7, 8}

{1, 2, 3, 4, 6},
{1, 2, 3, 4, 7} -

{1, 2, 3, 4, 6, 9},
{1, 2, 3, 4, 7, 9}

{1, 2, 3, 4, 8},
{1, 2, 5, 6} - {1, 2, 3, 4, 8, 9}, {1, 2, 5, 6, 9}

{1, 3, 5, 7}, {1, 3, 6, 8} - {1, 3, 5, 7, 9}, {1, 3, 6, 8, 9}
{1, 4, 5, 8},
{1, 5, 6, 7, 8} - {1, 4, 5, 8, 9}, {1, 5, 6, 7, 8, 9}

{2, 3, 5, 8}, {2, 3, 6, 7} - {2, 3, 5, 8, 9}, {2, 3, 6, 7, 9}
{2, 4, 5, 7},
{2, 5, 6, 7, 8} - {2, 4, 5, 7, 9}, {2, 5, 6, 7, 8, 9}

{3, 4, 5, 6}, {3, 4, 7, 8} - {3, 4, 5, 6, 9}, {3, 4, 7, 8, 9}
{4, 5, 6, 7, 8} - {4, 5, 6, 7, 8, 9}

3. Independent sets, Bases and Rank function of M ′
a,b

In this section, we describe independent sets, bases and rank function of M ′
a,b.

Let Iz = {I ∪ z : I ∈ I(M)}.
Lemma 3.1. Let M ∼= M [A] be a p-matroid with the ground set E and M ′

a,b be its
element splitting matroid. Then I(M ′

a,b) = I(Ma,b) ∪ Iz

Proof. Notice that I(Ma,b) ∪ Iz ⊆ I(M ′
a,b). For other inclusion, assume T ∈

I(M ′
a,b). If z /∈ T, then T ∈ I(Ma,b). And if z ∈ T, then T \ {z} ∈ I(Ma,b). That

is T = I ∪ z for some I ∈ I(Ma,b).

Case 1 : I ∈ I(M). Then T ∈ Iz.

Case 2 : I = C ∪ I ′ where C is an np-circuit of M and I ′ ∈ I(M). Then by
Lemma 2.4, C ∪ z is a circuit of M ′

a,b contained in T, a contradiction.

Lemma 3.2. Let M be a p-matroid and {a, b} ⊂ E. Then B(M ′
a,b) = B(Ma,b)∪Bz,

where Bz = {B ∪ z : B ∈ B(M)}.
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Proof. It is easy to observe that B(Ma,b) ∪ Bz ⊆ B(M ′
a,b). Next assume that

B ∈ B(M ′
a,b). Then rank(B) = rank(M) + 1. If B contains z, then B \ z is an

independent set of Ma,b of size rank(M). Then by similar arguments given in the
proof of Lemma 3.1, B = I ∪ z, for some I ∈ I(M). Therefore B \ z is a basis
of M and B ∈ Bz. If z /∈ B, then B is an independent set of size rank(M) + 1.
Therefore B ∈ B(Ma,b).

In the following lemma, we provide the rank function of M ′
a,b in terms of the rank

function of M.

Lemma 3.3. Let r and r′ be the rank functions of the matroids M and M ′
a,b,

respectively. Suppose S ⊆ E(M). Then r′(S ∪ z) = r(S) + 1, and

r′(S) = r(S), if S contains no np-circuit of M; and

= r(S) + 1, if S contains an np-circuit of M.
(3.1)

Proof. The equality r′(S ∪ z) = r(S) + 1 follows from the definition. The proof of
the Equation (1) is discussed in Corollary 2.13 of [9].

4. Connectivity of element splitting p-matroids

Let M be a matroid having the ground set E, and k be a positive integer. The
k-separation of matroid M is a partition {S, T} of E such that |S|, |T | ≥ k and
r(S) + r(T ) − r(M) < k. For an integer n ≥ 2, we say M is an n-connected if M
has no k- separation, where 1 ≤ k ≤ n− 1.

In the following theorem, we provide a necessary and sufficient condition to preserve
the connectedness of a p-matroid under element splitting operation. For a, b ∈ E,
if the matroid M contains at least one np-circuit, then splitting operation on M
with respect to a, b is called a non-trivial splitting operation.

Theorem 4.1. Let M be a connected p-matroid on the ground set E. Then M ′
a,b is

a connected p-matroid on the ground set E ∪{z} if and only if Ma,b is the splitting
matroid obtained by applying non-trivial splitting operation on M.
Proof. First assume that M ′

a,b is a connected p-matroid on the ground set E∪{z}.
On the contrary, suppose Ma,b is obtained by applying trivial splitting operation.
Then M contains no np circuits with respect to the splitting by elements a, b. Now,
let S = {z} and T = E. Then r′(S)+r′(T )−r′(M ′

a,b) = 1+r(E)−(r(M)+1) = 0 < 1
gives a 1-separation of M ′

a,b, which is a contradiction.

For converse part, assume that Ma,b is the splitting matroid obtained by applying
non-trivial splitting operation on M. Suppose that, M ′

a,b is not connected. It means
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M ′
a,b has 1-separation, say {S, T}. Then |S|, |T | ≥ 1 and

r′(S) + r′(T ) − r′(M ′
a,b) < 1. (4.1)

Case 1 : Assume S = {z}. Then T contains an np circuit. Then Equation (4.1)
gives, 1 + (1 + r(T )) − r(M) − 1 < 1 =⇒ r(T ) < r(M), which is not possible.
Case 2 : Assume |S| ≥ 2, z ∈ S. If T contains no np-circuit then Equation (4.1)
yields, (r(S\z)+1)+r(T )−r(M)−1 < 1, that is r(S\z)+r(T )−r(M) < 1. There-
fore {S \ z, T} gives 1−separation of M, a contradiction. Further, if T contains an
np-circuit, then r′(S) = r(S \ z) + 1, r′(T ) = r(T ) + 1. By Equation (4.1), we get
(r(S \ z) + 1) + (r(T ) + 1)− r(M)− 1 < 1, which gives r(S \ z) + r(T )− r(M) < 0,
which is not possible. So in either case such separation does not exist. Therefore
M ′

a,b is connected.

For p = 2, the following sufficient condition for the element splitting operation to
preserve the connectedness of the binary matroid by Shikare [17] follows immedi-
ately.

Corollary 4.2. Let M be a connected binary matroid on a set E and {a, b} ⊆ E
such that there is a circuit of M containing exactly one member of {a, b}. Then
the matroid M ′

a,b is connected.

In Example 2.6, the p-matroid R8
∼= M [A] and its element splitting p-matroid

M ′
3,5

∼= M [A′
3,5] both are connected. In the next result we give a necessary and

sufficient condition to preserve 3-connectedness of a p-matroid under the element
splitting operation.

Theorem 4.3. Let M be a 3-connected p-matroid. Then M ′
a,b is 3-connected p-

matroid if and only if for every t ∈ E(M) there is an np-circuit of M not containing
t.
Proof. Let M ′

a,b be 3-connected p-matroid. On contrary, if there is an element
t ∈ E(M) contained in every np-circuit of M. Take S = {z, t} and T = E \S. Then
r′(S)+r′(T )−r′(M ′

a,b) = r({t})+1+r(T )−r(M)−1 = r({t})+r(T )−r(M) = 1 < 2.
Because, in this case, t ∈ cl(T ) hence r(T ) = r(M). That is {S, T} forms a 2-
separation of M ′

a,b, a contradiction.
For converse part suppose, for every t ∈ E(M) there is an np-circuit of M not con-
taining t. On the contrary assume that M ′

a,b is not a 3-connected matroid. Then
there exists a k separation, for k ≤ 2, of M ′

a,b. By Theorem 4.1, k can not be equal
to 1. For k = 2, let {S, T} be a 2-separation of M ′

a,b. Then {S, T} is a partition of
E ∪ {z} such that |S|, |T | ≥ 2 and

r′(S) + r′(T ) − r′(M ′
a,b) < 2. (4.2)



268 South East Asian J. of Mathematics and Mathematical Sciences

Case 1 :Suppose S = {z, t}, t ∈ E(M). By hypothesis, T contains an np-circuit
not containing t. Then Equation (4.2) gives, (r({t})+1)+(1+r(T ))−r(M)−1 < 2
=⇒ r(t) + r(T ) − r(M) < 1. Thus {{t}, T} forms a 1-separation of M, which is a
contradiction.
Case 2 : Suppose z ∈ S and |S| ≥ 3. If T contains no np-circuit then Equation
(4.2) yields (r(S \ z) + 1) + r(T )− r(M)− 1 < 2 =⇒ r(S \ z) + r(T )− r(M) < 2.
Therefore {S \ z, T} gives a 2-separation of M, a contradiction.
Further, if T contains an np-circuit, then r′(S) = r(S \ z) + 1, r′(T ) = r(T ) + 1.
By Equation (4.2), we get (r(S \ z) + 1) + (r(T ) + 1) − r(M) − 1 < 2 =⇒ r(S \
z) + r(T )− r(M) < 1. Thus, {S \ z, T} gives a 1-separation of M, a contradiction.
So in either case such partition does not exist. Therefore M ′

a,b is 3-connected.

5. Applications

For Eulerian matroid M on the ground set E there exists disjoint circuits C1,C2,
. . .,Ck of M such that E = C1∪C2∪ ...∪Ck. We call the collection {C1, C2, . . . , Ck}
a circuit decomposition of M.

Let {a, b} ⊂ E. We say a circuit decomposition C̃ = {C1, C2, . . . , Ck} of M an
ep-decomposition of M if it contains exactly one np-circuit with respect to the
a, b splitting of M. In the next proposition, we give a sufficient condition to yield
Eulerian p-matroids from Eulerian p-matroids after the element splitting operation.

Proposition 5.1. Let M be Eulerian p-matroid and a, b ∈ E. If M has an ep-
decomposition, then M ′

a,b is Eulerian p-matroid.

Proof. Let C̃ = {C1, C2, . . . , Ck} be an ep-decomposition of M and C1 be an
np-circuit in it. Then C1 ∪ z is a circuit of M ′

a,b. Thus {C1 ∪ z, C2, . . . , Ck} is the
desired circuit decomposition of M ′

a,b.

Proposition 5.2. Let M ′
a,b is Eulerian p-matroid and C̃= {C1, C2, . . . , Ck} be

a circuit decomposition of M ′
a,b. If C̃ contains no member which be a union of

an np-circuit and an independent set of M, then M is Eulerian and has an ep-
decomposition.
Proof. Assume, without loss of generality, z ∈ C1. Then C1 ∈ Cz and C1 \ z is an
np-circuit of M. We will show C1\z contains both a and b. On the contrary assume
that C1 \ z contains only a. Then b ∈ Ci for some i ∈ {2, 3, . . . , k}. Since Ci is also
a circuit of Ma,b containing only b, by Theorem 2.10 of [9] it must be a union of an
np-circuit and an independent set of M, which is a contradiction to the hypothesis.
Therefore C1 \z contains both a and b and the collection {C1 \z, C2, . . . , Ck} forms
an ep-decomposition of M.

In Example 2.6, the matroid R8 is Eulerian with ep-decomposition E = C1 ∪ C2,
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where C1 = {2, 4, 6, 8} is a p-circuit and C2 = {1, 3, 5, 7} is an np-circuit. An
element splitting matroid M ′

3,5 is also Eulerian with circuit decomposition E ∪ z =
C1 ∪ (C2 ∪ z).

M. Borowiecki [2] defined Hamiltonian matroid as a matroid containing a circuit
of size r(M) + 1. This circuit is called the Hamiltonian circuit of the matroid M.
In the next corollary, we give a sufficient condition to yield Hamiltonian matroid
from Hamiltonian matroid after the element splitting operation.

Corollary 5.3. If M is Hamiltonian matroid with an np-circuit of size r(M) + 1,
then M ′

a,b is Hamiltonian.
Proof. Let C be an np-circuit of M of size r(M) + 1. Then by Proposition 2.4,
C ∪ z is a circuit in M ′

a,b of size r(M) + 2.

In Example 2.6, the matroid R8
∼= M [A] is Hamiltonian and its element splitting

matroid M ′
3,5

∼= M [A′
3,5] is also Hamiltonian.

Let M be a matroid of rank r. M is called a paving matroid, if every circuit of M
is of the size r or r+ 1. All binary paving matroids are characterized by Acketa [1].
Oxley [14] gave a characterization of ternary paving matroids. A paving matroid
M does not always yield a paving matroid after splitting. In the next proposition,
we characterize the element splitting p-matroids M ′

a,b that are paving.

Proposition 5.4. Let M be a paving p-matroid of rank r,{a, b} ⊂ E(M). Then the
element splitting matroid M ′

a,b is also paving if and only if every circuit C ∈ C(M)
of size r is an np-circuit.
We conclude this paper by proposing following problem:
Rota conjectured that the family of matroids that are representable over finite
fields has only finitely many excluded minors [7]. For example, the 4-point line,
U2,4, is the only excluded minor for the class of binary matroids. In the following
example, we demonstrate that there exist a splitting of the ternary matroid U2,4,
which yields a graphic matroid.

Example 5.5. Let the matrix A represents the ternary matroid U2,4 and the vector
matroid of A1,3 represents the splitting matroid M [A1,3].

A =

(
1 0 1 1
0 1 1 2

)1 2 3 4

A1,3 =

1 0 1 1
0 1 1 2
1 0 1 0


1 2 3 4

A′
1,3 =

1 0 1 1 0
0 1 1 2 0
1 0 1 0 1


1 2 3 4 5

Observe that
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� the splitting matroid M [A1,3] is binary and matrix B =

1 0 1 1
0 1 1 0
0 0 0 1


1 2 3 4

gives

its binary representation.

� A′
1,3/5 = U2,4.

However, the element splitting operation on U2,4 does not give a binary matroid.
With this observation, we propose the following question:
For a given ternary matroid M, does there always exist a pair of elements {a, b} in
E(M) such that the splitting matroid Ma,b is binary (graphic)?
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