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Abstract: This paper deals with a new type of set, viz., fuzzy α-preopen set,
the class of which is strictly larger than that of fuzzy open set as well as fuzzy
α-open set [4]. Using this newly defined fuzzy set, here we introduce and study
fuzzy α-precontinuous and fuzzy α-preirresolute functions. It is shown that fuzzy
α-preirresolute function is fuzzy α-precontinuous, but the converse may not be
true, in general. Next we introduce fuzzy α-preregular space, in which fuzzy open
set and fuzzy α-preopen set coincide. Lastly, some applications of the functions
defined here are established.
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1. Introduction
After introducing fuzzy topology by Chang [5], many mathematicians have

engaged themselves to introduce different types of fuzzy open-like sets. In [7],
fuzzy strongly preopen set and fuzzy strong precontinuous function are introduced
and studied by using fuzzy preopen set [8] as a basic tool whereas in [3], fuzzy pre-
semiopen set and fuzzy pre-semi-continuous function are introduced and studied
by using fuzzy semiopen set [1] introduced by K. K. Azad. In [4], Bin Shahna
introduced fuzzy α-open set. Using this set as a basic tool, here we introduce
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fuzzy α-preopen set, a larger class of sets than that of fuzzy open as well as fuzzy
α-open set and fuzzy strongly preopen set and weaker than fuzzy pre-semiopen
set. In [5], Chang introduced fuzzy continuous function. Here we introduce fuzzy
α-precontinuous function, the class of which is strictly larger than that of fuzzy
continuous function as well as fuzzy strong precontinuous function, but weaker
than fuzzy pre-semi-continuous function.

2. Preliminaries

Throughout this paper, (X, τ) or simply by X we shall mean a fuzzy topological
space. A fuzzy set A is a function from a non-empty set X into the closed interval
I = [0, 1], i.e., A ∈ IX [11]. The support [11] of a fuzzy set A, denoted by suppA
or A0 and is defined by suppA = {x ∈ X : A(x) ̸= 0}. The fuzzy set with the
singleton support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by xt.
0X and 1X are the constant fuzzy sets taking values 0 and 1 respectively in X.
The complement [11] of a fuzzy set A in an fts X is denoted by 1X \ A and is
defined by (1X \ A)(x) = 1 − A(x), for each x ∈ X. For any two fuzzy sets A,B
in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X [11] while AqB means A is
quasi-coincident (q-coincident, for short) [9] with B, i.e., there exists x ∈ X such
that A(x) + B(x) > 1. The negation of these two statements will be denoted by
A ̸ ≤B and A ̸ qB respectively. For a fuzzy set A, clA and intA will stand for fuzzy
closure [5] and fuzzy interior [5] of A respectively. A fuzzy set A in X is called a
fuzzy neighbourhood (fuzzy nbd, for short) [9] of a fuzzy point xt if there exists
a fuzzy open set G in X such that xt ∈ G ≤ A. If, in addition, A is fuzzy open,
then A is called fuzzy open nbd of xt. A fuzzy set A is said to be a fuzzy quasi
neighbourhood (fuzzy q-nbd, for short) of a fuzzy point xt in an fts X if there is
a fuzzy open set U in X such that xtqU ≤ A [9]. If, in addition, A is fuzzy open,
then A is called a fuzzy open q-nbd of xt [9].
A fuzzy set A in an fts (X, τ) is called fuzzy α-open [4] (resp., fuzzy semiopen
[1], fuzzy preopen [8]) if A ≤ int(cl(intA)) (resp., A ≤ cl(intA), A ≤ int(clA)).
The complement of a fuzzy α-open set (resp., fuzzy semiopen, fuzzy preopen) is
called fuzzy α-closed [4] (resp., fuzzy semiclosed [1], fuzzy preclosed [8]). The
union (intersection) of all fuzzy α-open (resp., fuzzy α-closed) sets contained in
(resp., containing) a fuzzy set A is called fuzzy α-interior [4] (resp., fuzzy α-closure
[4]) of A, denoted by αintA (resp., αclA). The union of all fuzzy semiopen sets
contained in a fuzzy set A is called fuzzy semiinterior [1] of A, denoted by sintA
and the intersection of all fuzzy preclosed sets containing a fuzzy set A is called
fuzzy preclosure of A [8], denoted by pclA. A fuzzy set A in an fts X is called
fuzzy α-neighbourhood (fuzzy α-nbd, for short) of a fuzzy point xt in X if there
exists a fuzzy α-open set U in X such that xt ∈ U ≤ A [4]. The collection of all
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fuzzy α-open (resp., fuzzy α-closed) sets in an fts X is denoted by FαO(X) (resp.,
FαC(X)).

3. Fuzzy α-Preopen Set : Some Properties

In this section, we introduce a new class of fuzzy open-like set, viz., fuzzy α-
preopen set, the class of which is strictly larger than that of fuzzy open set as
well as fuzzy α-open set and fuzzy strongly preopen set and weaker than fuzzy
pre-semiopen set. Some basic properties of this set is discussed here. Afterwards,
we introduce a new type of fuzzy closure-like operator which is an idempotent op-
erator.

Definition 3.1. A fuzzy set A in an fts (X, τ) is called fuzzy α-preopen (resp., fuzzy
strongly preopen [7], fuzzy pre-semiopen [3]) if A ≤ αint(clA) (resp, A ≤ int(pclA),
A ≤ sint(clA)). The complement of fuzzy α-preopen set is called fuzzy α-preclosed
set.
The collection of fuzzy α-preopen (resp., fuzzy α-preclosed) sets in (X, τ) is de-
noted by FαPO(X) (resp., FαPC(X)) and that of fuzzy strongly preopen (resp.,
fuzzy pre-semiopen) set is denoted by FSPO(X) (resp., FPSO(X)).
The union (resp., intersection) of all fuzzy α-preopen (resp., fuzzy α-preclosed) sets
contained in (containing) a fuzzy set A is called fuzzy α-preinterior (resp., fuzzy
α-preclosure) of A, denoted by αpintA (resp., αpclA).

Result 3.2. Union of two fuzzy α-preopen sets in an fts X is also so.
Proof. Let A,B ∈ FαPO(X). Then A ≤ αint(clA), B ≤ αint(clB). Now
αint(cl(A

∨
B)) = αint(clA

∨
clB) ≥ αint(clA)

∨
αint(clB) ≥ A

∨
B.

Remark 3.3. Intersection of two fuzzy α-preopen sets need not be so, follows from
the next example.

Example 3.4. Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.6.
Then (X, τ) is an fts. Consider two fuzzy sets U, V defined by U(a) = 0.4, U(b) =
0.5, V (a) = 0.6, V (b) = 0.4. Then clearly U, V ∈ FαPO(X). Let W = U

∧
V .

Then W (a) = W (b) = 0.4. Now αint(clW ) ̸≥ W ⇒ W ̸∈ FαPO(X).

Note 3.5. So we can conclude that the set of all fuzzy α-preopen sets in an fts do
not form a fuzzy topology.

Remark 3.6. It is clear from definitions that
(i) fuzzy open and fuzzy α-open sets are fuzzy α-preopen,
(ii) fuzzy strongly preopen set implies fuzzy α-preopen set which also implies fuzzy
pre-semiopen set. But reverse implications are not necessarily true follow from the
next examples.
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Example 3.7. (i) Consider Example 3.4. Here U ∈ FαPO(X). But U ̸∈ τ ,
U ̸∈ FαO(X).
(ii) FαPO(X) ⊆ FPSO(X)
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4. Then (X, τ) is an
fts. Consider the fuzzy set B defined by B(a) = B(b) = 0.5. Then αint(clB) =
A ̸≥ B ⇒ B ̸∈ FαPO(X). But sint(clB) = 1X \ A ≥ B ⇒ B ∈ FPSO(X).
(iii) FSPO(X) ⊆ FαPO(X)
LetX = {a, b}, τ = {0X , 1X , A,B} whereA(a) = 0.5, A(b) = 0.4, B(a) = 0.5, B(b) =
0.55. Then (X, τ) is an fts. Consider the fuzzy set C defined by C(a) = C(b) = 0.5.
Now int(pclC) = A ̸≥ C ⇒ C ̸∈ FSPO(X). But αint(clC) = B ≥ C ⇒ C ∈
FαPO(X).

Now we introduce a new type of fuzzy neighbourhood of a fuzzy point, the class
of which is strictly greater than that of fuzzy neighbourhood of the point.

Definition 3.8. A fuzzy set A in an fts (X, τ) is called fuzzy α-pre neighbourhood
(fuzzy α-pre nbd, for short) of a fuzzy point xα if there exists a fuzzy α-preopen set
U in X such that xα ∈ U ≤ A. If, in addition, A is fuzzy α-preopen, then A is
called fuzzy α-preopen nbd of xα.

Definition 3.9. A fuzzy set A in an fts (X, τ) is called fuzzy α-pre quasi neigh-
bourhood (fuzzy α-pre q-nbd, for short) of a fuzzy point xα if there exists a fuzzy
α-preopen set U in X such that xαqU ≤ A. If, in addition, A is fuzzy α-preopen,
then A is called fuzzy α-preopen q-nbd of xα.

Remark 3.10. Since a fuzzy open set is fuzzy α-preopen, we can conclude that
(i) fuzzy nbd (resp., fuzzy open nbd) of a fuzzy point xα is a fuzzy α-pre nbd (resp.,
fuzzy α-preopen nbd) of xα,
(ii) fuzzy q-nbd (resp., fuzzy open q-nbd) of a fuzzy point xα is a fuzzy α-pre q-nbd
(resp., fuzzy α-preopen q-nbd) of xα.
But the reverse implications are not necessarily true follow from the following ex-
ample.

Example 3.11. Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.6.
Then (X, τ) is an fts. Consider two fuzzy sets B,C defined by B(a) = 0.4, B(b) =
0.5, C(a) = 0.6, C(b) = 0.4. Then B,C ∈ FαO(X). Consider two fuzzy points a0.3
and a0.45. Nowa0.3 ∈ B ≤ B ⇒ B is a fuzzy α-pre nbd as well as fuzzy α-preopen
nbd of a0.3. But there does not exist any fuzzy open set U in (X, τ) such that
a0.3 ∈ U ≤ B. So B is not a fuzzy nbd and fuzzy open nbd of a0.3.
Next a0.45qC ≤ C ⇒ C is a fuzzy α-pre q-nbd as well as fuzzy α-preopen q-nbd of
a0.45. But there does not exist a fuzzy open set U in X with a0.45qU ≤ C ⇒ C is
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not a fuzzy q-nbd and fuzzy open q-nbd of a0.45.

Theorem 3.12. For any fuzzy set A in an fts (X, τ), xt ∈ αpclA if and only if
every fuzzy α-preopen q-nbd U of xt, UqA.
Proof. Let xt ∈ αpclA for any fuzzy set A in an fts (X, τ). Let U ∈ FαPO(X)
with xtqU . Then U(x) + α > 1 ⇒ xt ̸∈ 1X \ U ∈ FαPC(X). Then by definition,
A ̸≤ 1X \ U ⇒ there exists y ∈ X such that A(y) > 1 − U(y) ⇒ A(y) + U(y) >
1 ⇒ UqA.
Conversely, let the given condition hold. Let U ∈ FαPC(X) with A ≤ U ... (1).
We have to show that xt ∈ U , i.e., U(x) ≥ t. If possible, let U(x) < t. Then
1 − U(x) > 1 − t ⇒ xtq(1X \ U) where 1X \ U ∈ FαPO(X). By hypothesis,
(1X \ U)qA ⇒ there exists y ∈ X such that 1− U(y) + A(y) > 1 ⇒ A(y) > U(y),
contradicts (1).

Theorem 3.13. αpcl(αpclA) = αpclA for any fuzzy set A in an fts (X, τ).
Proof. Let A ∈ IX . Then

A ≤ αpclA ⇒ αpclA ≤ αpcl(αpclA). (1)

Conversely, let xt ∈ αpcl(αpclA). If possible, let xt ̸∈ αpclA. Then there exists
U ∈ FαPO(X),

xtqU, U ̸ qA (2)

But as xt ∈ αpcl(αpclA), Uq(αpclA) ⇒ there exists y ∈ X such that U(y) +
(αpclA)(y) > 1 ⇒ U(y) + s > 1 where s = (αpclA)(y). Then ys ∈ αpclA and ysqU
where U ∈ FαPO(X). Then by definition, UqA, contradicts (2). So

αpcl(αpclA) ≤ αpclA (3)

Combining (1) and (3), we get the result.

4. Fuzzy α-Precontinuous Function: Some Characterizations
In this section a new type of function is introduced and studied, the class of

which is strictly larger than that of fuzzy continuous function [5] and fuzzy strong
precontinuous function [7] but weaker than fuzzy pre-semi-continuous function [3].

Definition 4.1. A function f : X → Y is said to be fuzzy α-precontinuous if for
each fuzzy point xt in X and every fuzzy nbd V of f(xt) in Y , cl(f−1(V )) is a fuzzy
α-nbd of xt in X.
Theorem 4.2. For a function f : X → Y , the following statements are equivalent:
(a) f is fuzzy α-precontinuous,
(b) f−1(B) ≤ αint(cl(f−1(B))), for all fuzzy open set B of Y ,
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(c) f(αclA) ≤ cl(f(A)), for all fuzzy open set A in X.
Proof. (a) ⇒ (b). Let B be any fuzzy open set in Y and xt ∈ f−1(B). Then
f(xt) ∈ B ⇒ B is a fuzzy nbd of f(xt) in Y . By (a), cl(f−1(B)) is a fuzzy
α-nbd of xt in X. So xt ∈ αint(cl(f−1(B))). Since xt is taken arbitrarily,
f−1(B) ≤ αint(cl(f−1(B))).
(b) ⇒ (a). Let xt be a fuzzy point in X and B be a fuzzy nbd of f(xt) in Y . Then
xt ∈ f−1(B) ≤ αint(cl(f−1(B))) (by (b)) ≤ cl(f−1(B)). So cl(f−1(B)) is a fuzzy
α-nbd of xt in X.
(b) ⇒ (c). Let A be a fuzzy open set in X. Then 1Y \ cl(f(A)) is a fuzzy
open set in Y . By (b), f−1(1Y \ cl(f(A))) ≤ αint(cl(f−1(1Y \ cl(f(A))))) =
αint(cl(1X \ f−1(cl(f(A))))) ≤ αint(cl(1X \ f−1(f(A)))) ≤ αint(cl(1X \ A)) =
αint(1X \A) = 1X \ αclA. Then αclA ≤ 1X \ f−1(1Y \ cl(f(A))) = f−1(cl(f(A))).
So f(αclA) ≤ cl(f(A)).
(c) ⇒ (b). Let B be any fuzzy open set in Y . Then int(f−1(1Y \ B)) is a fuzzy
open set in X. By (c), f(αcl(int(f−1(1Y \ B)))) ≤ cl(f(int(f−1(1Y \ B)))) ≤
cl(f(f−1(1Y \B))) ≤ cl(1Y \B) = 1Y \B ⇒ B ≤ 1Y \f(αcl(int(f−1(1Y \B)))). Then
f−1(B) ≤ f−1(1Y \f(αcl(int(f−1(1Y \B))))) = 1X\f−1(f(αcl(int(f−1(1Y \B))))) ≤
1X \ αcl(int(f−1(1Y \B))) = 1X \ αcl(int(1X \ f−1(B))) = αint(cl(f−1(B))).

Note 4.3. It is clear from above theorem that the inverse image under fuzzy α-
precontinuous function of any fuzzy open set is fuzzy α-preopen.

Theorem 4.4. For a function f : X → Y , the following statements are equivalent:
(a) f is fuzzy α-precontinuous,
(b) f−1(B) ≤ αint(cl(f−1(B))), for all fuzzy open set B of Y ,
(c) for each fuzzy point xt in X and each fuzzy open nbd V of f(xt) in Y , there
exists U ∈ FαPO(X) containing xt such that f(U) ≤ V ,
(d) f−1(F ) ∈ FαPC(X), for all fuzzy closed sets F in Y ,
(e) for each fuzzy point xt in X, the inverse image under f of every fuzzy nbd of
f(xt) is a fuzzy α-pre nbd of xt in X,
(f) f(αpclA) ≤ cl(f(A)), for all fuzzy set A in X,
(g) αpcl(f−1(B)) ≤ f−1(clB), for all fuzzy set B in Y ,
(h) f−1(intB) ≤ αpint(f−1(B)), for all fuzzy set B in Y ,
(i) for every basic open fuzzy set V in Y , f−1(V ) ∈ FαPO(X).
Proof. (a) ⇔ (b). Follows from Theorem 4.2 (a) ⇔ (b).
(b)⇒ (c). Let xt be a fuzzy point inX and V be a fuzzy open nbd of f(xt) in Y . By
(b), f−1(V ) ≤ αint(cl(f−1(V ))) ... (1). Now f(xt) ∈ V ⇒ xt ∈ f−1(V ) (= U , say).
Then xt ∈ U and by (1), U(= f−1(V )) ∈ FαPO(X) and f(U) = f(f−1(V )) ≤ V .
(c) ⇒ (b). Let V be a fuzzy open set in Y and let xt ∈ f−1(V ). Then f(xt) ∈
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V ⇒ V is a fuzzy open nbd of f(xt) in Y . By (c), there exists U ∈ FαPO(X)
containing xt such that f(U) ≤ V . Then xt ∈ U ≤ f−1(V ). Now U ≤ αint(clU).
Then U ≤ αint(clU) ≤ αint(cl(f−1(V ))) ⇒ xt ∈ U ≤ αint(cl(f−1(V ))). Since xt

is taken arbitrarily, f−1(V ) ≤ αint(cl(f−1(V ))).
(b) ⇔ (d). Obvious.
(b) ⇒ (e). Let W be a fuzzy nbd of f(xt) in Y . Then there exists a fuzzy open set
V in Y such that f(xt) ∈ V ≤ W ⇒ V is a fuzzy open nbd of f(xt) in Y . Then by
(b), f−1(V ) ∈ FαPO(X) and xt ∈ f−1(V ) ≤ f−1(W ) ⇒ f−1(W ) is a fuzzy α-pre
nbd of xt in X.
(e) ⇒ (b). Let V be a fuzzy open set in Y and xt ∈ f−1(V ). Then f(xt) ∈ V .
Then V is a fuzzy open nbd of f(xt) in Y . By (e), there exists U ∈ FαPO(X)
containing xt such that U ≤ f−1(V ) ⇒ xt ∈ U ≤ αint(clU) ≤ αint(cl(f−1(V ))).
Since xt is taken arbitrarily, f−1(V ) ≤ αint(cl(f−1(V ))).
(d) ⇒ (f). Let A ∈ IX . Then cl(f(A)) is a fuzzy closed set in Y . By (d),
f−1(cl(f(A))) ∈ FαPC(X) containing A. Therefore, αpclA ≤ αpcl(f−1(cl(f(A))))
= f−1(cl(f(A))) ⇒ f(αpclA) ≤ cl(f(A)).
(f) ⇒ (d). Let B be a fuzzy closed set in Y . Then f−1(B) ∈ IX . By (f),
f(αpcl(f−1(B))) ≤ cl(f(f−1(B))) ≤ clB = B ⇒ αpcl(f−1(B)) ≤ f−1(B) ⇒
f−1(B) ∈ FαPC(X).
(f) ⇒ (g). Let B ∈ IY . Then f−1(B) ∈ IX . By (f), f(αpcl(f−1(B))) ≤
cl(f(f−1(B))) ≤ clB ⇒ αpcl(f−1(B)) ≤ f−1(clB).
(g) ⇒ (f). Let A ∈ IX . Let B = f(A). Then B ∈ IY . By (g), αpcl(f−1(f(A))) ≤
f−1(cl(f(A))) ⇒ αpclA ≤ f−1(cl(f(A))) ⇒ f(αpclA) ≤ cl(f(A)).
(b) ⇒ (h). Let B ∈ IY . Then intB is a fuzzy open set in Y . By (b), f−1(intB) ≤
αint(cl(f−1(intB))) ⇒ f−1(intB) ∈ FαPO(X) ⇒ f−1(intB) = αpint(f−1(intB))
≤ αpint(f−1(B)).
(h) ⇒ (b). Let A be any fuzzy open set in Y . Then f−1(A) = f−1(intA) ≤
αpint(f−1(A)) (by (h)) ⇒ f−1(A) ∈ FαPO(X).
(b) ⇒ (i). Obvious.
(i) ⇒ (b). Let W be any fuzzy open set in Y . Then there exists a collection

{Wα : α ∈ Λ} of fuzzy basic open sets in Y such that W =
∨
α∈Λ

Wα. Now

f−1(W ) = f−1(
∨
α∈Λ

Wα) =
∨
α∈Λ

f−1(Wα) ∈ FαPO(X) (by (i) and by Result 3.2).

Hence (b) follows.

Theorem 4.5. A function f : X → Y is fuzzy α-precontinuous if and only if for
each fuzzy point xt in X and each fuzzy open q-nbd V of f(xt) in Y , there exists a
fuzzy α-pre q-nbd W of xt in X such that f(W ) ≤ V .
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Proof. Let f be fuzzy α-precontinuous function and xt be a fuzzy point in X
and V be a fuzzy open q-nbd of f(xt) in Y . Then f(xt)qV . Let f(x) = y. Then
V (y)+t > 1 ⇒ V (y) > 1−t ⇒ V (y) > β > 1−t, for some real number β. Then V is
a fuzzy open nbd of yβ. By Theorem 4.4 (a)⇒(c), there exists W ∈ FαPO(X) con-
taining xβ, i.e., W (x) ≥ β such that f(W ) ≤ V . Then W (x) ≥ β > 1− t ⇒ xtqW
and f(W ) ≤ V .
Conversely, let the given condition hold and let V be a fuzzy open set in Y . Put
W = f−1(V ). If W = 0X , then we are done. Suppose W ̸= 0X . Then for any
x ∈ W0, let y = f(x). Then W (x) = [f−1(V )](x) = V (f(x)) = V (y). Let us choose
m ∈ N where N is the set of all natural numbers such that 1/m ≤ W (x). Put
αn = 1 + 1/n−W (x) , for all n ∈ N . Then for n ∈ N and n ≥ m, 1/n ≤ 1/m ⇒
1+1/n ≤ 1+1/m ⇒ αn = 1+1/n−W (x) ≤ 1+1/m−W (x) ≤ 1. Again αn > 0,
for all n ∈ N ⇒ 0 < αn ≤ 1 so that V (y) + αn > 1 ⇒ yαnqV ⇒ V is a fuzzy
open q-nbd of yαn . By the given condition, there exists Ux

n ∈ FαPO(X) such that
xαnqU

x
n and f(Ux

n ) ≤ V , for all n ≥ m. Let Ux =
∨
{Ux

n : n ∈ N , n ≥ m}. Then
Ux ∈ FαPO(X) (by Result 3.2) and f(Ux) ≤ V . Again n ≥ m ⇒ Ux

n (x) + αn >
1 ⇒ Ux

n (x) + 1 + 1/n − W (x) > 1 ⇒ Ux
n (x) > W (x) − 1/n ⇒ Ux

n (x) ≥ W (x),
for each x ∈ W0. Then W ≤ Ux

n , for all n ≥ m and for all x ∈ W0 ⇒ W ≤ Ux,

for all x ∈ W0 ⇒ W ≤
∨

x∈W0

Ux = U (say) ... (1) and f(Ux) ≤ V , for all

x ∈ W0 ⇒ f(U) ≤ V ⇒ U ≤ f−1(f(U)) ≤ f−1(V ) = W ... (2). By (1) and (2),
U = W = f−1(V ) ⇒ f−1(V ) ∈ FαPO(X). Hence by Theorem 4.2, f is fuzzy
α-precontinuous function.

Remark 4.6. Composition of two fuzzy α-precontinuous functions need not be so,
follows from the following example.

Example 4.7. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X}, τ3 = {0X , 1X , B}
where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.4. Then (X, τ1), (X, τ2)
and (X, τ3) are fts’s. Consider two identity functions i1 : (X, τ1) → (X, τ2) and
i2 : (X, τ2) → (X, τ3). Clearly i1 and i2 are fuzzy α-precontinuous functions. Now
B ∈ τ3. (i2 ◦ i1)−1(B) = B ̸≤ αintτ1(clτ1B) = 0X ⇒ B ̸∈ FαPO(X, τ1) ⇒ i2 ◦ i1 is
not fuzzy α-precontinuous function.

Let us now recall the following definitions from [5] for ready references.

Definition 4.8. A function f : X → Y is called fuzzy continuous function [5]
(resp., fuzzy strong precontinuous function [7], fuzzy pre-semi-continuous function
[3]) if the inverse image of every fuzzy open set in Y is fuzzy open (resp., fuzzy
strongly preopen, fuzzy pre-semiopen) set in X.
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Note 4.9. It is clear from above definitions that
(i) fuzzy continuous function is fuzzy α-precontinuous function,
(ii) fuzzy strong precontinuity⇒ fuzzy α-precontinuity⇒ fuzzy pre-semicontinuity.
But the converses are not necessarily true follow from the next examples.

Example 4.10. (i) Fuzzy α-precontinuity ̸⇒ fuzzy continuity
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) = 0.5 = A(b). Then
(X, τ1) and (X, τ2) are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Now A ∈ τ2, i

−1(A) = A ̸∈ τ1. Clearly i is not fuzzy continuous function. Now
every fuzzy set in (X, τ1) is fuzzy α-preopen in (X, τ1) ⇒ i is fuzzy α-precontinuous
function.
(ii) Fuzzy α-precontinuity ̸⇒ fuzzy strong precontinuity
Let X = {a, b}, τ1 = {0X , 1X , A,B},τ2 = {0X , 1X , C} where A(a) = 0.5, A(b) =
0.4, B(a) = 0.5, B(b) = 0.55, C(a) = C(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Now C ∈ τ2, i

−1(C) = C ≤
αintτ1(clτ1C) = B ⇒ i is fuzzy α-precontinuous function. But C ̸≤ intτ1(pclτ1C) =
A ⇒ i is not fuzzy strong precontinuous function.
(iii) Fuzzy pre-semi-continuity ̸⇒ fuzzy α-precontinuity
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) = 0.5, A(b) =
0.4, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Now B ∈ τ2, i

−1(B) = B ≤ sintτ1(clτ1B) = 1X\A ⇒
i is fuzzy pre-semi-continuous function. But αintτ1(clτ1B) = A ̸≥ B ⇒ i is not
fuzzy α-precontinuous function.

Lemma 4.11. [2] Let Z,X, Y be fts’s and f1 : Z → X and f2 : Z → Y be func-
tions. Let f : Z → X × Y be defined by f(z) = (f1(z), f2(z)) for z ∈ Z, where
X × Y is provided with the product fuzzy topology. Then if B,U1, U2 are fuzzy sets
in Z,X, Y respectively such that f(B) ≤ U1×U2, then f1(B) ≤ U1 and f2(B) ≤ U2.

Theorem 4.12. Let Z,X, Y be fts’s. For any functions f1 : Z → X, f2 : Z → Y ,
if f : Z → X × Y , defined by f(x) = (f1(x), f2(x)), for all x ∈ Z, is fuzzy α-
precontinuous function, so are f1 and f2.
Proof. Let U1 be any fuzzy open q-nbd of f1(xt) in X for any fuzzy point xt in
Z. Then U1 × 1Y is a fuzzy open q-nbd of f(xt), i.e., (f(x))t in X × Y . Since f is
fuzzy α-precontinuous function, there exists V ∈ FαPO(Z) with xtqV such that
f(V ) ≤ U1 × 1Y . By Lemma 4.11, f1(V ) ≤ U1, f2(V ) ≤ 1Y . Consequently, f1 is
fuzzy α-precontinuous function.
Similarly, f2 is fuzzy α-precontinuous function.

Lemma 4.13. [1] Let X, Y be fts’s and let g : X → X × Y be the graph of
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a function f : X → Y . Then if A,B are fuzzy sets in X and Y respectively,
g−1(A×B) = A

∧
f−1(B).

Theorem 4.14. Let f : X → Y be a function from an fts X to an fts Y and
g : X → X × Y be the graph function of f . If g is fuzzy α-precontinuous function,
then f is so.
Proof. Let g be fuzzy α-precontinuous function and B be a fuzzy set in Y . Then
by Lemma 4.13, f−1(B) = 1X

∧
f−1(B) = g−1(1X ×B). Now if B is fuzzy open in

Y , then 1X×B is fuzzy open in X×Y . Again, g−1(1X×B) = f−1(B) ∈ FαPO(X)
as g is fuzzy α-precontinuous function. Hence f is fuzzy α-precontinuous function.

5. Fuzzy α-Preirresolute Function: Some Properties

In this section we introduce a new type of function, viz., fuzzy α-preirresolute
function, the class of which is coarser than that of fuzzy α-precontinuous function.

Definition 5.1. A function f : X → Y is called fuzzy α-preirresolute if the inverse
image of every fuzzy α-preopen set in Y is fuzzy α-preopen in X.

Theorem 5.2. For a function f : X → Y , the following statements are equivalent:
(a) f is fuzzy α-preirresolute,
(b) for each fuzzy point xt in X and each fuzzy α-preopen nbd V of f(xt) in Y ,
there exists a fuzzy α-preopen nbd U of xt in X and f(U) ≤ V ,
(c) f−1(F ) ∈ FαPC(X), for all F ∈ FαPC(Y ),
(d) for each fuzzy point xt in X, the inverse image under f of every fuzzy α-preopen
nbd of f(xt) is a fuzzy α-preopen nbd of xt in X,
(e) f(αpclA) ≤ αpcl(f(A)), for all A ∈ IX ,
(f) αpcl(f−1(B)) ≤ f−1(αpclB), for all B ∈ IY ,
(g) f−1(αpintB) ≤ αpint(f−1(B)), for all B ∈ IY .
Proof. The proof is similar to that of Theorem 4.4 and hence is omitted.

Theorem 5.3. A function f : X → Y is fuzzy α-preirresolute if and only if for
each fuzzy point xt in X and corresponding to any fuzzy α-preopen q-nbd V of f(xt)
in Y , there exists a fuzzy α-preopen q-nbd W of xt in X such that f(W ) ≤ V .
Proof. The proof is similar to that of Theorem 4.5 and hence is omitted.

Note 5.4. Composition of two fuzzy α-preirresolute functions is also so.

Theorem 5.5. If f : X → Y is fuzzy α-preirresolute and g : Y → Z is
fuzzy α-precontinuous (resp., fuzzy continuous), then g ◦ f : X → Z is fuzzy
α-precontinuous.
Proof. Obvious.

Remark 5.6. Every fuzzy α-preirresolute function is fuzzy α-precontinuous, but
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the converse is not true, in general, follows from the following example.

Example 5.7. Fuzzy α-precontinuous function ̸⇒ fuzzy α-preirresolute function
Let X = {a, b}, τ = {0X , 1X , A}, τ1 = {0X , 1X} where A(a) = 0.5, A(b) = 0.6.
Then (X, τ) and (X, τ1) are fts’s. Consider the identity function i : (X, τ) →
(X, τ1). Clearly i is fuzzy α-precontinuous function. Now every fuzzy set in
(X, τ1) is fuzzy α-preopen set in (X, τ1). Consider the fuzzy set B defined by
B(a) = B(b) = 0.4. Then B ∈ FαPO(X, τ1). Now i−1(B) = B ̸≤ αintτ (clτB) =
0X ⇒ B ̸∈ FαPO(X, τ) ⇒ i is not fuzzy α-preirresolute function.

6. Fuzzy α-Preregular Space
In this section we introduce fuzzy α-preregular space in which space fuzzy α-

preopen set and fuzzy open set coincide.

Definition 6.1. An fts (X, τ) is said to be fuzzy α-preregular space if for each
fuzzy α-preclosed set F in X and each fuzzy point xt in X with xt ̸∈ F , there exist
a fuzzy open set U in X and a fuzzy α-preopen set V in X such that xtqU , F ≤ V
and U ̸ qV .

Theorem 6.2. For an fts (X, τ), the following statements are equivalent:
(a) X is fuzzy α-preregular,
(b) for each fuzzy point xt in X and each fuzzy α-preopen set U in X with xtqU ,
there exists a fuzzy open set V in X such that xtqV ≤ αpclV ≤ U ,
(c) for each fuzzy α-preclosed set F in X,

∧
{clV : F ≤ V, V ∈ FαPO(X)} = F ,

(d) for each fuzzy set G in X and each fuzzy α-preopen set U in X such that GqU ,
there exists a fuzzy open set V in X such that GqV and αpclV ≤ U .
Proof. (a)⇒(b). Let xt be a fuzzy point in X and U , a fuzzy α-preopen set in X
with xtqU . Then xt ̸∈ 1X \ U ∈ FαPC(X). By (a), there exist a fuzzy open set
V and a fuzzy α-preopen set W in X such that xtqV , 1X \ U ≤ W , V ̸ qW . Then
xtqV ≤ 1X \W ≤ U ⇒ xtqV ≤ αpclV ≤ αpcl(1X \W ) = 1X \W ≤ U .
(b)⇒(a). Let F be a fuzzy α-preclosed set in X and xt be a fuzzy point in X with
xt ̸∈ F . Then xtq(1X \F ) ∈ FαPO(X). By (b), there exists a fuzzy open set V in
X such that xtqV ≤ αpclV ≤ 1X \ F . Put U = 1X \ αpclV . Then U ∈ FαPO(X)
and xtqV , F ≤ U and U ̸ qV .
(b)⇒(c). Let F be fuzzy α-preclosed set in X. Then F ≤

∧
{clV : F ≤ V, V ∈

FαPO(X)}.
Conversely, let xt ̸∈ F ∈ FαPC(X). Then F (x) < t ⇒ xtq(1X \ F ) where
1X \ F ∈ FαPO(X). By (b), there exists a fuzzy open set U in X such that
xtqU ≤ αpclU ≤ 1X \ F . Put V = 1X \ αpclU . Then F ≤ V and U ̸ qV ⇒ xt ̸∈
clV ⇒

∧
{clV : F ≤ V, V ∈ FαPO(X)} ≤ F .
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(c)⇒(b). Let V be any fuzzy α-preopen set in X and xt be any fuzzy point in
X with xtqV . Then V (x) + t > 1 ⇒ xt ̸∈ (1X \ V ) where 1X \ V ∈ FαPC(X).
By (c), there exists G ∈ FαPO(X) such that 1X \ V ≤ G and xt ̸∈ clG. Then
there exists a fuzzy open set U in X with xtqU , U ̸ qG ⇒ U ≤ 1X \ G ≤ V
⇒ xtqU ≤ αpclU ≤ αpcl(1X \G) = 1X \G ≤ V .
(c)⇒(d). Let G be any fuzzy set in X and U be any fuzzy α-preopen set in X with
GqU . Then there exists x ∈ X such that G(x) + U(x) > 1. Let G(x) = t. Then
xtqU ⇒ xt ̸∈ 1X\U where 1X\U ∈ FαPC(X). By (c), there existsW ∈ FαPO(X)
such that 1X \ U ≤ W and xt ̸∈ clW ⇒ (clW )(x) < t ⇒ xtq(1X \ clW ). Let
V = 1X \ clW . Then V is fuzzy open set in X and V (x) + t > 1 ⇒ V (x) +G(x) >
1 ⇒ V qG and αpclV = αpcl(1X \ clW ) ≤ αpcl(1X \W ) = 1X \W ≤ U .
(d)⇒(b). Obvious.

Note 6.3. It is clear from Theorem 6.2 that in a fuzzy α-preregular space, every
fuzzy α-preclosed set is fuzzy closed and hence every fuzzy α-preopen set is fuzzy
open. As a result, in a fuzzy α-preregular space, the collection of all fuzzy closed
(resp., fuzzy open) sets and fuzzy α-preclosed (resp., fuzzy α-preopen) sets coin-
cide.

Theorem 6.4. If f : X → Y is fuzzy α-precontinuous function where Y is fuzzy
α-preregular space, then f is fuzzy α-preirresolute function.
Proof. Let xt be a fuzzy point in X and V be any fuzzy α-preopen q-nbd of f(xt)
in Y where Y is fuzzy α-preregular space. By Theorem 6.2 (a)⇒(b), there exists
a fuzzy open set W in Y such that f(xt)qW ≤ αpclW ≤ V . Since f is fuzzy
α-precontinuous function, by Theorem 4.5, there exists U ∈ FαPO(X) with xtqU
and f(U) ≤ W ≤ V . By Theorem 5.3, f is fuzzy α-preirresolute function.
Let us now recall following definitions from [5, 6] for ready references.

Definition 6.5. [5] A collection U of fuzzy sets in an fts X is said to be a fuzzy
cover of X if

⋃
U = 1X . If, in addition, every member of U is fuzzy open, then U

is called a fuzzy open cover of X.

Definition 6.6. [5] A fuzzy cover U of an fts X is said to have a finite subcover
U0 if U0 is a finite subcollection of U such that

⋃
U0 = 1X .

Definition 6.7. [6] An fts (X, τ) is said to be fuzzy almost compact if every fuzzy
open cover U of X has a finite proximate subcover, i.e., there exists a finite subcol-
lection U0 of U such that {clU : U ∈ U0} is again a fuzzy cover of X.

Theorem 6.8. If f : X → Y is a fuzzy α-precontinuous, surjective function where
X is fuzzy α-preregular and almost compact space, then Y is fuzzy almost compact
space.
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Proof. Let U = {Uα : α ∈ Λ} be a fuzzy open cover of Y . Then as f is fuzzy
α-precontinuous function, V = {f−1(Uα) : α ∈ Λ} is a fuzzy cover of X by fuzzy
α-preopen and hence by fuzzy open sets of X as X is fuzzy α-preregular space
(by Note 6.3). Since X is fuzzy almost compact, there are finitely many members

U1, U2, ..., Un of U such that
n⋃

i=1

cl(f−1(Ui)) = 1X . Since X is fuzzy α-preregular,

by Note 6.3, clA = αpclA for all A ∈ IX . So 1X =
n⋃

i=1

αpcl(f−1(Ui)) ⇒ 1Y =

f(
n⋃

i=1

αpcl(f−1(Ui))) =
n⋃

i=1

f(αpcl(f−1(Ui))) ≤
n⋃

i=1

cl(f(f−1(Ui))) (by Theorem 4.4

(a)⇒(f)) ≤
n⋃

i=1

cl(Ui) ⇒
n⋃

i=1

cl(Ui) = 1Y ⇒ Y is fuzzy almost compact space.

7. Conclusion

I think this types of works make a bridge between different types of fuzzy open-
like set. I am willing to proceed further to achieve more such interrelations between
previous works already done.
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