South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 211-222 DOI: 10.56827/SEAJMMS.2024.2001.16 ISSN (Onli

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

ON L-FUZZY TOPOLOGIES INDUCED BY L-G-FILTERS

Merin Jose and Sunil C. Mathew*

School of Mathematics and Statistics, Mahatma Gandhi University, Kottayam - 686560, Kerala, INDIA

E-mail : merinjmary@gmail.com

*Department of Mathematics, Deva Matha College Kuravilangad, Kottayam - 686633, Kerala, INDIA

E-mail : sunilcmathew@gmail.com

(Received: Sep. 05, 2021 Accepted: Apr. 04, 2024 Published: Apr. 30, 2024)

Abstract: This paper addresses L-fuzzy topologies induced by L-G-filters and studies the categorical relations between L-G-filter spaces and L-fuzzy topological spaces. Three functors from the category of L-G-filter spaces to the category of L-fuzzy topological spaces are obtained. Having introduced the concept of monotone L-fuzzy topologies, the study inquires into the sum, subspace, product, quotient and the lattice structure of such topologies.

Keywords and Phrases: Residuated lattice, Functor, Monotone.

2020 Mathematics Subject Classification: 54A40, 18A40.

1. Introduction

In 1968, Chang [4] introduced the concept of fuzzy topological spaces. Later, Höhle [6] developed the idea of fuzzification of topological spaces. Subsequently Kubiak [16] and Šostak [19] independently developed the notion of *L*-fuzzy topological spaces. Later Kubiak and Šostak [17] extended this notion to *LM*-fuzzy topological spaces. In 2007, Yue [21] defined product, sum and quotient space of *LM*-fuzzy topological spaces and studied several subcategories of *LM*-fuzzy topological spaces. Many authors studied the relationship between fuzzy topologies and filters. In 1977, Lowen [18] developed the idea of filters in I^X , called prefilters to discuss convergence in fuzzy topological spaces. In 1999 Burton et al. [3] introduced the concept of generalized filters as a map from 2^X to I. Subsequently Höhle and Šostak [8] developed the notion of L-filters and stratified L-filters on a complete quasi-monoidal lattice. Later, in 2013 Jäger [9] developed the theory of stratified LM-filters which generalizes the theory of stratified L-filters by introducing stratification mapping, where L and M are frames.

In [10], the authors introduced the concept of LM-G-filter spaces as a generalization of LM-filter spaces on a complete residuated lattice. Some subcategories of LM-G, the category of LM-G-filter spaces have been identified by introducing the concepts of catalyzed LM-G-filter spaces in [11] and weak and strong LM-G-filter spaces in [14]. Images of LM-G-filter spaces and LM-G-filterbases induced by functions are investigated and some of their properties are derived in [15]. Moreover, the categorical connections of L-G-filters with L-filters, L-interior operators and L-fuzzy pre-proximity spaces, L-fuzzy grills, L-closure operators and L-fuzzy cotopologies are identified in [12] and [13].

In this paper, we identify L-fuzzy topologies induced by L-G-filters and study categorical relations between L-G-filter spaces and L-fuzzy topological spaces. The study obtains three functors from the category of L-G-filter spaces to the category of L-fuzzy topological spaces. The concept of monotone L-fuzzy topologies is introduced and lattice structure, subspace, quotient, product and sum of monotone L-fuzzy topologies are investigated.

2. Preliminaries

Throughout this paper X stands for a non-empty ordinary set. For the notions of category theory, the readers can refer to [1].

Definition 2.1. [2] An algebra $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ is called a complete residuated lattice if it satisfies the following properties:

- (C1) $(L, \leq, \lor, \land, 0, 1)$ is a complete lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
- (C2) $(L, \odot, 1)$ is a commutative monoid;
- (C3) $x \odot y \leq z$ if and only if $x \leq y \rightarrow z$ for $x, y, z \in L$.

Unless otherwise specified, in this paper, we assume that (L, \leq, \odot) is a complete residuated lattice.

Remark 2.2. The following lattices are complete residuated lattices.

- (1) Complete locally finite BL-Algebra.
- (2) Every completely distributive lattice.
- (3) Complete locally finite MV-Algebra.

Lemma 2.3. [2, 5, 20] Let L be a complete residuated lattice. Then for each $x, y, z, x_i, y_i, w \in L$, we have the following properties.

(1)
$$x \to y = \bigvee \{ z | z \odot x \le y \}$$

- (2) $1 \to x = x$, $0 \odot x = 0$ and $x \le y$ if and only if $x \to y = 1$.
- (3) If $y \leq z$, then $x \odot y \leq x \odot z$, $x \to y \leq x \to z$ and $z \to x \leq y \to x$.
- (4) $x \odot y \le x, y, \quad x \odot y \le x \land y.$

(5)
$$x \odot (\bigwedge_{i \in \Gamma} y_i) \le \bigwedge_{i \in \Gamma} (x \odot y_i).$$

(6)
$$x \odot (\bigvee_{i \in \Gamma} y_i) = \bigvee_{i \in \Gamma} (x \odot y_i).$$

(7) $\bigvee_{i\in\Gamma} x_i \to \bigvee_{i\in\Gamma} y_i \ge \bigwedge_{i\in\Gamma} (x_i \to y_i) \text{ and } \bigwedge_{i\in\Gamma} x_i \to \bigwedge_{i\in\Gamma} y_i \ge \bigwedge_{i\in\Gamma} (x_i \to y_i).$

All algebraic operations on L can be extended pointwise to L^X as $A \leq B$ if and only if $A(x) \leq B(x)$ and $(A \odot B)(x) = A(x) \odot B(x)$ for all $x \in X$. For all $\alpha \in L$, α_X is defined by $\alpha_X(x) = \alpha$ for all $x \in X$.

Lemma 2.4. [2] For a given set X, define a binary map $S : L^X \times L^X \to L$ by $S(A, B) = \bigwedge_{x \in X} (A(x) \to B(x))$. Then for each $A, B, C, D \in L^X$, the following properties hold.

- (1) $S(A,B) \odot S(B,C) \leq S(A,C)$;
- (2) $A \leq B$ if and only if S(A, B) = 1;
- (3) If $A \leq B$, then $S(C, A) \leq S(C, B)$ and $S(A, C) \geq S(B, C)$;
- $(4) S(A,B) \odot S(C,D) \le S(A \odot C, B \odot D).$

For the rest of the paper, S represents the map defined in the above Lemma.

Definition 2.5. [1] If A and B are categories, then a functor F from A to B is a function that assigns to each A-object A, a B-object F(A), and to each Amorphism $f : A \to A'$, a B-morphism $F(f) : F(A) \to F(A')$, in such a way
that

- (i.) F preserves composition; i.e., $F(f \circ g) = F(f) \circ F(g)$ whenever $f \circ g$ is defined, and
- (ii.) F preserves identity morphisms; i.e., $F(id_A) = id_F(A)$ for each **A**-object A.

Definition 2.6. [10] An L-G-filter on a set X is defined to be a mapping $G : L^X \to L$ satisfying:

(G1) $G(1_X) = 1;$

(G2) For every $A, B \in L^X$ such that $A \leq B, G(A) \leq G(B)$;

(G3) For every $A, B \in L^X, G(A \odot B) \ge G(A) \odot G(B)$.

The pair (X,G) is called an L-G-filter space. In addition to the above axioms, if $(\mathbf{G4}): G(0_X) = 0$ is also satisfied, then (X,G) becomes an L-filter space [8].

The pair (X, G) is called stratified L-G-filter space if $G(\alpha_X \odot A) \ge G(A) \odot \alpha$ for all $A \in L^X$ and $\alpha \in L$.

Let (X, G_1) and (Y, G_2) be L-G-filter spaces. A map $f : (X, G_1) \to (Y, G_2)$ is called an L-G-filter map if $G_1(f^{\leftarrow}(B)) \ge G_2(B), \forall B \in L^Y$.

Remark 2.7. An L-G-filter space (X, G) is stratified if and only if $G(\alpha_X) \ge \alpha$ for all $\alpha \in L$.

Definition 2.8. [17] A mapping $\tau : L^X \to M$ is called an LM-fuzzy topology on a set X if it satisfies the following properties:

$$(T1) \ \tau(0_X) = \tau(1_X) = 1;$$

(T2)
$$\tau(A \odot B) \ge \tau(A) \odot \tau(B)$$
 for all $A, B \in L^X$;

(T3) $\tau(\bigvee_{i \in I} A_i) \ge \bigwedge_{i \in I} \tau(A_i)$ for each arbitrary family $\{A_i \in L^X; i \in I\}.$

The pair (X, τ) is called LM-fuzzy topological space. An LM-fuzzy topological space (X, τ) is called stratified if $\tau(\alpha_X) = 1$ for all $\alpha \in L$. When L = M, the pair (X, τ) is called L-fuzzy topological space [8].

Let (X, τ_1) and (Y, τ_2) be LM-fuzzy topological spaces. A map $f : (X, \tau_1) \to (Y, \tau_2)$ is called a continuous map if $\tau_1(f^{\leftarrow}(B)) \geq \tau_2(B), \forall B \in L^Y$.

Definition 2.9. [7] Let (X, τ) be an L-fuzzy topological space, $Y \subseteq X$ and $\tau|_Y$ be the L-fuzzy topology defined on Y by $(\tau|_Y)(B) = \bigvee \{\tau(A) | A \in L^X, A|_Y = B\}$ for all $B \in L^Y$. Then $(Y, \tau|_Y)$ is called the subspace of (X, τ) .

Y. Yue [21] defined quotient, product and sum of LM-fuzzy topological spaces in a completely distributive lattice as:

Definition 2.10. [21] Let (X, τ) be an LM-fuzzy topological space and $f : X \to Y$ be a surjective mapping. Then the LM-fuzzy topology, τ/f defined on Y by $(\tau/f)(B) = \tau(f^{\leftarrow}(B))$ for all $B \in L^Y$ is called quotient LM-fuzzy topology of τ with respect to f.

Definition 2.11. [21] Let $\{(X_j, \tau_j)\}_{j \in J}$ be a family of LM-fuzzy topological spaces, $X = \prod_{j \in J} X_j$ and $p_j : \prod_{j \in J} X_j \to X_j$ be the projection map. Then the product of $\{(X_j, \tau_j)\}_{j \in J}$ is defined as $(\prod_{j \in J} \tau_j)(A) = \bigvee_{\bigvee_{\lambda \in \Lambda} B_\lambda = A} \bigwedge_{\lambda \in \Lambda} \bigvee_{\bigcap C_{\lambda_\beta} = B_\lambda} \bigwedge_{\beta} \bigvee_{j \in J} \bigvee_{p_j^{\leftarrow}(D) = C_{\lambda_\beta}} \tau_j(D)$ for all $A \in L^X$ with (\Box) standing for finite intersection.

Definition 2.12. [21] Let $\{(X_j, \tau_j)\}_{j \in J}$ be a family of LM-fuzzy topological spaces, $X'_j s$ be pairwise disjoint and $X = \bigcup_{j \in J} X_j$. Then the LM-fuzzy topology, $\bigoplus_{j \in J} \tau_j$ defined on X by $(\bigoplus_{j \in J} \tau_j)(A) = \bigwedge_{j \in J} \tau_j(A|_{X_j})$ for all $A \in L^X$ is called sum LM-fuzzy topology of $\{\tau_j\}_{j \in J}$.

Remark 2.13. The above definitions of subspace, quotient, product and sum space are valid in the case of L-fuzzy topological spaces where L is a complete residuated lattice.

3. Some Functors from L-G-Filter Spaces to L-Fuzzy Topological Spaces

This section identifies two functors from the category of L-G-filter spaces to the category of L-fuzzy topological spaces.

Notation 3.1. Let L-G denotes the category of L-G-filter spaces and L-FTop denotes the category of L-fuzzy topological spaces.

The following two theorems suggest a functor from L-G to L-FTop.

Theorem 3.2. Let $G : L^X \to L$ be an L-G-filter on X. Then $\eta(G) : L^X \to L$ defined by $\eta(G)(A) = S(A, G(A) \odot A)$ is an L-fuzzy topology on X.

Proof. (T1) is obvious.

(T2) For all
$$A, B \in L^X$$
,
 $\eta(G)(A) \odot \eta(G)(B) = S(A, G(A) \odot A) \odot S(B, G(B) \odot B)$
 $\leq S(A \odot B, G(A) \odot A \odot G(B) \odot B)$
 $\leq S(A \odot B, G(A \odot B) \odot A \odot B)$
 $= \eta(G)(A \odot B).$

(T3) For each family
$$\{A_i \in L^X; i \in I\}, S(\bigvee_{i \in I} A_i, G(\bigvee_{i \in I} A_i) \odot \bigvee_{i \in I} A_i))$$

$$\geq S\left(\bigvee_{i \in I} A_i, \bigvee_{i \in I} (G(A_i) \odot A_i)\right)$$

$$= \bigwedge_{x \in X} \left((\bigvee_{i \in I} A_i)(x) \to \bigvee_{i \in I} (G(A_i) \odot A_i)(x) \right)$$

$$\geq \bigwedge_{x \in X} \bigwedge_{i \in I} \left(A_i(x) \to (G(A_i) \odot A_i)(x) \right)$$

$$= \bigwedge_{i \in I} S(A_i, G(A_i) \odot A_i)$$

$$= \bigwedge_{i \in I} \eta(G)(A_i).$$

Corollary 3.3. If (X,G) is a stratified L-G-filter space and L satisfies the idempotency condition, i.e. $a \odot a = a$ for all $a \in L$, then $(X, \eta(G))$ is a stratified L-fuzzy topological space.

Theorem 3.4. Let (X, G_1) and (Y, G_2) be L-G-filter spaces such that $f : (X, G_1) \rightarrow (Y, G_2)$ be an L-G-filter map. Then $f : (X, \eta(G_1)) \rightarrow (Y, \eta(G_2))$ is a continuous map. **Proof.** For all $B \in L^Y$,

$$\begin{aligned} \eta(G_1)(f^{\leftarrow}(B)) &= S\Big(f^{\leftarrow}(B), G_1(f^{\leftarrow}(B)) \odot f^{\leftarrow}(B)\Big) \\ &= \bigwedge_{x \in X} \Big(f^{\leftarrow}(B)(x) \to \big(G_1(f^{\leftarrow}(B)) \odot f^{\leftarrow}(B)\big)(x)\Big) \\ &= \bigwedge_{x \in X} \Big(B(f(x)) \to \big(G_1(f^{\leftarrow}(B)) \odot B(f(x))\big)\Big) \\ &\geq \bigwedge_{y \in Y} \Big(B(y) \to \big(G_1(f^{\leftarrow}(B)) \odot B(y)\big)\Big) \end{aligned}$$

$$\geq \bigwedge_{y \in Y} \left(B(y) \to \left(G_2(B) \odot B \right)(y) \right)$$

= $S(B, G_2(B) \odot B)$
= $\eta(G_2)(B).$

Corollary 3.5. η : L-G to L-FTop is a functor.

Further, the following two theorems provide yet another functor from L-**G** to L-**FTop**.

Theorem 3.6. Let $G : L^X \to L$ be an L-G-filter on X. Then $\zeta(G) : L^X \to L$ defined by $\zeta(G)(A) = \left(\bigvee_{x \in X} A(x)\right) \to G(A)$ is an L-fuzzy topology on X.

Proof. (T1) is obvious.

(T2) For all
$$A, B \in L^X$$
,
 $\zeta(G)(A) \odot \zeta(G)(B) = \left(\left(\bigvee_{x \in X} A(x) \right) \to G(A) \right) \odot \left(\left(\bigvee_{x \in X} B(x) \right) \to G(B) \right)$
 $\leq \left(\left(\bigvee_{x \in X} A(x) \right) \odot \left(\bigvee_{x \in X} B(x) \right) \right) \to \left(G(A) \odot G(B) \right)$
 $\leq \left(\bigvee_{x \in X} (A \odot B)(x) \right) \to G(A \odot B)$
 $= \zeta(G)(A \odot B).$

(T3) For each family $\{A_i \in L^X; i \in I\}$

$$\begin{aligned} \zeta(G)(\bigvee_{i\in I} A_i) &= \left(\bigvee_{x\in X} (\bigvee_{i\in I} A_i)(x)\right) \to G(\bigvee_{i\in I} A_i) \\ &\geq \left(\bigvee_{i\in I} (\bigvee_{x\in X} A_i(x))\right) \to \bigvee_{i\in I} G(A_i) \\ &\geq \bigwedge_{i\in I} \left(\left(\bigvee_{x\in X} A_i(x)\right) \to G(A_i)\right) \\ &= \bigwedge_{i\in I} \zeta(G)(A_i). \end{aligned}$$

Corollary 3.7. If (X, G) is a stratified L-G-filter space, then $(X, \zeta(G))$ is a stratified L-fuzzy topological space.

Theorem 3.8. Let (X, G_1) and (Y, G_2) be L-G-filter spaces such that $f : (X, G_1) \rightarrow$

 (Y, G_2) be an L-G-filter map. Then $f : (X, \zeta(G_1)) \to (Y, \zeta(G_2))$ is a continuous map.

Proof. For all $B \in L^Y$,

$$\begin{aligned} \zeta(G_1)(f^{\leftarrow}(B)) &= \left(\bigvee_{x \in X} f^{\leftarrow}(B)(x)\right) \to G_1(f^{\leftarrow}(B)) \\ &\geq \left(\bigvee_{x \in X} B(f(x))\right) \to G_2(B) \\ &\geq \left(\bigvee_{y \in Y} B(y)\right) \to G_2(B) \\ &= \zeta(G_2)(B). \end{aligned}$$

Corollary 3.9. $\zeta : L$ -G to L-FTop is a functor.

4. Monotone L-Fuzzy Topological Spaces

This section obtains a functor from the category of L-G-filter spaces to the category of L-fuzzy topological spaces and introduces the notion of monotone L-fuzzy topological spaces. Moreover, properties like lattice structure, subspace, quotient, product and sum of monotone L-fuzzy topologies are also examined.

The following two theorems give rise to a functor from L-G to L-FTop.

Theorem 4.1. Let $G : L^X \to L$ be an L-G-filter on X. Then $\mu(G) : L^X \to L$ defined by $\mu(G)(0_X) = 1$ and $\mu(G)(A) = G(A)$ for all $A \in L^X$ such that $A \neq 0_X$ is an L-fuzzy topology on X.

Proof.

- (T1) By definition $\mu(G)(0_X) = 1$ and $\mu(G)(1_X) = G(1_X) = 1$.
- (T2) For all $A, B \in L^X$ such that $A \odot B \neq 0_X$, it is clear that $A \neq 0_X$ and $B \neq 0_X$. Therefore, $\mu(G)(A \odot B) = G(A \odot B) \ge G(A) \odot G(B) = \mu(G)(A) \odot \mu(G)(B)$.
- (T3) For an arbitrary family $\{A_i \in L^X; i \in I\}$ containing atleast one non zero element A,

$$\mu(G)(\bigvee_{i \in I} A_i) = G(\bigvee_{i \in I} A_i)$$

$$\geq G(A)$$

$$= \mu(G)(A)$$

$$\geq \bigwedge_{i \in I} \mu(G)(A_i)$$

Theorem 4.2. Let (X, G_1) and (Y, G_2) be L-G-filter spaces such that $f : (X, G_1) \rightarrow (Y, G_2)$ be an L-G-filter map. Then $f : (X, \mu(G_1)) \rightarrow (Y, \mu(G_2))$ is a continuous map.

Proof. For all $B \in L^Y$ such that $f^{\leftarrow}(B) \neq 0_X$,

$$\mu(G_1)(f^{\leftarrow}(B)) = G_1(f^{\leftarrow}(B))$$

$$\geq G_2(B)$$

$$= \mu(G_2)(B).$$

Corollary 4.3. μ : L-G to L-FTop is a functor.

Proof. Proof follows from Theorem 4.1 and Theorem 4.2.

Theorem 4.1 above motivates the following notion of monotone L-fuzzy topological spaces.

Definition 4.4. An L-fuzzy topology τ satisfying $\tau(A) \leq \tau(B)$ for all non zero $A, B \in L^X$ such that $A \leq B$ is called monotone L-fuzzy topology.

Remark 4.5. If G is an L-G-filter, then $\mu(G)$ is a monotone L-fuzzy topology.

Notation 4.6. Let L-**F**Top(**X**) denotes the lattice of set of all *L*-fuzzy topologies on a set X and **M**-*L*-**F**Top(**X**) denotes the set of all monotone *L*-fuzzy topologies on a set X.

Theorem 4.7. M-L-FTop(X) is a complete sublattice of L-FTop(X).

Proof. It is easy to observe that arbitrary meet of a subfamily family of monotone *L*-fuzzy topologies $\{\tau_j; j \in J\}$ on a set *X* defined by $\tau(A) = \bigwedge_{j \in J} \tau_j(A)$ for all

 $A \in L^X$ is a monotone *L*-fuzzy topology on *X*. $\tau : L^X \to L$ defined by $\tau(A) = 1$ for all $A \in L^X$ is the greatest element in *L*-**FTop**(**X**) and it is monotone. Therefore **M**-*L*-**FTop**(**X**) is a complete sublattice of *L*-**FTop**(**X**).

Theorem 4.8. Let (X, τ) be a monotone LM-fuzzy topological space and $Y \subseteq X$. Then the subspace, $(Y, \tau|_Y)$ is a monotone LM-fuzzy topological space.

Proof. Let $A, B \in L^Y$ such that $A \leq B$ and $A \neq 0_Y$. Consider $C \in L^X$ such that $C|_Y = A$. Define $D \in L^X$ by D(x) = C(x) if $x \in X \setminus Y$ and D(x) = B(x) if $x \in Y$. Clearly $D|_Y = B$ and $C \leq D$. Hence $\tau(C) \leq \tau(D)$ so that $(\tau|_Y)(A) \leq (\tau|_Y)(B)$. Therefore, $\tau|_Y$ a monotone L-fuzzy topology on Y.

Theorem 4.9. Let (X, τ) be a monotone L-fuzzy topological space and $f : X \to Y$ be a surjective mapping. Then the quotient L-fuzzy topology, τ/f is a monotone L-fuzzy topology on Y.

Proof. Let $B_1, B_2 \in L^Y$ such that $B_1 \leq B_2$ and $B_1 \neq 0_Y$. Since $B_1 \leq B_2$,

 $f^{\leftarrow}(B_1) \leq f^{\leftarrow}(B_2)$. As $B_1 \neq 0_Y$, there exists $y \in Y$ such that $B_1(y) \neq 0$. Since $f: X \to Y$ is surjective, there exists $x \in X$ such that f(x) = y. Thus $f^{\leftarrow}(B_1)(x) = B_1(y) \neq 0$. As a result, $f^{\leftarrow}(B_1) \neq 0_Y$ whenever $B_1 \neq 0_Y$. Therefore, $(\tau/f)(B_1) = \tau(f^{\leftarrow}(B_1)) \leq \tau(f^{\leftarrow}(B_2)) = (\tau/f)(B_2)$. Hence τ/f is a monotone *L*-fuzzy topology on *Y*.

Figure 1: The diamond type lattice

Remark 4.10. Let $\{(X_j, \tau_j)\}_{j \in J}$ be a family of monotone *L*-fuzzy topological spaces, X'_j s be pairwise disjoint and $X = \bigcup_{j \in J} X_j$. Then the sum *L*-fuzzy topology, $\bigoplus_{i \in J} \tau_j$ need not be a monotone *L*-fuzzy topological space. For example, let

ogy, $\bigoplus_{j \in J} \tau_j$ need not be a monotone L-fuzzy topological space. For example, let $X_1 = \{1, 2, 3\}, X_2 = \{4, 5, 6, 7\}$ and L be the lattice the shown in Figure 1. Let $A_1 \in L^{X_1}$ be defined by $A_1(1) = A_1(2) = 1$ and $A_1(3) = 0$ and $B_1 \in L^{X_2}$ be defined by $B_1(4) = B_1(5) = 1$ and $B_1(6) = B_1(7) = 0$. $\tau_1, \tau_2 : L^X \to L$ defined by

$$\tau_1(A) = \begin{cases} 1 & \text{if } A = 0_{X_1} \text{ or } 1_{X_1}, \\ \alpha & \text{if } A \ge A_1 \text{ and } A \ne 1_{X_1}, \\ 0 & \text{otherwise.} \end{cases} \quad \tau_2(B) = \begin{cases} 1 & \text{if } B = 0_{X_2} \text{ or } 1_{X_2}, \\ \beta & \text{if } B \ge B_1 \text{ and } B \ne 1_{X_2}, \\ 0 & \text{otherwise.} \end{cases}$$

are monotone L-fuzzy topologies on X_1 and X_2 respectively. Let $X = X_1 \bigcup X_2$ and τ be the sum L-fuzzy topology on X. Then $\tau(\{4,5\}) = \tau_1(\phi) \land \tau_2(\{4,5\}) = \beta$ and $\tau(\{1,2,4,5\}) = \tau_1(\{1,2\}) \land \tau_2(\{4,5\}) = \alpha \land \beta = 0_X$. It is clear that τ is not monotone. Therefore, the sum of monotone L-fuzzy topologies need not be monotone.

Remark 4.11. Let $\{(X_j, \tau_j)\}_{j \in J}$ be a family of monotone L-fuzzy topological spaces and $X = \prod_{j \in J} X_j$. Then the product L-fuzzy topology, $\prod_{j \in J} \tau_j$ need not be a monotone L-fuzzy topology on X. For example, let $X = \{x_1, x_2\}, Y = \{y_1, y_2\}$ and $L = \{0, 1\}$. Then $\tau_1 = \{\phi, \{x_1\}, \{x_1, x_2\}\}$ and $\tau_2 = \{\phi, \{y_1\}, \{y_1, y_2\}\}$ are monotone L-fuzzy topologies on X and Y respectively. Then the product topology τ on $X \times Y = \{(x_1, y_1), (x_1, y_2), (x_2, y_1), (x_2, y_2)\}$ is defined by $\tau = \{\phi, \{(x_1, y_1)\}, \{(x_1, y_1), (x_1, y_2)\}, \{(x_1, y_1), (x_2, y_1)\}, \{(x_1, y_1), (x_2, y_1)\}, \{(x_1, y_1), (x_2, y_2)\}\}$ $\{(x_1, y_1)\} \in \tau$ but $\{(x_1, y_1), (x_2, y_2)\} \notin \tau$. Therefore, product of monotone L-fuzzy topologies need not be monotone.

5. Conclusion

The study has identified three different functors from the category of L-G-filter spaces to the category of L-fuzzy topological spaces. Having introduced the concept of monotone L-fuzzy topological spaces, certain properties of the same have been investigated. It is observed that the quotient and subspace of monotone L-fuzzy topological spaces are again monotone whereas sum and product need not be so.

Acknowledgements

The authors are thankful to the referees for their constructive comments and valuable suggestions which improved the presentation of this paper.

References

- Adámek J., Herrlich H., Strecker G. E., Abstract and Concrete Categories, John Wiley and Sons, New York, 1990.
- [2] Bělohlávek R., Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
- [3] Burton M. H., Muraleetharan M., J. Gutiérrez García, Generalised filters 2, Fuzzy Sets Syst., 106 (1999), 393-400.
- [4] Chang C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182-190.
- [5] Hájek P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
- [6] Höhle U., Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl. 78 (1980) 659-673.
- [7] Höhle U., Rodabaugh S. E., Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, Boston, 1999.
- [8] Höhle U., Sostak A.P., Axiomatic foundations of fixed-basis fuzzy topology, in: Höhle U., Rodabaugh S.E. (Eds.), Mathematics of Fuzzy Sets. Logic,

Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Kluwer, Boston/Dordrecht/London, 1999, pp. 123-272.

- [9] Jäger G., A note on stratified *LM*-filters, Iran. J. Fuzzy Syst., 10 (2013), 135-142.
- [10] Jose M., Mathew S. C., Generalization of LM-Filters: sum, subspace, product, quotient and stratification, Soft Comput., 27 (2023), 809-819.
- [11] Jose M., Mathew S. C., Catalyzed LM-G-filter spaces, J. Intell. Fuzzy Syst., 43(1) (2022), 1259-1269.
- [12] Jose M., Mathew S. C., On the categorical connections of L-G-filter spaces and a Galois correspondence with L-fuzzy pre-proximity spaces, New Math. Nat. Comput., 19(1) (2023), 33-49.
- [13] Jose M., Mathew S. C., On the categorical relationships among L-G-filters, L-fuzzy grills, L-closure operators and L-fuzzy cotopologies, New Math. Nat. Comput., 19(3) (2023), 697-714.
- [14] Jose M., Mathew S. C., On the categories of weak and strong LM-G-filter spaces, Fuzzy Inf. Eng., 14(2) (2022), 228-242.
- [15] Jose M., Mathew S. C., On the images of LM-G-filters and LM-G-filterbases, South East Asian J. Math. Math. Sci., 18(2) (2022), 301-318.
- [16] Kubiak T., On fuzzy topologies, Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland, 1985.
- [17] Kubiak T., Sostak A. P., Lower set-valued fuzzy topologies, Quaest. Math., 20(3) (1997), 423-430.
- [18] Lowen R., Convergence in fuzzy topological spaces, General Topology Appl., 10(2) (1979), 147-160.
- [19] Sostak A. P., On a fuzzy topological structure, Rend. Ciecolo Mat. Palermo (Suppl. Ser. II) 11 (1985), 89-103.
- [20] Turunen E., Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., Heidelberg, 1999.
- [21] Yue Y., Lattice-valued induced fuzzy topological spaces, Fuzzy Sets Syst., 158 (2007), 1461-1471.