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Abstract: This paper addresses L-fuzzy topologies induced by L-G-filters and
studies the categorical relations between L-G-filter spaces and L-fuzzy topological
spaces. Three functors from the category of L-G-filter spaces to the category of L-
fuzzy topological spaces are obtained. Having introduced the concept of monotone
L-fuzzy topologies, the study inquires into the sum, subspace, product, quotient
and the lattice structure of such topologies.
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1. Introduction
In 1968, Chang [4] introduced the concept of fuzzy topological spaces. Later,

Höhle [6] developed the idea of fuzzification of topological spaces. Subsequently
Kubiak [16] and Šostak [19] independently developed the notion of L-fuzzy topo-
logical spaces. Later Kubiak and Šostak [17] extended this notion to LM -fuzzy
topological spaces. In 2007, Yue [21] defined product, sum and quotient space of
LM -fuzzy topological spaces and studied several subcategories of LM -fuzzy topo-
logical spaces.
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Many authors studied the relationship between fuzzy topologies and filters. In
1977, Lowen [18] developed the idea of filters in IX , called prefilters to discuss
convergence in fuzzy topological spaces. In 1999 Burton et al. [3] introduced the
concept of generalized filters as a map from 2X to I. Subsequently Höhle and
Šostak [8] developed the notion of L-filters and stratified L-filters on a complete
quasi-monoidal lattice. Later, in 2013 Jäger [9] developed the theory of strati-
fied LM -filters which generalizes the theory of stratified L-filters by introducing
stratification mapping, where L and M are frames.

In [10], the authors introduced the concept of LM -G-filter spaces as a general-
ization of LM -filter spaces on a complete residuated lattice. Some subcategories of
LM -G, the category of LM -G-filter spaces have been identified by introducing the
concepts of catalyzed LM -G-filter spaces in [11] and weak and strong LM -G-filter
spaces in [14]. Images of LM -G-filter spaces and LM -G-filterbases induced by
functions are investigated and some of their properties are derived in [15]. More-
over, the categorical connections of L-G-filters with L-filters, L-interior operators
and L-fuzzy pre-proximity spaces, L-fuzzy grills, L-closure operators and L-fuzzy
cotopologies are identified in [12] and [13].

In this paper, we identify L-fuzzy topologies induced by L-G-filters and study
categorical relations between L-G-filter spaces and L-fuzzy topological spaces. The
study obtains three functors from the category of L-G-filter spaces to the category
of L-fuzzy topological spaces. The concept of monotone L-fuzzy topologies is in-
troduced and lattice structure, subspace, quotient, product and sum of monotone
L-fuzzy topologies are investigated.

2. Preliminaries
Throughout this paper X stands for a non-empty ordinary set. For the notions

of category theory, the readers can refer to [1].

Definition 2.1. [2] An algebra (L,∨,∧,⊙,→, 0, 1) is called a complete residuated
lattice if it satisfies the following properties:

(C1) (L,≤,∨,∧, 0, 1) is a complete lattice where 1 is the universal upper bound
and 0 denotes the universal lower bound;

(C2) (L,⊙, 1) is a commutative monoid;

(C3) x⊙ y ≤ z if and only if x ≤ y → z for x, y, z ∈ L.

Unless otherwise specified, in this paper, we assume that (L,≤,⊙) is a complete
residuated lattice.

Remark 2.2. The following lattices are complete residuated lattices.
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(1) Complete locally finite BL-Algebra.

(2) Every completely distributive lattice.

(3) Complete locally finite MV-Algebra.

Lemma 2.3. [2, 5, 20] Let L be a complete residuated lattice. Then for each
x, y, z, xi, yi, w ∈ L, we have the following properties.

(1) x → y =
∨
{z|z ⊙ x ≤ y}.

(2) 1 → x = x, 0⊙ x = 0 and x ≤ y if and only if x → y = 1.

(3) If y ≤ z, then x⊙ y ≤ x⊙ z, x → y ≤ x → z and z → x ≤ y → x.

(4) x⊙ y ≤ x, y, x⊙ y ≤ x ∧ y.

(5) x⊙ (
∧
i∈Γ

yi) ≤
∧
i∈Γ

(x⊙ yi).

(6) x⊙ (
∨
i∈Γ

yi) =
∨
i∈Γ

(x⊙ yi).

(7)
∨
i∈Γ

xi →
∨
i∈Γ

yi ≥
∧
i∈Γ

(xi → yi) and
∧
i∈Γ

xi →
∧
i∈Γ

yi ≥
∧
i∈Γ

(xi → yi).

All algebraic operations on L can be extended pointwise to LX as A ≤ B if and
only if A(x) ≤ B(x) and (A⊙ B)(x) = A(x)⊙ B(x) for all x ∈ X. For all α ∈ L,
αX is defined by αX(x) = α for all x ∈ X.

Lemma 2.4. [2] For a given set X, define a binary map S : LX × LX → L

by S(A,B) =
∧
x∈X

(A(x) → B(x)). Then for each A,B,C,D ∈ LX , the following

properties hold.

(1) S(A,B)⊙ S(B,C) ≤ S(A,C) ;

(2) A ≤ B if and only if S(A,B) = 1;

(3) If A ≤ B, then S(C,A) ≤ S(C,B) and S(A,C) ≥ S(B,C);

(4) S(A,B)⊙ S(C,D) ≤ S(A⊙ C,B ⊙D).
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For the rest of the paper, S represents the map defined in the above Lemma.

Definition 2.5. [1] If A and B are categories, then a functor F from A to B
is a function that assigns to each A-object A, a B-object F (A), and to each A-
morphism f : A → A′, a B-morphism F (f) : F (A) → F (A′), in such a way
that

(i.) F preserves composition; i.e., F (f ◦ g) = F (f) ◦ F (g) whenever f ◦ g is
defined, and

(ii.) F preserves identity morphisms; i.e., F (idA) = idF (A) for each A-object A.

Definition 2.6. [10] An L-G-filter on a set X is defined to be a mapping G :
LX → L satisfying:

(G1) G(1X) = 1;

(G2) For every A,B ∈ LX such that A ≤ B, G(A) ≤ G(B);

(G3) For every A,B ∈ LX , G(A⊙B) ≥ G(A)⊙G(B).

The pair (X,G) is called an L-G-filter space. In addition to the above axioms, if
(G4) : G(0X) = 0 is also satisfied, then (X,G) becomes an L-filter space [8].
The pair (X,G) is called stratified L-G-filter space if G(αX ⊙ A) ≥ G(A) ⊙ α for
all A ∈ LX and α ∈ L.
Let (X,G1) and (Y,G2) be L-G-filter spaces. A map f : (X,G1) → (Y,G2) is called
an L-G-filter map if G1(f

←(B)) ≥ G2(B), ∀B ∈ LY .

Remark 2.7. An L-G-filter space (X,G) is stratified if and only if G(αX) ≥ α for
all α ∈ L.

Definition 2.8. [17] A mapping τ : LX → M is called an LM-fuzzy topology on a
set X if it satisfies the following properties:

(T1) τ(0X) = τ(1X) = 1;

(T2) τ(A⊙B) ≥ τ(A)⊙ τ(B) for all A,B ∈ LX ;

(T3) τ(
∨
i∈I

Ai) ≥
∧
i∈I

τ(Ai) for each arbitrary family {Ai ∈ LX ; i ∈ I}.

The pair (X, τ) is called LM-fuzzy topological space. An LM-fuzzy topological space
(X, τ) is called stratified if τ(αX) = 1 for all α ∈ L. When L = M , the pair (X, τ)
is called L-fuzzy topological space [8].
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Let (X, τ1) and (Y, τ2) be LM-fuzzy topological spaces. A map f : (X, τ1) → (Y, τ2)
is called a continuous map if τ1(f

←(B)) ≥ τ2(B), ∀B ∈ LY .

Definition 2.9. [7] Let (X, τ) be an L-fuzzy topological space, Y ⊆ X and τ |Y be
the L-fuzzy topology defined on Y by (τ |Y )(B) =

∨
{τ(A)|A ∈ LX , A|Y = B} for

all B ∈ LY . Then (Y, τ |Y ) is called the subspace of (X, τ).

Y. Yue [21] defined quotient, product and sum of LM -fuzzy topological spaces
in a completely distributive lattice as:

Definition 2.10. [21] Let (X, τ) be an LM-fuzzy topological space and f : X →
Y be a surjective mapping. Then the LM-fuzzy topology, τ/f defined on Y by
(τ/f)(B) = τ(f←(B)) for all B ∈ LY is called quotient LM-fuzzy topology of τ
with respect to f .

Definition 2.11. [21] Let {(Xj, τj)}j∈J be a family of LM-fuzzy topological spaces,

X =
∏
j∈J

Xj and pj :
∏
j∈J

Xj → Xj be the projection map. Then the product of

{(Xj, τj)}j∈J is defined as (
∏
j∈J

τj)(A) =
∨

∨
λ∈Λ Bλ=A

∧
λ∈Λ

∨
⊓Cλβ

=Bλ

∧
β

∨
j∈J

∨
p←j (D)=Cλβ

τj(D)

for all A ∈ LX with (⊓) standing for finite intersection.

Definition 2.12. [21] Let {(Xj, τj)}j∈J be a family of LM-fuzzy topological spaces,

X ′js be pairwise disjoint and X =
⋃
j∈J

Xj. Then the LM-fuzzy topology,
⊕
j∈J

τj de-

fined on X by (
⊕
j∈J

τj)(A) =
∧
j∈J

τj(A|Xj
) for all A ∈ LX is called sum LM-fuzzy

topology of {τj}j∈J .
Remark 2.13. The above definitions of subspace, quotient, product and sum space
are valid in the case of L-fuzzy topological spaces where L is a complete residuated
lattice.

3. Some Functors from L-G-Filter Spaces to L-Fuzzy Topological Spaces

This section identifies two functors from the category of L-G-filter spaces to the
category of L-fuzzy topological spaces.

Notation 3.1. Let L-G denotes the category of L-G-filter spaces and L-FTop
denotes the category of L-fuzzy topological spaces.

The following two theorems suggest a functor from L-G to L-FTop.

Theorem 3.2. Let G : LX → L be an L-G-filter on X. Then η(G) : LX → L
defined by η(G)(A) = S(A,G(A)⊙ A) is an L-fuzzy topology on X.
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Proof. (T1) is obvious.

(T2) For all A,B ∈ LX ,
η(G)(A)⊙ η(G)(B) = S

(
A,G(A)⊙ A

)
⊙ S

(
B,G(B)⊙B

)
≤ S

(
A⊙B,G(A)⊙ A⊙G(B)⊙B

)
≤ S

(
A⊙B,G(A⊙B)⊙ A⊙B

)
= η(G)(A⊙B).

(T3) For each family {Ai ∈ LX ; i ∈ I},
η(G)(

∨
i∈I

Ai) = S
(∨

i∈I

Ai, G(
∨
i∈I

Ai)⊙
∨
i∈I

Ai

)
≥ S

(∨
i∈I

Ai,
∨
i∈I

(G(Ai)⊙ Ai)
)

=
∧
x∈X

((∨
i∈I

Ai

)
(x) →

∨
i∈I

(
G(Ai)⊙ Ai

)
(x)

)
≥

∧
x∈X

∧
i∈I

(
Ai(x) →

(
G(Ai)⊙ Ai

)
(x)

)
=

∧
i∈I

S
(
Ai, G(Ai)⊙ Ai

)
=

∧
i∈I

η(G)(Ai).

Corollary 3.3. If (X,G) is a stratified L-G-filter space and L satisfies the idem-
potency condition, i.e. a⊙a = a for all a ∈ L, then (X, η(G)) is a stratified L-fuzzy
topological space.

Theorem 3.4. Let (X,G1) and (Y,G2) be L-G-filter spaces such that f : (X,G1) →
(Y,G2) be an L-G-filter map. Then f : (X, η(G1)) → (Y, η(G2)) is a continuous
map.
Proof. For all B ∈ LY ,

η(G1)(f
←(B)) = S

(
f←(B), G1(f

←(B))⊙ f←(B)
)

=
∧
x∈X

(
f←(B)(x) →

(
G1(f

←(B))⊙ f←(B)
)
(x)

)
=

∧
x∈X

(
B(f(x)) →

(
G1(f

←(B))⊙B(f(x))
))

≥
∧
y∈Y

(
B(y) →

(
G1(f

←(B))⊙B(y)
))
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≥
∧
y∈Y

(
B(y) →

(
G2(B)⊙B

)
(y)

)
= S

(
B,G2(B)⊙B

)
= η(G2)(B).

Corollary 3.5. η : L-G to L-FTop is a functor.
Further, the following two theorems provide yet another functor from L-G to

L-FTop.

Theorem 3.6. Let G : LX → L be an L-G-filter on X. Then ζ(G) : LX → L

defined by ζ(G)(A) =
( ∨

x∈X

A(x)
)
→ G(A) is an L-fuzzy topology on X.

Proof. (T1) is obvious.

(T2) For all A,B ∈ LX ,

ζ(G)(A)⊙ ζ(G)(B) =

(( ∨
x∈X

A(x)
)
→ G(A)

)
⊙
(( ∨

x∈X

B(x)
)
→ G(B)

)
≤

(( ∨
x∈X

A(x)
)
⊙
( ∨

x∈X

B(x)
))

→
(
G(A)⊙G(B)

)
≤

( ∨
x∈X

(A⊙B)(x)
)
→ G(A⊙B)

= ζ(G)(A⊙B).

(T3) For each family {Ai ∈ LX ; i ∈ I}

ζ(G)(
∨
i∈I

Ai) =
( ∨

x∈X

(
∨
i∈I

Ai)(x)
)
→ G(

∨
i∈I

Ai)

≥
(∨

i∈I

(
∨
x∈X

Ai(x))
)
→

∨
i∈I

G(Ai)

≥
∧
i∈I

(
(
∨
x∈X

Ai(x)) → G(Ai)
)

=
∧
i∈I

ζ(G)(Ai).

Corollary 3.7. If (X,G) is a stratified L-G-filter space, then (X, ζ(G)) is a strat-
ified L-fuzzy topological space.

Theorem 3.8. Let (X,G1) and (Y,G2) be L-G-filter spaces such that f : (X,G1) →
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(Y,G2) be an L-G-filter map. Then f : (X, ζ(G1)) → (Y, ζ(G2)) is a continuous
map.
Proof. For all B ∈ LY ,

ζ(G1)(f
←(B)) =

( ∨
x∈X

f←(B)(x)
)
→ G1(f

←(B))

≥
( ∨

x∈X

B(f(x))
)
→ G2(B)

≥
( ∨

y∈Y

B(y)
)
→ G2(B)

= ζ(G2)(B).

Corollary 3.9. ζ : L-G to L-FTop is a functor.

4. Monotone L-Fuzzy Topological Spaces
This section obtains a functor from the category of L-G-filter spaces to the

category of L-fuzzy topological spaces and introduces the notion of monotone L-
fuzzy topological spaces. Moreover, properties like lattice structure, subspace,
quotient, product and sum of monotone L-fuzzy topologies are also examined.

The following two theorems give rise to a functor from L-G to L-FTop.

Theorem 4.1. Let G : LX → L be an L-G-filter on X. Then µ(G) : LX → L
defined by µ(G)(0X) = 1 and µ(G)(A) = G(A) for all A ∈ LX such that A ̸= 0X is
an L-fuzzy topology on X.
Proof.

(T1) By definition µ(G)(0X) = 1 and µ(G)(1X) = G(1X) = 1.

(T2) For all A,B ∈ LX such that A⊙B ̸= 0X , it is clear that A ̸= 0X and B ̸= 0X .
Therefore, µ(G)(A⊙B) = G(A⊙B) ≥ G(A)⊙G(B) = µ(G)(A)⊙µ(G)(B).

(T3) For an arbitrary family {Ai ∈ LX ; i ∈ I} containing atleast one non zero
element A,

µ(G)(
∨
i∈I

Ai) = G(
∨
i∈I

Ai)

≥ G(A)

= µ(G)(A)

≥
∧
i∈I

µ(G)(Ai).
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Theorem 4.2. Let (X,G1) and (Y,G2) be L-G-filter spaces such that f : (X,G1) →
(Y,G2) be an L-G-filter map. Then f : (X,µ(G1)) → (Y, µ(G2)) is a continuous
map.
Proof. For all B ∈ LY such that f←(B) ̸= 0X ,

µ(G1)(f
←(B)) = G1(f

←(B))

≥ G2(B)

= µ(G2)(B).

Corollary 4.3. µ : L-G to L-FTop is a functor.
Proof. Proof follows from Theorem 4.1 and Theorem 4.2.

Theorem 4.1 above motivates the following notion of monotone L-fuzzy topo-
logical spaces.

Definition 4.4. An L-fuzzy topology τ satisfying τ(A) ≤ τ(B) for all non zero
A,B ∈ LX such that A ≤ B is called monotone L-fuzzy topology.

Remark 4.5. If G is an L-G-filter, then µ(G) is a monotone L-fuzzy topology.

Notation 4.6. Let L-FTop(X) denotes the lattice of set of all L-fuzzy topologies
on a set X and M-L-FTop(X) denotes the set of all monotone L-fuzzy topologies
on a set X.

Theorem 4.7. M-L-FTop(X) is a complete sublattice of L-FTop(X).
Proof. It is easy to observe that arbitrary meet of a subfamily family of mono-

tone L-fuzzy topologies {τj; j ∈ J} on a set X defined by τ(A) =
∧
j∈J

τj(A) for all

A ∈ LX is a monotone L-fuzzy topology on X. τ : LX → L defined by τ(A) = 1 for
all A ∈ LX is the greatest element in L-FTop(X) and it is monotone. Therefore
M-L-FTop(X) is a complete sublattice of L-FTop(X).

Theorem 4.8. Let (X, τ) be a monotone LM-fuzzy topological space and Y ⊆ X.
Then the subspace, (Y, τ |Y ) is a monotone LM-fuzzy topological space.
Proof. Let A,B ∈ LY such that A ≤ B and A ̸= 0Y . Consider C ∈ LX such that
C|Y = A. Define D ∈ LX by D(x) = C(x) if x ∈ X \Y and D(x) = B(x) if x ∈ Y.
Clearly D|Y = B and C ≤ D. Hence τ(C) ≤ τ(D) so that (τ |Y )(A) ≤ (τ |Y )(B).
Therefore, τ |Y a monotone L-fuzzy topology on Y .

Theorem 4.9. Let (X, τ) be a monotone L-fuzzy topological space and f : X → Y
be a surjective mapping. Then the quotient L-fuzzy topology, τ/f is a monotone
L-fuzzy topology on Y .
Proof. Let B1, B2 ∈ LY such that B1 ≤ B2 and B1 ̸= 0Y . Since B1 ≤ B2,
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f←(B1) ≤ f←(B2). As B1 ̸= 0Y , there exists y ∈ Y such that B1(y) ̸= 0.
Since f : X → Y is surjective, there exists x ∈ X such that f(x) = y. Thus
f←(B1)(x) = B1(y) ̸= 0. As a result, f←(B1) ̸= 0Y whenever B1 ̸= 0Y . Therefore,
(τ/f)(B1) = τ(f←(B1)) ≤ τ(f←(B2)) = (τ/f)(B2). Hence τ/f is a monotone
L-fuzzy topology on Y .

u
u u

u

0

α β

1

Figure 1: The diamond type lattice

Remark 4.10. Let {(Xj, τj)}j∈J be a family of monotone L-fuzzy topological

spaces, X ′js be pairwise disjoint and X =
⋃
j∈J

Xj. Then the sum L-fuzzy topol-

ogy,
⊕
j∈J

τj need not be a monotone L-fuzzy topological space. For example, let

X1 = {1, 2, 3}, X2 = {4, 5, 6, 7} and L be the lattice the shown in Figure 1. Let
A1 ∈ LX1 be defined by A1(1) = A1(2) = 1 and A1(3) = 0 and B1 ∈ LX2 be defined
by B1(4) = B1(5) = 1 and B1(6) = B1(7) = 0. τ1, τ2 : L

X → L defined by

τ1(A) =


1 if A = 0X1 or 1X1 ,
α if A ≥ A1 and A ̸= 1X1 ,
0 otherwise.

τ2(B) =


1 if B = 0X2 or 1X2 ,
β if B ≥ B1 and B ̸= 1X2 ,
0 otherwise.

are monotone L-fuzzy topologies on X1 and X2 respectively. Let X = X1

⋃
X2 and

τ be the sum L-fuzzy topology on X. Then τ({4, 5}) = τ1(ϕ) ∧ τ2({4, 5}) = β and
τ({1, 2, 4, 5}) = τ1({1, 2})∧ τ2({4, 5}) = α∧β = 0X . It is clear that τ is not mono-
tone. Therefore, the sum of monotone L-fuzzy topologies need not be monotone.

Remark 4.11. Let {(Xj, τj)}j∈J be a family of monotone L-fuzzy topological spaces

and X =
∏
j∈J

Xj. Then the product L-fuzzy topology,
∏
j∈J

τj need not be a mono-

tone L-fuzzy topology on X. For example, let X = {x1, x2}, Y = {y1, y2} and
L = {0, 1}. Then τ1 = {ϕ, {x1}, {x1, x2}} and τ2 = {ϕ, {y1}, {y1, y2}} are mono-
tone L-fuzzy topologies on X and Y respectively. Then the product topology τ
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on X × Y = {(x1, y1), (x1, y2), (x2, y1), (x2, y2)} is defined by τ = {ϕ, {(x1, y1)},
{(x1, y1), (x1, y2)}, {(x1, y1), (x1, y2), (x2, y1)}, {(x1, y1), (x2, y1)}, X × Y }. Thus
{(x1, y1)} ∈ τ but {(x1, y1), (x2, y2)} ̸∈ τ . Therefore, product of monotone L-fuzzy
topologies need not be monotone.

5. Conclusion
The study has identified three different functors from the category of L-G-filter

spaces to the category of L-fuzzy topological spaces. Having introduced the concept
of monotone L-fuzzy topological spaces, certain properties of the same have been
investigated. It is observed that the quotient and subspace of monotone L-fuzzy
topological spaces are again monotone whereas sum and product need not be so.

Acknowledgements
The authors are thankful to the referees for their constructive comments and

valuable suggestions which improved the presentation of this paper.

References
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Fuzzy Sets Syst., 106 (1999), 393-400.

[4] Chang C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968)
182-190.
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