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Abstract: The object of the present paper is to study almost Kenmotsu manifolds
with characteristic vector field € belonging to some nullity distributions, considering
concircular curvature tensor. Locally ¢-concircularly symmetric almost Kenmotsu
manifolds, concircularly ¢-recurrent almost Kenmotsu manifolds and locally con-
circularly ¢-recurrent three-dimensional almost Kenmotsu manifolds are studied.
And we have obtained some interesting results.
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1. Introduction
Nowadays the study of nullity distributions occupies an important position
in differential geometry. In 1966, Gray [10] introduced the notion of k-nullity
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distribution and later studied by Tanno [18] on a Riemannian manifold (M, g),
and is defined for any p € M and k € R as follows:

N,(k) ={Z € T,M : R(X,Y)Z = klg(Y, Z)X — g(X, Z)Y]}, (1.1)

for any X,Y € T,M, where T,M denotes the tangent vector space of M at any
point p € M and R denotes the Riemannian curvature tensor of type (1,3). More-
over, if k is a smooth function then the distribution is called generalized k-nullity
distribution.

Later, Blair, Koufogiorgos and Papantoniou [4] introduced a generalized no-
tion of k-nullity distribution called (k, )-nullity distribution on a contact metric
manifold M?"*! and is defined for any p € M*"*! and (k, u) € R? as follows:

Ny(k,p) ={Z € T,M>*" : R(X,Y)Z = k[g(Y, Z)X — g(X, Z)Y]
+plg(Y, 2)hX — g(X, Z)hY]},  (1.2)

where h = %f ¢¢ and £ denotes the Lie differentiation.

A new class of almost contact metric manifolds, called Kenmotsu manifolds,
have been introduced and studied by Kenmotsu in 1972 [11]. An almost con-
tact metric manifold M?"*! with 1-form n and fundamental 2-form ® defined
by ®(X,Y) = g(X,¢Y), where ¢ is a (1,1) tensor field such that dn = 0 and
d® = 2n A ® is called almost Kenmotsu manifold. The normality of an al-
most contact metric manifold is given by vanishing the (1,2)-type torsion tensor
N = [¢, 9] + 2dn ® &, where [¢, @] is the Nijenhuis torsion of ¢ [3]. According to
[11], the normality of an almost Kenmotsu manifold is given by

(Vx9)Y = g(6X,Y)§ —n(Y)X, (1.3)

for any vector fields X,Y on M?"*!,

Dileo and Pastore [8] introduced another generalized notion of the k-nullity dis-
tribution called (k, u1)"-nullity distribution on an almost Kenmotsu manifold M?2"+!
and is defined for any p € M?*"*! and (k, u) € R? as follows:

Ny(k,p) ={Z € T,M>* . R(X,Y)Z = k[g(Y, Z2)X — g(X, Z)Y]
+ulg(Y, Z2)W'X — g(X, Z2)I'Y]},  (1.4)

where b/ = h o ¢. Recently, Dileo et al. ([8], [9]), Wang et al. ([21], [22], [23], [24])
and De et al. [12] obtained some important results on almost Kenmotsu manifolds
with characteristic vector field £ belonging to some nullity distributions. In [6], De
and Mandal proved some interesting results on locally ¢-conformally symmetric
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almost Kenmotsu manifolds. In this paper, we study almost Kenmotsu manifolds
with concircular curvature tensor C' given by [25]

r

C(X,Y)Z=R(X,Y)Z — TIGTE

g Y, )X —g(X,2)Y |, (1.5)
where XY, Z are any vector fields and r is the scalar curvature.

The concircular curvature tensor has a lot of importance in differential geom-
etry. Several researchers have made a remarkable contribution to its study. From
the Riemannian viewpoint, the concircular curvature tensor is the most signifi-
cant curvature tensor of type (1,3). Blair et al. [5] have studied the concircular
curvature tensor on N (k)-contact metric manifolds. Singh and Kothari [16] have
studied the Tachibana concircular curvature tensor equivalent to the concircular
curvature tensor of the Riemannian space. In [19], classification of (k, 1)-manifolds
is discussed, and they [19] considered that concircular curvature tensor Z satis-
fies the equation Z(&£, X) S = 0, where S denotes the Ricci tensor. Generalized
Sasakian space forms are studied in [2] considering certain conditions on the con-
circular curvature tensor. Ozgiir and Tripathi [13] have discussed the concircular
curvature tensor on N (k)-quasi Einstein manifolds and obtained a necessary and
sufficient condition for an N(k)-quasi Einstein manifold to satisfy the condition
R(&,X) - Z =0, where R and Z denote, respectively, Riemannian curvature ten-
sor and concircular curvature tensor. The classification of P-Sasakian manifolds is
studied in [14] based on certain conditions satisfied by the concircular curvature
tensor. In [1], perfect fluid space-times are studied considering vanishing concircu-
lar curvature tensor. The present paper deals with the concircular curvature tensor
on almost Kenmotsu manifolds.

The paper is organized as follows: In Section 2, we give some basic formu-
las and properties of almost Kenmotsu manifolds. In Section 3, we study locally
¢-concircularly symmetric almost Kenmotsu manifolds with ¢ belonging to some
nullity distributions. Section 4 is concerned with the study of concircularly ¢-
recurrent almost Kenmotsu manifolds. Section 5 deals with the locally concircu-
larly ¢-recurrent three-dimensional almost Kenmotsu manifolds. Some important
conclusions are summarized in Section 6.

2. Almost Kenmotsu manifolds and nullity distributions

Let M?"! be an almost Kenmotsu manifold with structure (¢, &,n, g), where ¢
isa (1, 1) tensor field, £ a characteristic vector field, n a 1-form and ¢g a Riemannian
metric such that [3]

(X)) =-X+n(X)§, n(§) =1, nop=0, ¢£=0, g(X,&)=n(X), (2.1)
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9(¢X,0Y) = g(X,Y) = n(X)n(Y), (2.2)

for all vector fields X,Y on M?"*1. Let D be the distribution orthogonal to & and
defined by D = Ker(n) = Im(¢). The two tensor fields b = 3 £¢¢ and | = R(-,£)¢
on an almost Kenmotsu manifold M?"*! are symmetric and satisfy the following
relations [15]

hé =0, 1€ =0, tr(he) =0, ho + ¢h =0, (2.3)
Vxé=—¢*X — ohX, (2.4)

olo — 1= 2(h* — ¢°), (2.5)

tr(l) = S(&,€) = g(QE, &) = —2n — trh?, (2.6)

R(X,Y)§ =n(X)(Y = ohY) = n(Y)(X — ¢hX) + (Vyoh)X — (Vxoh)Y, (2.7)

for all vector fields X,Y on M?"+1,

Now we give some basic properties on almost Kenmotsu manifolds with £ be-
longing to the (k, p)-nullity distribution. The (1, 1)-type tensor field h’ satisfies
Né+ ¢h' =0 and I'¢ = 0. Also it is known that

h=0&h =0, h?=(k+1)¢* (& h*=(k+1)¢%). (2.8)
For an almost Kenmotsu manifold, we have from (1.4)

R(X,Y)E = k[n(Y)X —n(X)Y] + pn(Y)V'X —n(X)h'Y], (2.9)
R(&, X)Y = k[g(X,Y)§ —n(Y)X] + plg(h' X, Y)E —n(Y)R' X], (2.10)

where k, 1 € R. Contracting Y in (2.10), we get
S(X, &) = 2kn(X). (2.11)

Let X € D be the eigenvector of h’ corresponding to the eigenvalue A and orthog-
onal to &. It follows from (2.8) that A> = —(k + 1), a constant. Therefore, k < —1
and A = £v/—k — 1. We denote [\’ and [—)\]" as the corresponding eigenspaces
associated with A’ corresponding to the non-zero eigenvalues A and —\ respectively.
We have the following lemmas.

Lemma 2.1. ([[8], Proposition 4.1]) Let (M*""' ¢,£,m,9) be an almost Ken-
motsu manifold such that & belongs to the (k,p) -nullity distribution and h' # 0.
Then k < —1, = —2 and Spec(h') = {0, \, =A} with 0 as simple eigenvalue and
A =+/—k — 1. The distributions [{] B [\]" and [£] & [—A] are integrable with totally

geodesic leaves. The distributions [\ and [—\]" are integrable with totally umbilical
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leaves.

Lemma 2.2. ([[8], Lemma 4.1]) Let (M?** ¢, & n,9) be an almost Kenmotsu
manifold with h' # 0 and & belongs to the (k,—2)'-nullity distribution. Then for
every X,Y € T,M,

(Vxh)Y = —g(WX + h*X, V)¢ —n(Y) (WX + h?X). (2.12)
According to Takahashi [17] and De et al. [7], we have the following definitions:
Definition 2.1. An almost Kenmotsu manifold is said to be ¢-symmetric if it

satisfies
¢*(VwR)(X,Y)Z) =0, (2.13)
for all vector fields W, X,Y,Z € T,M. In addition, if the vector fields W, XY, Z

are orthogonal to &, then the manifold is called locally ¢-symmetric.

Definition 2.2. An almost Kenmotsu manifold is said to be ¢-recurrent if it
satisfies

&(VwR)(X,Y)Z) = AW)R(X,Y)Z, (2.14)
for all vector fields W, X,Y,Z € T,M. In (2.14), if the vector fields W, X,Y, Z are
orthogonal to &, then the manifold is called locally ¢-recurrent.

3. Locally ¢-concircularly symmetric almost Kenmotsu manifolds
Consider a locally ¢-concircularly symmetric almost Kenmotsu manifold with
¢ belongs to (k, u)'-nullity distribution. Then we have

¢*(VwO)(X,Y)Z) =0, (3.1)
for all vector fields X, Y, Z, W orthogonal to &.
Putting Z = ¢ in (3.1), we get

¢*(ViwC)(X,Y)E) = 0. (3.2)
By the influence of (1.5) and (2.9) in (3.2), we obtain

= %[(vwmmw — (Vwm(X)$*Y ]+ pl(Vwn) (V) (W' X)

+0(Y)* (Viwh')X) = (Vwn) X¢*(hY) = n(X)¢*(Vwh)Y)].  (3.3)
Using (2.1), (2.4) and (2.12) in (3.3), we get
(k+1)2n

0 = S5 Hg(Y W) + g(N W Y)H(=X) + {g(X. W) + (W, X)} Y]

+ ul(=RX){g(Y, W) + g(W'W,Y)} + W'Y {g(X, W) + g(R'W, X)}]. (3.4)
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Making use of proposition (4.1) from [10], we get

“ZZ i)fn {g(Y, W) + g(WW,Y)}(=X) + {g(X, W) + g(W'W, X)}Y]

—2((=X){g(Y, W) + g(W'W, Y )} + K'Y {g(X, W) + g(W'W, X)}].  (3.5)

0=

Letting X, Y, W € [—\] in (3.5), we have

(k+1)2n
2n+1

[ + 201 = Ng(X, W)Y = g(¥, W)X] = 0. (3.6)
Again from proposition (4.1) of [10], we have k¥ < —1 and hence A > 0. Therefore
from (3.6), we get A = 1 and k = —2. Hence from theorem (4.1) of [6], one can
state the following:

Theorem 3.1. A locally ¢-concircularly symmetric (2n + 1)-dimensional almost
Kenmotsu manifold (M*"™ ¢, &, n,9)(n > 1) with the characteristic vector field
& belonging to the (k,p) -nullity distribution and h' # 0 is locally isometric to
the Riemannian product of an (n + 1)-dimensional manifold of constant sectional
curvature —4 and a flat n-dimensional manifold.

Now we consider locally ¢-concircularly symmetric (2n+ 1)-dimensional almost
Kenmotsu manifold (M2 ¢, €,n,g) (n > 1) with the characteristic vector field
¢ belonging to the (k, p)-nullity distribution. Then we have

#*(VwC)(X,Y)Z) = 0, (3.7)

for any vector fields X,Y, Z, W orthogonal to &.
Putting X = ¢ in (3.7), we get

¢*(VwC)(€,Y)Z) = 0. (3-8)

Using (1.5), (2.4) and (2.1) in (3.8), we obtain

0= g s =Y + a0 ) + [+ 5ot W)
—(Z)n(W)H=Y +n(Y)§} — g(Y, Z){=W +n(W)S}]. (3.9)
Since Y, Z, W are orthogonal to £, we have from (3.9) that
14— J[g(Y, Z)W — g(Z,W)Y] = 0. (3.10)

2n(2n + 1)
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This implies that
r=-—2n(2n+1). (3.11)

Thus we can state the following:

Theorem 3.2. Let M*"*(n > 1) be a locally ¢-concircularly symmetric almost
Kenmotsu manifold with the characteristic vector field & belonging to the (k,u)-
nullity distribution. Then the scalar curvature of M*"*1 is —2n(2n + 1).

4. Concircularly ¢-recurrent almost Kenmotsu manifolds

Definition 4.1. An almost Kenmotsu manifold is concircularly ¢-recurrent if there
exists a non-zero 1-form A such that

#*(VwC)(X,Y)Z) = AW)C(X,Y)Z, (4.1)

for all vector fields X,Y, Z, W.
Now consider a concircularly ¢-recurrent almost Kenmotsu manifold. Then
using (2.1) in (4.1), we have

(VW O)(X,Y)Z + n((TwC)(X,Y)2)e = AW)C(X,Y)Z.  (42)
Taking innerproduct of (4.2) with U and in view of (1.5), we have

dr(W)
2n(2n + 1)
[9(Y, Z2)g(X,U) — g(X, Z)g(Y,U) + g(X, Z)n(Y)n(U) — g(Y, Z)n(X)n(U)]
= AW)N{g(R(X,Y)Z,U) - 9(Y, Z)g(X,U) — g(X, Z)g(Y,U)]}.

(4.3)

—9(VwR)(X,Y)Z,U) + n((Vw R)(X,Y) Z)n(U) +

r
2n(2n + 1)

Putting X = U = ¢; in (4.3), where ¢;, i = 1,2,...2n+ 1 is an orthonormal basis of
the tangent space at each point of the manifold and taking summation over i, we
get

— (VwS)(Y, 2) + n((VwR)(£.Y)Z) + %[@n ~D)g(Y. Z) + (Y )n(2)]
= AW)[S(Y. 2) = 5= 9(Y.2)] (4.4)
Setting Y = Z = £ in (4.4), we obtain
vws)e e = T aawyisie e - (45)

om + 1 S om+1
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Using lemma (3) of [23] in (4.5), we get
n?(k + 1) AW) = dr(W). (4.6)

If r is a constant, then we have A(W) = 0 or k¥ = —1. Further if £ = —1, then
h' = 0 and h = 0. This is contradiction to the assumption that A" # 0,h # 0.
Therefore we can state the following:

Theorem 4.1. A concircularly ¢-recurrent almost Kenmotsu manifold M7+
with the characteristic vector field & belonging to the (k, ) -nullity distribution is
concircularly ¢-symmetric provided the scalar curvature r is a constant.

5. Locally concircularly ¢-recurrent three-dimensional almost Kenmotsu
manifolds

Definition 5.1. Concircular curvature tensor C on a three-dimensional almost
Kenmotsu manifold is given by

C(X,Y)Z =R(X,Y)Z — 6[ g, 2)X — g(X, 2)Y] (5.1)

A three-dimensional almost Kenmotsu manifold is said to be locally concircularly
¢-recurrent if

P*(VwO)(X,Y)Z) = AW)C(X,Y)Z. (5.2)
For a three-dimensional Riemannian manifold, we have [20]
RIX.YNZ=5Y,2)X -S(X,2)Y +g9(Y,2)QX — g(X, Z)QY
—5l9(Y. 2)X - g(X, 2)Y]. (5.3)
For ¢ € (k, p)/-nullity distribution, equation (5.3) becomes

RX\Y)Z = (g —2K)[g(Y, 2)X — g(X, Z)Y]

- (g = 3k)[g(Y, Z)n(X)§ — 9(X, Z)n(Y)E +n(Y)n(Z)X —n(X)n(2)Y]
—29(Y, Z)W' X + 29(X, Z)W'Y —29(R'Y, Z)X + 29(W' X, Z)Y. (5.4)

Taking covariant derivative of (5.4) with respect to W, we get
dr(W
T gy, 2)X ~ g(X.2)Y — g(¥. 2)n(X)E ~ g(X. Z)n(Y )¢

+n(Y)n(2)X —n(X ) (2)Y ]—(——3/€)[ (Y, Z2{Vwn(X)§ +n(X)Vw}

—9(X, 2){(Vwn)(Y)§ +n(Y )Vwé*} + (Vun)(Y)n(2)X +n(Y)(Vwn)(2)Y
—(Vun)(X)n(2)Y = n(X)(Vwn)(2)Y] = 29(Y, Z)(Vwh')(X)
+29(X, Z)(Vwh')(Y) = 29((Vwh')Y, Z) X + 29((Vwh') X, Z)Y. (5.5)

(VwR)(X,Y)Z =
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Since X, Y, Z, W are orthogonal to £, we have from (5.5) that

VB (x.1)Z = "W 2)x - gx.2)v] - (- 30)l(v. 2

{9(X, W) + g(X, M'W)} — g(X, Z){g(Y, W) + g(Y, W) }E

+2[g(Y, Z)g(W'W + h*W, X) — g(X, Z)g(W'W + h*W,Y)]

~9lg(Vwh)Y, 2)X — g(Vwh)X, 2)V]. (56)
Applying ¢? on (5.6) and then using (2.1), we get

P(VwR)(X,Y)Z) = @

9(X, 2)Y —g(Y, Z)X]
+20g(Vwh)Y, 2)X - g(Twh) X, Z)Y).  (5.7)
Now using (5.1) and (5.7) in (5.2), we obtain

dr(W)

AW)C(X,Y)Z = 9(X,2)Y —g(Y, Z)X]

L 2Ag(Vwh)Y, 2)X — g(Twh)X, Z)Y].  (5.8)
Using lemma (4.1) of [8] in (5.8), we obtain

dr(W)

aXYMZ3MW)

9(X,2)Y — g(Y, Z)X]. (5.9)

Putting W = e; in (5.9), where e;,7 = 1,2, 3 is an orthonormal basis of the tangent
space at any point of the manifold and taking summation over 7,1 <17 < 3, we get
dr(e;)

axyw:&%mwxzw—ﬂxmm. (5.10)

By virtue of (5.10) in (5.1), we have

r dr(e;)

where a = ¢ — 3A(e) is a scalar. By Schur’s theorem, a is a constant on M3.

Therefore we can state the following:

Theorem 5.1. A three-dimensional concircularly ¢-recurrent almost Kenmotsu
manifold with £ € (k, ) -nullity distribution is of constant sectional curvature.
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6. Conclusions

In this paper, we have studied almost Kenmotsu manifolds considering con-
circular curvature tensor. We have considered that £ belongs to two nullity dis-
tributions, (k,u)-nullity distribution and (k, u)’-nullity distribution. Locally ¢-
concircularly symmetric almost Kenmotsu manifolds, taking ¢ belongs to (k, )
and (k, p)'-nullity distributions and (1, 1)-type tensor field A’ # 0, are discussed.
We proved that a concircularly ¢-recurrent almost Kenmotsu manifold becomes
concircularly ¢-symmetric if r is a constant and £ belongs to the (k, u)"-nullity dis-
tribution. Further, we have examined three-dimensional concircularly ¢-recurrent
almost Kenmotsu manifolds taking & belongs to the (k, u)’-nullity distribution and
obtained an interesting result.
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