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Abstract: We present a new modified version of the Adomian decomposition
method for computing the series solutions of the nonlinear ordinary differential
equations (ODEs). The recently proposed Adomian matrix algorithm is used in
this method to compute the Adomian polynomials for scalar-valued nonlinear poly-
nomial functions, which allows us to get the series solution of the ODEs numerically
and makes it much faster than symbolic computation. This method can test the
convergence of the series solution of the ODE by calculating the global squared
residual error of the solution. Several types of nonlinear ODEs, such as Abel equa-
tion, De Boer-Ludford equation, Van der Pol equation, Painleve-Ince equation, and
Falkner-Skan equation, are solved using this method to illustrate its performance
and effectiveness in delivering solutions.
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1. Introduction
Nonlinear differential equations are effective modeling tools for nonlinear dy-

namical events in a variety of disciplines, including mathematical biology, nonlinear
optics, plasma physics, nano physics, solid-state physics, and fluid dynamics. Find-
ing exact solutions to nonlinear differential equations can be accomplished using
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a number of well-known techniques, for example, F-expansion method [15, 44],
first integral method [26] Lie symmetry method [18], Laplace–Fourier transform
technique [36], and so on. Unfortunately, analytical techniques cannot be used to
tackle the majority of nonlinear situations. In addition, to solve nonlinear problems,
standard numerical methods require perturbation, discretization, linearization, or
transformation. It is important to note that there are a number of semianalytical
approaches in the literature for solving nonlinear differential equations, including
the Adomian decomposition method (ADM) [5, 6, 7, 8, 37], the homotopy analysis
method (HAM) [31], and the homotopy perturbation method (HPM) [10]. For
nonlinear systems, these methods essentially construct a series solution iteratively
where we must solve a linear differential equation at each iteration. The Adomian
decomposition method has been widely used in the literature to get series solu-
tion of a differential equation, [1, 2, 8, 13, 20, 21, 22, 33]. This technique can
provide an analytical approximation to the exact solutions in the series form that
converge very rapidly [1, 2, 20]. In this method, no linearization or perturbation is
required. The Laplace Adomian decomposition method (LADM), which is created
by combining the Adomian decomposition method and the Laplace transform, is a
powerful method. As can be observed in [11, 12, 29, 30, 38], LADM has also been
extensively utilized to discover the series solutions of fractional-order nonlinear
differential equations.

In the aforementioned works [1, 2, 8, 13, 20, 21, 22, 33], ADM has been applied
to differential equations for series solutions, and notably, there need some symbolic
computations to get the series solutions, which slows the calculating process. Se-
ries solutions to ODEs can also be determined using a popular technique called
automatic differentiation (AD) [17, 27, 28] that computes derivatives of the Taylor
coefficients numerically with respect to the point of expansion without truncation
errors, which is very fast and much more efficient than using symbolic algebra. AD
is a set of techniques based on the mechanical application of the well-known chain
rule to obtain derivatives of any arbitrary function at a given point specified by
a computer program. AD manipulates the fact that every computer program, no
matter how complicated, performs a sequence of elementary arithmetic operations
such as addition, subtraction, multiplication, division, and elementary functions
such as exp, log, sin, and cos. By repeatedly applying the chain rule of deriva-
tive calculus to these operations, derivatives of arbitrary orders can be calculated
automatically and accurately to working precision.

However, in this paper, we have used a new modified version of the Adomian
decomposition method for computing the series solutions of the nonlinear ordi-
nary differential equations (ODEs) numerically by employing the one-dimensional
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case of the recently proposed Adomian matrix algorithm [16] for fastest compu-
tations of Adomian polynomials for scalar-valued nonlinear polynomial functions.
The Adomian matrix algorithm determines Adomian polynomials of scalar-valued
nonlinear polynomial functions with the help of matrix formulations rather than
recurrence processes, and does not require complex mathematical operations such
as parametrization, expansion, regrouping, and differentiation. Therefore, we need
not compute the differentiations using the well-known chain rule of a composite
function like AD, which speeds up the solution process more efficiently. This mod-
ified version of the Adomian decomposition method can determine the series solu-
tion of the nonlinear ODE (2) which should be polynomial about x (independent
variable),u (dependent variable), and its derivatives, and free of any parameters.
Following the method described in [23, 39], we can also test the convergence rate
of the obtained series solution. This modified version of ADM approach has been
implemented in an open-source Python package called odeSolu 1. The primary com-
puting routine (determination of Adomian polynomials) in this package is written
in Cython, which increases its computing efficiency. In this package, following [23,
39] we have also implemented a method to test the convergence rate of the obtained
series solution.

The paper is organized as follows: In Sec. 2 we describe the basic concepts of
the Adomian Decomposition Method. In Sec. 3, we present the modified version of
ADM to get the series solution of an ODE with a convergence test. In Subsec. 3A,
we apply the modified version of ADM to some ODEs using the Python package
odeSolu, and compare the calculated series solution with the numerical solutions
of the ODEs using SciPy’s module scipy.integrate.odeint. In Sec. 4, we discuss our
results and make some conclusions on our works.

2. Adomian Decomposition Method
In this section we discuss the key concepts of the Adomian Decomposition

Method following [24, 34, 35]. Let us consider a nonlinear ODE in order p with in-
dependent variable x (real and scalar) and dependent variable u having the general
form [34, 35]

Nu = g(x), (1)

where N : H → H is the nonlinear operator from a Hilbert space H into H. In
ADM, it is assumed that N to be decomposed into

Lu+Ru+Nu = g(x), (2)

where L : H → H is the highest-order linear differential operator L[.] = dp

dxp [.] which

1https://github.com/mithun218/odeSolu.git

https://github.com/mithun218/odeSolu.git
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is assumed to be invertible, R : H → H is a linear differential operator containing
the linear derivatives of less order than L, N : H → H is an analytic nonlinear
operator containing all other nonlinear terms, g(x) ∈ H is given analytic function.
Here we should note that choosing the operator L is not always unique [9, 40, 41].
It is also noteworthy that in Eq. (2), u is a scalar function of the real variable x. u
will be a vector-valued function for a set of differential equations. However, in this
paper, our studies are limited to single ODE in which u is a scalar-valued function.
The principle step of the decomposition method is to assume a series solution

u =
∞∑
i=0

ui, (3)

and then, the ADM scheme that corresponds to the functional equation (2) con-
verges strongly to u ∈ H, which is the unique solution to the functional equation
[19, 34]. By the Eq. (3), the nonlinear term Nu is decomposed into an infinite
series

Nu =
∞∑
i=0

Ai, (4)

where Ai are the well-known Adomian polynomials which depend on the solution
components u0, u1, . . . , ui. The following definitional formula introduced by G.
Adomian [5-7, 21], determines the Adomian polynomials for a given nonlinear
functional Nu = F (u) (F (u) is assumed to be an analytic functional in Hilbert
space H):

AM =
1

M !

dM

dλM
F

(
∞∑
i=0

uiλ
i

)∣∣∣∣∣
λ=0

, M = 0, 1, 2, . . . , (5)

where the analytic parameter λ is simply a grouping parameter. One crucial char-
acteristic of the Adomian polynomial AM is that it is constructed solely to depend
on the solution components (u0, u1, . . . , uM) and not on higher-order solution com-
ponents ui with i > M , as mentioned by Wazwaz and Azreg [14, 42]. As a result,
the higher-order terms for i > M do not contribute to the summation in Eq. (5).
Using Eqs. (2), (3) and (4), the solution components uM can be determined using
the following classic Adomian recursion scheme

u0 = Φ+ L−1[g(x)], (6a)

uM+1 = −L−1[R[uM ]]− L−1[AM ], M = 0, 1, 2, . . . , (6b)

where Φ is determined by the initial conditions such that L[Φ] = 0. However, in
practice, it is impossible to calculate the series solution up to infinite terms. But,
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one can get the approximate solution very close to the exact solution by including a
large number of terms in Eq. (3). In this context, it is notable that there are several
alternate recursion schemes [1, 4, 25, 43], which differ from one another by the other
choice of the initial solution component u0 for computational convenience. There
are number of works on the convergence of the Adomian series solutions obtained
from the various recursion schemes [1, 2, 3, 20, 23, 32, 39].

3. Modified version of ADM

This section aims to present a new modified version of ADM for the fastest
determinations of the series solution up to higher-order terms. We derive the power
series solution of the ODE (2) with initial conditions using the classic Adomian
recursion scheme (6) with the help of the one-dimensional case of the Adomian
matrix algorithm [16]. Using the Adomian matrix algorithm, we have introduced
a modified version of ADM by which one can determine the series solution of the
ODE numerically besides some preliminary symbolic computations at the initial
stage, which makes this method faster. This modified version of ADM is described
in the following steps:

i. Let us consider an ODE in order p, with independent variable x and dependent
variable u in the general form (2) of which the series solution has to be deter-
mined. At first, in Eq. (2), the single highest derivative term is isolated on the
left-hand side (L.H.S.), and the remaining terms are moved to the right-hand
side (R.H.S.). After these isolation processes, Eq. (2) becomes

Lu = g(x)−Ru−Nu. (7)

Equation (7) can also be written in the following form

u(p) = f(x, u(1), u(2), . . . , u(p)), (8)

where Lu = u(p). The number within the first bracket in the subscript of u
denotes differentiation with respect to x, e.g., the pth derivatives of u with
respect to x is represented by u(p). Here it is worth mentioning that this
method is only applicable when the R.H.S. in Eq. (8) is polynomial about
x, u, and its derivatives, and also it is free of any parameters. These conditions
allow us to express Eq. (8) in the following summation form

u(p) =

q∑
i=0

q∑
j=0

q∑
k1=0

q∑
k2=0

. . .

q∑
kp=0

Cijk1k2...kpx
iujuk1

(1)u
k2
(2) . . . u

kp
(p), (9)
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where Cijk1k2...kp are real numerical constant values. The ODE (8) is in the
sum of product forms in the summation (9) where p+2 is the number of terms
in each product and q is the number of product terms in the summation.

ii. In order to avoid any symbolic computations in later stages, now we convert Eq.
(9) into a matrix whose elements are real numbers, and it bears all information
about the R.H.S. of the ODE (7). We can write Eq. (9) in q× (p+2) matrices

D =


C0000...0 0 0 0 0 . . . 0 . . . 0

...
... . . . . . . . . . . . .

... . . .
...

C13450...0 1 3 4 5 . . . 0 . . . 0
...

... . . . . . . . . . . . .
... . . .

...
Cqq...q q q q q . . . . . . . . . q

 . (10)

Each row of the matrix (10) having p+ 2 number of elements represents each
product term in the summation (9). All the elements in the 1st column repre-
sent the constant coefficients of the product terms. The elements in 2nd, 3rd,
4th, 5th,. . . (p+2)th columns represent the powers of x, u, u(1), u(2), . . . , u(p) re-
spectively. We can divide the matrix into two parts, one represents the linear
part of ODE (g(x)−Ru), and another represents the nonlinear part (−Nu) of
the ODE (7). We only require to calculate the Adomian matrix for the nonlin-
ear part. In such a way, the whole information of the R.H.S. of the ODE (9)
are stored in the matrix (10), and this matrix is the numerical representation
of the R.H.S. of the ODE (7).

iii. Let us consider we have to determine n number of terms in the power series
solution. Then, the solution can be expressed in the following power series
form

u(x) =
n−1∑
i=0

aix
i. (11)

We assume p number of initial conditions as

u(0) = c0, u(1)(0) = c1, u(2)(0) = c2, . . . , u(p−1)(0) = cp−1, (12)

where ci(i = 0, 1, . . . p−1) are real numbers. If g(x) is the polynomial function
with degree r − 1 in independent variable x, we can write

g(x) =
r−1∑
i=0

gix
i, (13)
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where gi(i = 0, 1, . . . r − 1) are real numbers. Then using Eq. (13), we can
calculate L−1g(x) which is given by

L−1g(x) =

∫
. . .

∫
g(x)dpx =

r−1∑
i=0

gii!

(i+ p)!
xi+p. (14)

Using the initial conditions (12) and Eq. (14), from Eq. (6a) we get

u0 =

p−1∑
i=0

ci
i!
xi +

r−1∑
i=0

gii!

(i+ p)!
xi+p =

s−1∑
i=0

dix
i, (15)

where
s = p,

di =
ci
i!
+

gii!

(i+ p)!
, for i = 0, 1, . . . , r − 1,

=
ci
i!
, for i = r, r + 1, . . . , s− 1,

 if p > r, (16)

and
s = r,

di =
ci
i!
+

gii!

(i+ p)!
, for i = 0, 1, . . . , p− 1,

=
gii!

(i+ p)!
, for i = p, p+ 1, . . . , s− 1.


if p < r, (17)

and
s = p = r,

di =
ci
i!
+

gii!

(i+ p)!
, for i = 0, 1, . . . , s− 1,

 if p = r. (18)

Using Eq. (15), Eq. (11) can be written as

u(x) =
n−s∑
i=0

ui =
s−1∑
i=0

dix
i +

n−1∑
i=s

aix
i. (19)

In Eq. (19), ai(i = s, s + 1, . . . , n − 1) are unknowns, have to be determined
in the later steps using u0 given in (15) and Eq. (6b). Notably, if dj = 0 for
p− 1 < j < s− 1 with s > p in Eq. (19), then aj(p− 1 < j < s− 1) are also
unknowns which will be calculated in similar way like ai. Now, we express Eq.
(15) in terms of a 1× n row matrix

S =
(
d0 d1 d2 . . . ds−1 0 0 . . . 0

)
. (20)
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S is called the solution matrix. The first s elements in S are the real numbers,
which are the constant coefficients of xi in the first part of Eq. (19). One
can note that the remaining (n− s) elements of S are filled with zero. In the
following step, the values of ai(i = s, s+1, . . . , n−1) are determined using the
recursion scheme (6b) and the last (n − s) elements of S are filled with their
values. Here, we should note that if dj = 0 for p − 1 < j < s − 1 with s > p
in Eq. (20), we also have to determine the unknowns aj(p− 1 < j < s− 1) in
the similar way.

iv. This is the crucial and challenging step among all the steps in the method.
This step elapses most of the computation time in solving an ODE. In order
to determine the unknowns aj(p− 1 < j < s− 1), ai(i = s, s+ 1, . . . , n− 1) in
Eq. (19), we use the solution matrix S and apply the recursion scheme (6b).
We start the calculations of the values of the unknowns from the leftmost (i.e.
the lowest column) position of the matrix S. At first, to compute the values of
the unknowns aj(p−1 < j < s−1), we have to extract the information of each
term in the ODE through its matrix representation (10), and perform some
mathematical operations on S. The mathematical operations are multiplica-
tions by a scalar, element-wise matrices multiplications, addition, derivatives,
integration, and of course, the determinations of Adomian polynomials of the
nonlinear terms in the ODE. Adomian polynomials are determined following
the Adomian matrix algorithm the one-dimensional case [16]. To calculate the
derivative and integration of a one-dimensional matrix, we use the algorithms
described in Listings 1 and 2 respectively. The function doDerivM in Listing
1 written in pseudo-code is the implementation of a simple procedure to de-
termine the derivative of a one-dimensional matrix numerically. On the other
hand, in Listing 2, the function doIntegM implements an easy method to per-
form integration on a one-dimensional matrix numerically. After calculating
aj, the solution matrix S is updated with the element aj in the j-th column
and S becomes

S =
(
d0 d1 d2 . . . aj . . . ds−1 0 . . . 0

)
. (21)

Then, by repeatedly applying the above procedure of this step-iv, one can
easily compute all other unknowns ai for i = s, s+1, . . . , n− 1, and finally, we
get the power series solution of Eq. (2) in matrix S.
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Listing 1 The algorithm in pseudo-code for finding derivatives of a one-dimensional
matrix A.

1 input : One=dimens iona l matrix A
2 output : p=t imes d i f f e r e n t i a t i o n o f A
3 function doDerivM(S , p)
4 Construct matrix C which conta in s whole numbers
5 {0 , 1 , 2 , . . . , n− 1} : C ←

(
0 1 2 . . . n− 1

)
6 for i ← 1 to p do
7 Element=wise mu l t i p l i c a t i o n : T ←

(
0 T1 T2 . . . Tn−1

)
← C ◦ A

8 Sh i f t the e lements o f T l e f tward , then the f i r s t element 0 w i l l
become the l a s t element and the remaining w i l l s h i f t l e f t :

9 R ←
(
T1 T2 . . . Tn−1 0

)
10 end for
11 return R
12 end function

Listing 2 The algorithm in pseudo-code for finding integrations of a one-dimensional
matrix A.

1 input : One=dimens iona l matrix A
2 output : p=t imes i n t e g r a t i o n o f A
3 function doIntegM (S , p)
4 Construct matrix C which conta in s the number sequence
5 {1 , 1

2 , 13 , . . . , 1
n−1 , 0} : C ←

(
1 1

2
1
3 . . . 1

n−1 0
)

6 for i ← 1 to p do
7 Element=wise mu l t i p l i c a t i o n : T ←

(
T1 T2 . . . Tn−1 0

)
← C ◦ A

8 Sh i f t the e lements o f T r ightward , then the l a s t element 0 w i l l
become the f i r s t element and the remaining w i l l s h i f t

r i g h t :
9 R ←

(
0 T1 T2 . . . Tn−1

)
10 end for
11 return R
12 end function

Convergence test of the solution: To test the convergence rate of the Adomian
series solution (19) obtained from this modified version of ADM, we follow [23,
39]. According to [23, 39], the global error associated with the series solution (for
sufficiently large truncation level M) over the interval Ω = [a, b]

u =
M∑
i=0

ui, (22)



146 South East Asian J. of Mathematics and Mathematical Sciences

(above equation (22) is obtained from (19) at stage M) defined by [39]

R(x) = Lu+Ru+Nu− g(x). (23)

If Eq. (23) is square integrable over the domain Ω, then the global squared residual
error (Res) is defined by

Res =

∫ b

a

R2(x)dx. (24)

If one get smaller value of Res that is tending to zero, then the solution uM has a
good convergence rate within the interval Ω = [a, b], and it is a good approximation
to the solution of (2). In this context, one can note that in [39], authors have
used modified recursion scheme where an convergence parameter h is inserted in
the classical Adomian recursion scheme (6) for speeding up its convergence. In
modified recursion scheme we have to determine the best possible value of h by
minimizing the global squared residual error for getting the fastest convergence
rate of the ADM series, requiring some symbolic computations that slow down
the calculating process of solutions of Eq. (2). However, in the present work we
are interested in rapid computer-generation of the Adomian series solutions of Eq.
(2) to higher orders numerically, and for this purpose, we have used the classical
Adomian recursion scheme (6).

3A. Series solutions of some ODEs
We have developed a Python package odeSolu 2, which implements the modified

version of ADM (described in the above Sec. 3) for getting a power series solution
of an ODE. In this subsection, we present some examples of ODEs that have been
solved using odeSolu to demonstrate the efficiency and effectiveness of the modified
version of ADM. We have selected various kinds of nonlinear ODE, including higher
nonlinearity and higher-derivative terms, they are listed below:

(1) The Abel equation of the first kind

du

dx
+ 0.2x2u3 + 0.1xu2 + 5u+ 4 = 0, (25)

with the initial condition u(0) = 1.

(2) A second-order ODE with quartic nonlinearity

d2u

dx2
+ 0.1

du

dx
+ u4 + 4 = 0, (26)

subject to the initial conditions u(0) = 0, u1(0) = 1.

2https://github.com/mithun218/odeSolu.git

https://github.com/mithun218/odeSolu.git
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(3) The De Boer-Ludford equation

d2u

dx2
− u4 + x2u = 0, u(0) = 1, u1(0) = 1. (27)

(4) The Van der Pol equation

d2u

dx2
− 0.05

(
1− u2

) du
dx

+ u = 0, u(0) = 0, u1(0) = 0.5. (28)

(5) The Painleve-Ince equation

d2u

dx2
+ 3u

du

dx
+ u3 = 0, u(0) = 0, u1(0) = 0.5. (29)

(6) A Falkner–Skan equation

d3u

dx3
+ u

d2u

dx2
− 2

(
du

dx

)2

+ 2 = 0, u(0) = 1, u1(0) = 0.5, u2(0) = 1. (30)

(7) A fourth-order ODE

d4u

dx4
− x2d

3u

dx3
+ 3xu

d2u

dx2
− 6

du

dx
+ 2x2 + x = 0, (31)

u(0) = 0, u1(0) = 0.5, u2(0) = 1, u3(0) = 1.

(8) A fifth-order ODE with quintic nonlinearity

d5u

dx5
− 0.001u2d

4u

dx4
− 2xu

(
d3u

dx3

)2

+ 0.5xu

(
d2u

dx2

)4

− du

dx
+ x2u3 = 0, (32)

u(0) = 1, u1(0) = 0, u2(0) = 1, u3(0) = 1, u4(0) = 0.5.

We have solved all the above-listed ODEs using odeSolu package, and the calculated
series solutions are shown in Figs. 1 and 2. The red and orange dotted lines in
all plots display the series solutions for different values of n (the number of series
terms). The blue dotted lines express the numerical solutions of the ODEs obtained
using SciPy’s module scipy.integrate.odeint, which uses the LSODA algorithm to
solve ODEs. From the plots, we observe that all the series solutions satisfy the
numerical solutions very well within the convergence limits of the power series.
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The odeSolu package is very fast in calculating the series solutions. However, the
elapsed time increases with the degree of nonlinearity and the value of n. For
example, it takes almost 25 second in calculating the series solution of Eq. (32)
containing fifth-order nonlinearity for n = 500.

Table 1: Global squared residual error (Res) for Eqs. (25)-(32) in the intervals
Ω = [a, b] within the convergence limits. CPU times (in second) of computing the
solutions are given within the parenthesis in second column.

ODE Number of
series terms n

Ω Res

(25)
50(0.19) [0, 0.42] 0.0369
300(1.65) [0, 0.42] 6.762e-12

(26)
50(0.18) [0, 1.0] 1.999
500(9.71) [0, 1.0] 1.110e-21

(27)
50(0.22) [0, 1.36] 0.3647
500(8.96) [0, 1.36] 8.487e-29

(28)
50(0.16) [0, 3.55] 29.456
500(5.12) [0, 3.55] 1.479e-3

(29)
50(0.13) [0, 1.92] 41.794
500(4.9) [0, 1.92] 4.159e-12

(30)
50(0.09) [0, 2.25] 26766.32
500(0.46) [0, 2.25] 1.220e-16

(31)
100(0.16) [0, 2.0] 3.697e-8
1000(1.32) [0, 2.0] 2.267e-26

(32)
50(0.44) [0, 1.4] 0.572
500(24.66) [0, 1.4] 1.259e-28

We have also calculated the global squared residual error (Res) defined in Eq.
(24), and listed the estimated values of Res for different values of series terms n
in Table 1. It is clear from Table 1 that the values of Res are very close to zero
increasing n in a given interval Ω = [a, b] within the convergence limit. Therefore,
the estimated series solutions become good approximation to the solutions of Eqs.
(25)-(32) by including larger series terms in the convergence limits Ω = [a, b].

4. Conclusion
We have developed a new modified version of the Adomian decomposition

method (ADM) to get the series solutions of the ODEs by using the one-dimensional
case of the recently proposed Adomian matrix algorithm [16].
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Figure 1: The power series solutions are compared with numerical solutions (N.S.). The red
and orange dotted lines represent the series solutions of Eqs. (25), (26), (27), (28), in Figs. 1a,
1b, 1c, 1d, respectively. The blue dotted lines represent the numerical solutions.

This method determines the series solutions of the ODEs numerically using the
classic Adomian recursion scheme (6), which is very fast. This method can test
the convergence of the computed series solution by estimating the global squared
residual error (Res) defined in Eq. (24). We have developed an open-source Python
package called odeSolu that implements this modified version of ADM. We have
applied the package to various types of ODEs that include higher nonlinearity and
higher-derivative terms, and compared the series solutions with numerical solutions
in Figs. 1 and 2. From Figs. 1 and 2, we have observed that the series solutions
are very close to the numerical solutions within the convergence limits. Using
odeSolu, we have also calculated the parameter Res of the series solutions of these
ODEs, as depicted in Table 1. From this Table 1, we have observed that when we
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include many series terms in the series solutions, the values of Res tend to zero, and
the series solutions have a good convergence rate in the given intervals Ω = [a, b]
within the convergence limits, and these solutions are good approximations to
the solutions of these ODEs. Our proposed methods are very fast and efficient.
However, it spends more time to give the solution when the degree of nonlinearity
of the ODE and the number of terms n are increased. It is important to note
that this modified method works only in the case where the R.H.S. in Eq. (8) is
polynomial about x, u and its derivatives, and also it is free of any parameters.
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Figure 2: The power series solutions are compared with numerical solutions (N.S.). The red
and orange dotted lines represent the series solutions of Eqs. (29), (30), (31), (32), in Figs. 2a,
2b, 2c, 2d, respectively. The blue dotted lines represent the numerical solutions.

In future studies, we can extend the use of this modified ADM approach to the
analysis of the system of ODEs and partial differential equations (PDEs).
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