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Abstract: Statistical convergence is more extensive than the classical convergence
and has recently drawn the recognition of many researchers. The Korovkin-type
approximation theorems are usually based on the convergence analysis of sequences
of positive linear operators. Gradually, such approximation theorems are extended
over more general sequence spaces with several settings via different kinds of sta-
tistical summability techniques. In this paper, we introduce presumably a new
statistical Riesz-Euler product summability technique to prove a Korovkin-type
approximation theorem. Moreover, we demonstrate another result for the rate of
statistical convergence under our proposed summability technique.
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1. Introduction, Definitions and Preliminaries
The perception of statistical convergence for real sequences was first familiar-

ized by Fast [7] in 1951. But previously the idea of statistical convergence was given
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by Zygmund [31] in 1935. Using real and complex sequences it was further investi-
gated by Schoenberg [24] independently. Continuously several researchers are doing
research in this statistical convergence and it plays an important role in different
areas of mathematics such as Fourier analysis, approximation theory, Number the-
ory and Functional analysis. Later on, statistical convergence was explored from
the sequence point of view and connected with summability theory by Conner [4]
and Fridy [8] and became a versatile field of research in last decades. Moricz [17]
introduced statistical (C, 1)- summability. Through statistical (C, 1)- summability
Mohiuddine et al. [18], Mohiuddine [19] and Mohiuddine and Alotaibi [20] proved
Korovkin-type approximation theorems by using the test functions 1, sinx, cosx
and 1, e−x, e−2x, respectively. Belen et al. [3] proved approximation theorems
by generalized statistical convergence. Acar and Mohiuddine [18] announced the
statistical (C, 1)(E, 1)- summability and its applications to Korovkin’s theory. Re-
cently, Baliarsingh et al. [2] introduced and deliberated the notion of advance ver-
sion of uncertain sequences via statistical deferred A-convergence and proved some
inclusion theorems. Again, in that year Saini et al. [23] also studied the results
on equi-statistical convergence via the deferred Cesàro and deferred Euler summa-
bility product means with associated Korovkin-type theorems. Also, Saini et al.
[22] again studied deferred Riesz statistical convergence of a complex uncertain se-
quences with its applications and also in that year, Sharma et al. [25] demonstrated
the implementations of statistical deferred Cesàro convergence of fuzzy number val-
ued sequences of order (ξ, ω). In the year 2018, Srivastava et al. [30] studied and
investigated the idea of sequences which converge equi-statistically based on the
deferred Nörlund mean. Subsequently, Parida et al. [21] proposed some results
for sequences that converge equi-statistically via the deferred Cesàro mean and
accordingly demonstrated the Korovkin-type theorems. More recently, Demirci et
al. [5] investigated the perception of sequences which converge equi-statistically
under the power-series technique and proved some approximation results.

Let the set of positive integers be N, and let K ⊆ N and Kn = {i : i ≤ n and i ∈
K}. Then the natural (asymptotic) density of K is defined as

δ(K) = lim
n→∞

|Kn|
n

,

provided the limit exists.
A sequence of real numbers u = (un) is said to be statistically convergent to l, if
for each ε ≥ 0, the set

{k : k ∈ N and |uk − l| ≥ ε}
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ensures the natural density zero. That is for everyε ≥ 0, we have

δ(k : k ≤ n and |uk − l| ≥ ε) = 0

The statistical convergence is quite more general than the classical convergence,
that is to say, a sequence can be convergent in statistical means even if it is not
convergent in classical sense. Also, it has been seen that statistical convergence is
very closely associated with the concept of convergence in probability. Let us now
define here statistical product (N, pn, qn)(E, q)- summability mean for the present
study.
Suppose that, (pn) and (qn) be two non-negative real sequences with

Pn = p1 + p2 + .....+ pn, P−1 = p−1 = 0, and

Qn = q1 + q2 + .....+ qn, Q−1 = q−1 = 0.

Product of above two sequences are defined as

Rn =
n∑

k=0

pkqk.

If the sequence to sequence transformation

tNn =
1

Rn

n∑
k=0

pkqkuk,

converges to l as n → ∞, then the (un) sequence is summable to l by (N, pn, qn)-
summability.
We say that the sequence (un) is statistically summable to l by (N, pn, qn)- summa-
bility generated by the sequences (pn) and (qn) or (un) is statistically (N, pn, qn)
summable to l if,

st lim
n→∞

tNn = l.

We also write this as
(Npnqn)(st) lim

n→∞
un = l.

If the sequence to sequence transformation

Eq
n =

1

(1 + q)n

k∑
r=0

(
k

r

)
ur for q > 0
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converges to l as n → ∞, then the sequence (un) is summable to l by (E, q)- summa-
bility. The sequence (un) is statistically summable to l by (E, q)- summability or
statistically (E, q) summable to l if,

st lim
n→∞

Eq
n = l.

We can also write this as
(Eq)(st) lim

n→∞
un = l.

Now we define a composite transformation, that is the (N, pn, qn) transformation
over (E, q) transformation as

(Npnqn .E
q) = TNE

n =
1

Rn

n∑
k=0

pnkqk

{
1

(1 + q)n

k∑
r=0

(
k

r

)
qk−rur

}
. (1.1)

If TNE
n → l as n → ∞, we say (un) is summable to l by (N, pn, qn)(E, q) summa-

bility.
The sequence (un) is said to be statistically summable to l by (N, pn, qn)(E, q)-

summability or the sequence (un) is (N, pn, qn)(E, q) summable to l if,

st lim
n→∞

TNE
n = l. (1.2)

We can also write this as

(Npnqn .E
q)(st) lim

n
un = l.

Remark 1.1. If we put pn = 1, qn = 1 and Rn = n+ 1 in (1.1), then we have

TNE
n =

1

Rn

n∑
k=0

pkqk

{
1

(1 + q)n

k∑
r=0

(
k

r

)
qk−rur

}
(1.3)

=
1

n+ 1

n∑
k=0

{
1

(1 + q)n

k∑
r=0

(
k

r

)
qk−rur

}
, (1.4)

which is the Cesàro-Euler summation. Moreover, if we put pn = 1 and qn = 1
in (1.1), the generalized (N, pn, qn)(E, q)- summability method reduces to Cesàro-
Euler summability method.

Example 1.1. Let us consider pk = 1 and qk =
1
k
for all k ∈ N. Also, consider the

following sequence
uk = (−2)k, k ∈ N.
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This sequence (uk) is not statistically summable but (N, pn, qn)(E, q) summable.
If we put pk = 1 and qk =

1
k
in (1.1), then the equation becomes

1

n+ 1

n∑
k=0

1
1

(1 + q)k

{
k∑

v=0

(
k

v

)
qk−v(−2)v

}
=

1

n+ 1

n∑
k=0

(q − 2)k

(q + 2)k
. (1.5)

Motivated essentially by the above-mentioned discussions and results, in this
paper we introduce a new statistical (N, pn, qn)(E, q)- summablity method by con-
sidering the product of (N, pn, qn) and (E, q) means to prove a Korovkin-type
approximation theorem for sequence of positive linear operators. Subsequently, we
investigate the rate of statistical (N, pn, qn)(E, q) summable sequences and demon-
strate another new result based on the proposed method.

Here, we begin with some basic definitions concerning statistical convergence.

2. Korovkin-type Theorem
In 1960, Korovkin [16] established the foundational Korovkin-type theorem by

demonstrating the uniform convergence of a sequence of positive linear operators
(Lm) in the space of continuous functions. Subsequently, numerous mathemati-
cians embarked on extending Korovkin’s findings to various contexts, including
function spaces, Banach spaces, and beyond. These developments gave rise to the
theory now recognized as Korovkin-type theorems, which have found elegant ap-
plications in Advanced Analysis, Fourier series, and Summability theory. However,
the Korovkin-type hypothesis is still in its early stages of research, particularly in
the areas where it deals with limit operators other than the identity operator.

Recently, Korovkin-type results have been investigated and studied under vari-
ous notions of statistical convergence techniques (see [1], [6], [14], [9], [10], [11], [12],
[13], [26], [27], [28] and [29]). In this section,Korovkin-type approximation theorem
for sequence of positive linear operators we prove a Korovkin-type theorem via
statistical (N, pn, qn)(E, q)- summability mean.

Let C[a, b] be the class (space) of all continuous real-valued functions f defined
over [a, b], and (A) be a positive linear operators mapped from C[a, b] into C[a, b].
And, the space is equipped well with the norm

∥f∥∞ = sup
x∈[a,b]

|f(x)|.

Following [15], the classical Korovkin approximation theorem is stated as fol-
lows.

Theorem 2.1. Let (Tn) be a sequence of positive linear operators from C[a, b] into
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itself. Then,
lim
n→∞

∥Tn(f ;x)− f(x)∥∞ = 0 (2.1)

for all C[a, b] if and only if

lim
n→∞

∥Tn(fi;x)− fi(x)∥∞ = 0 (2.2)

where fi(x) = xi and i=0,1,2.
The main purpose of this investigation is to prove the following theorem by

using our proposed summability mean.

Theorem 2.2. Let (A) be a positive linear operator which maps C[a, b] into C[a, b].
Then for all f ∈ C[a, b] bounded on the whole real line,

(Npnqn .E
q)(st)− lim

k→∞
∥Ak(f ;x)− f(x)∥∞ = 0, (2.3)

if and only if

(Npnqn .E
q)(st)− lim

k→∞
∥Ak(1;x)− 1∥∞ = 0, (2.4)

(Npnqn .E
q)(st)− lim

k→∞
∥Ak(t;x)− x∥∞ = 0, (2.5)

(Npnqn .E
q)(st)− lim

k→∞
∥Ak(t

2;x)− x2∥∞ = 0. (2.6)

Proof. The equations (2.4) to (2.6) immediately follows from (2.3) because of each
of the algebraic test functions 1, x and x2 belongs to C[a, b]. Next we prove its
converse part, i.e., if the conditions (2.4) to (2.6) holds true, then (2.3) is valid.
Let f ∈ C[a, b], then there exist a constant C > 0 such that

|f(x)| ≤ C for all x ∈ (−∞,∞), (2.7)

and therefore

|f(t)− f(x)| ≤ 2C, −∞ < t, x < ∞. (2.8)

We may write, for every ε > 0, than there exists a number δ > 0 such that

|f(t)− f(x)| ≤ ε, for all |t− x| ≤ δ. (2.9)
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Combining (2.8) and (2.9) and substituting ϕ(t) = (t− x)2, we get

|f(t)− f(x)| < ε+
2C

δ2
ϕ(t). (2.10)

Now (2.10) can be written as

−ε− 2C

δ2
ω(t) ≤ f(t)− f(x) < ε+

2C

δ2
ϕ(t). (2.11)

As the operators are positive, operating Ak(1;x) to (2.11), we get

|Ak(1;x)

(
−ε− 2C

δ2
ϕ(t)

)
≤ Ak(1;x)(f(t)− f(x)) ≤ Ak(1;x)

(
ε+

2C

δ2
ϕ(t)

)
.

(2.12)

We know x is fixed, so f(x) is a constant number and using the linearity property
of (Ak), we have

−εAk(1;x)−
2C

δ2
Ak(ϕ(t);x) ≤ Ak(f ;x)− f(x)Ak(1;x) ≤ εAk(1;x) +

2C

δ2
Ak(ϕ(t);x).

(2.13)

The term Ak(f ;x)− f(x) can be written as

Ak(f ;x)− f(x) = Ak(f ;x)− f(x)Ak(1;x) + f(x)[Ak(1;x)− 1]. (2.14)

Now considering the inequality (2.13) and equality (2.14), we get

Ak(f ;x)− f(x) < εAk(1;x) +
2C

δ2
Ak(ϕ(t);x) + f(x)[Ak(1;x)− 1]. (2.15)

The term Ak(ϕ(t);x) can be written as follows:

Ak(ϕ(t);x) =
[
Ak(t

2;x)− x2
]
− 2x[Ak(t;x)− x] + [Ak(1;x)− 1]. (2.16)

Now putting the value of Ak(ϕ(t);x) in (2.16), we get

Ak(f ;x)− f(x) < Ak(1;x) +
2C

δ2
{[

Ak(t
2;x)− x2

]
− 2x[Ak(t;x)− x]+

[Ak(1;x)− 1]}+ f(x)[Ak(1;x)− 1]

= ε[Ak(1;x)− 1] + ε+ f(x)[Ak(1;x)− 1]

+
2C

δ2
{[

Ak(t
2;x)− x2

]
− 2x[Ak(t;x)− x] + [Ak(1;x)− 1]

}
.

(2.17)
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If we take h = max(|x|), then (2.17) becomes

|Ak(f ;x)− f(x)| <
(
ε+

2Ch2

δ2
|Ak(1;x)− 1|

)
+

4Ch

δ2
|Ak(t;x)− x|

+
2C

δ2
|Ak(t

2;x)− x|. (2.18)

Now taking suprimum over all x ∈ [a, b], we have

∥Ak(f ;x)− f(x)∥∞ <

(
ε+

2Ch2

δ2
∥Ak(1;x)− 1∥∞

)
+

4Ch

δ2
∥Ak(t;x)− x∥∞

+
2C

δ2
∥Ak(t

2;x)− x∥∞

≤ H
(
∥Ak(1;x)− 1∥∞ + ∥Ak(t;x)− x∥∞ + ∥Ak(t

2;x)− x∥∞
)
, (2.19)

where

H = max{ε+ 2Ch2

δ2
+ C,

4Ch

δ2
,
2C

δ2
}.

We have,

Ln(.;x) =
1

Rn

n∑
k=0

pkqk

{
1

(1 + q)k

k∑
r=0

(
k

r

)
qk−rAr(.;x)

}
. (2.20)

Now replacing Ak(.;x) by Ln(.;x) in both sides of (2.19), we get

∥Lk(f ;x)− f(x)∥∞ < H[∥Lk(1;x)− 1∥∞ + ∥Lk(t;x)− x∥∞ + ∥Lk(t
2;x)− x∥∞].

For ε
′
> 0, let

E =

{
n ∈ N : ∥Lk(1;x)− 1∥∞ + ∥Lk(t;x)− x∥∞ + ∥Lk(t

2;x)− x∥∞ ≥ ε
′

H

}
;

E1 =

{
n ∈ N : ∥Ln(1;x)− 1∥∞ ≥ ε

′

3H

}
;

E2 =

{
n ∈ N : ∥Ln(t;x)− x∥∞ ≥ ε

′

3H

}
;

E3 =

{
n ∈ N : ∥Ln(t

2;x)− x2∥∞ ≥ ε
′

3H

}
.
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Clearly,

E ⊆ E1 ∪ E2 ∪ E3. (2.21)

This implies,

δ(E) ⊆ δ(E1) ∪ δ(E2) ∪ δ(E3). (2.22)

Now by using conditions (2.4) to (2.6), we get

(Npnqn .E
q)(st) lim

k→∞
∥Ak(f ;x)− f(x)∥∞ = 0. (2.23)

This completes the proof of the theorem.

3. Order of the statistical (N, pn, qn)(E, q)- summability

In this section, we study the rate of statistical- (N, pn, qn)(E, q) - summability
for a sequence of positive linear operators (Ak) defined on C[a, b]. We begin by
presenting the following definition.

Definition 3.1. Let (am) be a positive increasing sequence. Then the sequence
u = (uk) is said to be statistically (N, pn, qn)(E, q) summable to µ with the rate
o(am), if for every ε > 0

lim
m→∞

1

am

∣∣∣{n ≤ m : |TNE
n − µ| ≥ ε

}∣∣∣ = 0. (3.1)

In this case, we write

uk − µ = (Npnqn .E
q)(st)− o(am).

Based on the above definition, we state the following lemma.

Lemma 3.1. [29] Let (am) and (bm) be two positive non-increasing sequences. Let
u = (uk) and v = (vk) be two sequences such that uk−µ1 = (Npnqn .E

q)(st)−o(am)
and vk − µ2 = (Npnqn .E

q)(st)− o(bm). Then,

(i) α(uk − µ1) = (Npnqn .E
q)(st)− o(am), for any scalar α.

(ii) (uk − µ1)± (vk − µ2) = (Npnqn .E
q)(st)− o(cm), where cm = max{am, bm}.

(iii) (uk − µ1).(vk − µ2) = (Npnqn .E
q)(st)− o(ambm).
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Now we recall the notions of modulus of continuity of f in C[a, b] as

ω(f, δ) = sup{|f(t)− f(y)| : t, y ∈ [a, b], |t− y| < δ}.

Thus, it yields

∥f(t)− f(y)∥ ≤ ω(f, δ)

{
|t− y|

δ
+ 1

}
. (3.2)

Next, we prove the following theorem.

Theorem 3.1. Let (Ak) be a sequence of non-negative linear operators such that
Ak : C[a, b] → C[a, b] satisfies the following conditions

(i) ∥Ak(1;x)− 1∥∞ = (Npnqn .E
q)(st)− o(am) and

(ii) ω(f, δk) = (Npnqn .E
q)(st) − o(bm), where δk(x) =

√
(Ak(φx;x)) and φ(x) =

(t− y)2,

where (am) and (bm) are positive non-increasing sequences. Then for all f ∈ C[a, b]
and cm = max{am, bm}, we have

∥Ak(f ;x)− f(x)∥∞ = (Npnqn .E
q)(st)− o(cm). (3.3)

Proof. Let f ∈ C[a, b], for all x ∈ [a, b]. Then the equation (3.2) can be reformed
into

|Ak(f ;x)− f(x)| ≤ Ak (|f(t)− f(x)|, x) + |f(x)||Ak(1;x)− 1|

≤ Ak

(
1 +

|t− x|
δ

;x

)
ω(f, δ) + |f(x)||Ak(1;x)− 1|

≤ Ak

(
1 +

(t− x)2

δ2
;x

)
ω(f, δ) + |f(x)||Ak(1;x)− 1|

≤
(
Ak(1;x) +

Ak(φ
2;x)

δ2

)
ω(f, δ) + |f(x)||Ak(1;x)− 1|

≤ ω(f, δ)|Ak(1;x)− 1|+ |f(x)||Ak(1;x)− 1|+ ω(f, δ)

+ ω(f, δ)
1

δ2
Ak(φ

2;x). (3.4)

If we choose δ = δk =
√
(Ak(φx;x)), the it yields

∥Ak(f ;x)− f(x)∥∞ ≤ ∥f∥∞∥Ak(1;x)− 1∥∞ + ω(f, δk)∥Ak(1;x)− 1∥∞ + 2ω(f, δk)

≤ λ {∥Ak(f ;x)− x∥∞ + ω(f, δk)∥Ak(1;x)− 1∥∞ + ω(f, δk)} ,
(3.5)
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where λ = max{∥f∥∞, 2}. Now replacing Ak(.;x) by An(.;x) in (3.5), we get

∥An(f ;x)− f(x)∥∞ ≤ λ{∥An(1;x)− 1∥∞ + ω(f, δk) + ω(f, δk)Ak(1;x)− 1∥∞}.
(3.6)

Now by using Definition 3.1, and conditions (i) and (ii) of Lemma 3.1, we get

∥Ak(f ;x)− f(x)∥∞ = (Npnqn .E
q)(st)− o(cm). (3.7)

This completes the proof of theorem.

4. Conclusion
Through this study, we have preluded the conception of statistical product

summability technique and established some fundamental concepts and proved a
Korovkin-type approximation theorem. Moreover, we have demonstrated a new
result for the rate of statistical convergence under our proposed summability tech-
nique.

Many researchers have considered different summability means on the sequence
spaces to prove several approximation results. A list of some articles has been men-
tioned in the references. Furthermore, combining the existing ideas and direction of
the sequence spaces associated with our proposed mean, many new Korvokin-type
approximation theorems can be proved under different settings of algebraic and
trigonometric functions. Also, in certain special cases our result generalizes some
existing previous results. In particular, if we put pn = 1, qn = 1 and q > 0, then
(N, pn, qn)(E, q)- summability method reduces to (C, 1)(E, 1)-summability method
defined by Belen and Mohiuddine [3].
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