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Abstract: Let S = {z ∈ C : P (z) = zn+azn−1+b = 0}, where a, b ∈ C be nonzero

constants satisfying
b

an
̸= (−1)n(n− 1)n−1

nn
. The uniqueness of meromorphic func-

tions sharing S counting multiplicity(resp. with weight 2) has been studied by Yi
([18]) (resp. Lahiri, Banerjee ([12])). In this paper, we consider the uniqueness of
meromorphic functions sharing S ignoring multiplicity. We first obtain the analog
of Yi’s Theorem 2 ([18]). Next, we show that S is a unique range set for the class of
meromorphic functions ignoring multiplicity of higher multiplicities of either zeros
or poles, which different from S. Mallick - D. Sarkar’s ([13]). We discuss some
applications of the main result. Our results are inspired by a work of Yi ([18]) and
Khoai ([11]).

Keywords and Phrases: Uniqueness, ignoring multiplicity, multiplicities of ze-
ros, poles of meromorphic functions.
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1. Introduction and Main Results
Let f be a meromorphic function in C, a ∈ C ∪ {∞}, and k be a nonneg-

ative integer or infinity. We assume that the reader is familiar with the nota-
tions of Nevanlinna theory (see, for example ([6]), ([8])): T (r, f), N(r, f), m(r, f),
Θ(∞, f), ....
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Denote by Ef (a) the set of all a− points of f where an a− point is counted
with its multiplicity, and by Ef (a) where an a− point is counted only one time,
and by Ef (a, k) the set of all a− points of f where an a− point of multiplicity m
is counted m times if m ≤ k and k + 1 times if m > k.

For a nonempty subset S ⊂ C∪{∞}, define Ef (S) = ∪a∈SEf (a), and similarly
for Ef (S), Ef (S, k). Let F be a nonempty subset of M(C). Two meromorphic
functions f, g of F are said to share S, counting multiplicity, (share S CM), if
Ef (S) = Eg(S), and to share S, ignoring multiplicity, (share S IM), if Ef (S) =
Eg(S), and to share S with weight k if Ef (S, k) = Eg(S, k).

If the condition Ef (S) = Eg(S)( resp. Ef (S) = Eg(S)) implies f = g for
any two nonconstant meromorphic (entire) functions f, g of F , then S is called a
unique range set for meromorphic (entire) functions of F counting multiplicity(
resp.ignoring multiplicity), and similarly for unique range set for meromorphic
(entire) functions of F with weight k. Clearly Ef (S) = Ef (S,∞), and Ef (S) =
Ef (S, 0).

In 1976 Gross ([7]) proved that there exist three finite sets Sj (j = 1, 2, 3) such
that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj), j = 1, 2, 3 must
be identical. In the same paper Gross ([7]) posed the following question:

Question A. Can one find two (or possible even one) finite set Sj (j = 1, 2) such
that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj) (j = 1, 2) must
be identical?

Yi first gave an affirmative answer to Question A for entire functions( see ([17]),
([18])).

In response to Question A Yi ([18]) proved for meromorphic functions the fol-
lowing result.

Theorem A. ([18]) Let n and m be two positive integers such that n > 2m + 8,
m ≥ 2 and (n,m) = 1. Let a, b ∈ C be nonzero constants such that the P (z) =
zn + azn−m + b has no multiple zeros and S = {z : P (z) = 0}. Then for any two
nonconstant meromorphic functions f and g, the condition Ef (S) = Eg(S) implies
f = g.

In the same paper Yi ([18]) asked:

Question B. What can be said if m = 1 in Theorem A ?

In this connection Yi ([18]) proved the following theorem.

Theorem B. ([18]) Let n and m be two positive integers such that n ≥ 11. Let a, b ∈
C be nonzero constants such that the P (z) = zn+azn−1+b has no multiple zeros and
S = {z : P (z) = 0}. If f and g are nonconstant meromorphic functions satisfying
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Ef (S) = Eg(S) then either f = g or f = −ah(hn−1 − 1)

hn − 1
, g = −a(hn−1 − 1)

hn − 1
, where

h =
f

g
.

Remark.

In response to Question B Lahiri, Banerjee ([12]) proved that:

If f and g are nonconstant meromorphic functions satisfying Ef (S, 2) = Eg(S, 2)

and Θ(∞, f) + Θ(∞, g) >
4

n− 1
and n ≥ 9, then f = g.

In 2018 Ha Huy Khoai, Vu Hoai An and Nguyen Xuan Lai ([11]) investigated
the uniqueness problems for meromorphic functions with higher multiplicities of
zeros and poles. Denote by Fsl the class of meromorphic functions whose zeros and
poles are of multiplicities at least s, l, respectively, and denote by SK the set S in
Theorem 1.2 ([11]). From Corollary 1.1 and Part 1 of Theorem 1.2 ([11]) it clearly
implies the following:

i) If s = 1, l = 2, then there exist unique range sets SK of 9 elements for F12

counting multiplicity.

ii) If s = 1, l = 3, then there exist unique range sets SK of 8 elements for F13

counting multiplicity.

iii) If s = 2, l = 2, then there exist unique range sets SK of 7 elements for F22

counting multiplicity.

iv) If s = 2, l = 3, then there exist unique range sets SK of 6 elements for F13

counting multiplicity.

In 2018 S. Mallick, D. Sarkar studied unique range sets for powers of meromor-
phic functions ([13]). Denote by Md(C) to be the collection of all such meromor-
phic functions which are powers of some meromorphic functions of power at least
d, where d is a positive integer, and denote by SM the set S in Theorem 1 ([13]).
Clearly, M1(C) = M(C) ̸= F11 and Md(C) ̸= Fsl if d ≥ 2 and if s or l is not a
multiple of d.

Example 1. We have u =
(z − 1)s

(z − 2)l
∈ Fsl. Clear u ̸∈ Md(C) if d ≥ 2 and if s or l

is not a multiple of d.

From Part (i) of Theorem 1 ([13]) it clearly implies the following:

i) If d = 1, then there exist unique range sets SM of 17 (10 ) elements for
meromorphic(entire) functions ignoring multiplicity.

ii) If d = 2, then there exist unique range sets SM of 10 (6 ) elements for
meromorphic (entire) functions ignoring multiplicity.

iii) If d = 3, then there exist unique range sets SM of 7 (5 ) elements for
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meromorphic (entire) functions ignoring multiplicity.

iv) If d = 4, then there exist unique range sets SM of 6 (4 ) elements for
meromorphic (entire) functions ignoring multiplicity.

v) If d = 5, then there exist unique range sets SM of 5 (4 ) elements for
meromorphic (entire) functions ignoring multiplicity.

vi) If d = 8, then there exist unique range sets SM of 4 (4 ) elements for
meromorphic (entire) functions ignoring multiplicity.

Note that S ̸= SK , S ̸= SM and SK ̸= SM (see ([11]) and ([13])).

Regarding Theorems A and B and Remark it is natural to ask the following
question which motivates us to write this paper.

Question 1. What will happen if we replace CM sharing by IM sharing in Theorem
B ?

In this paper, we apply the arguments used in ([11]) and ([1]) to answer to
Question 1.

We shall prove the following main theorem.

Theorem 1. Let S = {z ∈ C : P (z) = zn + azn−1 + b = 0}, where a, b ∈ C be

nonzero constants satisfying
b

an
̸= (−1)n(n− 1)n−1

nn
. Then for any two nonconstant

meromorphic functions f and g, the condition Ef (S) = Eg(S) implies:

Either f = g or f = −ah(hn−1 − 1)

hn − 1
, g = −a(hn−1 − 1)

hn − 1
, where h =

f

g
, if

n ≥ 15.

If all zeros and poles of f and g have multiplicity at least s, l respectively and if

either l ≥ 2 or s ≥ 2, and n ≥ 5 +
6

l
+

4

s
, then f = g.

Following example shows that the condition either l ≥ 2 or s ≥ 2 is sharp.

Example 2. Let h =
z − 2

z
and let g = −a(hn−1 − 1)

hn − 1
, and let f = gh, and S

be as in Theorem 1. Then Ef (S) = Eg(S). Since h − r, r ̸= 1, has only simple
zeros and simple poles. Therefore all zeros and poles of f and g have multiplicity
1. Clear f ̸= g.

Applications. We discuss some applications of Theorem 1.

Let S = {z ∈ C : P (z) = zn + azn−1 + b = 0}, where a, b ∈ C be nonzero

constants satisfying
b

an
̸= (−1)n(n− 1)n−1

nn
, n ≥ 2. From Example 2 it clearly

implies:

For every n ≥ 2, S is not a unique range set for M(C) ignoring multiplicities.
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Theorem 2. There exist the sets of 10 elements such that for arbitrary two mero-
morphic functions f, g and for an integer d ≥ 2, the condition Efd(S) = Egd(S)
implies f = tg, where t is a root of unity of degree d.

Indeed, for two meromorphic functions f, g and d ≥ 2, if f, g have zeros and
poles. Because all zeros and poles of the functions f and g have multiplicity at
least 2, if we take s = l = 2 and P (z) as in Theorem 1, then the hypothesis of
Theorem 1 is satisfied. In this case the zero set of P (z) has 10 elements.Then, the
condition Efd(S) = Egd(S) implies fd = gd and therefore f = tg, where t is a root
of unity of degree d. If f, g have only zeros. Then proceeding similarly as in the
line of proof of Theorem 1 and note that N(r, f) = 0, N(r, g) = 0, we get f = g
from n ≥ 7 when s = 2. By using similar arguments as in this case we obtain the
proof of other cases.

Giving specific values for s, l in Theorem 1, we can get the following interesting
cases:

i) If s = 1, l = 2 ( resp.s = 1, l = 3), then S is a unique range set for F12 (resp.
F13) ignoring multiplicities for n ≥ 12(resp. n ≥ 11).

ii) If s = 1, l = 6 ( resp. s = 2, l = 2), then S is a unique range set for F16

(resp. F22) ignoring multiplicities for n ≥ 10.

iii) If s = 2, l = 3 ( resp. s = 2, l = 6), then S is a unique range set for F23

(resp. F26) ignoring multiplicities for n ≥ 9(resp. n ≥ 8).

iv) If s = 3, l = 9 ( resp. s = 11, l = 10), then S is a unique range set for F39

(resp. F1110) ignoring multiplicities for n ≥ 7(resp.n ≥ 6).

Let f is a Weierstrass elliptic function. Note that each pole of Weierstrass
elliptic function has order equals 2. As a consequence of Theorem 1 and i), we see
that there exist the sets S with 12 elements such that for any meromorphic functions
g, the condition g−1(S) = f−1(S) implies that g is the Weierstrass elliptic function.

2. Lemmas and Definitions

We have a another form of two Fundamental Theorems of the Nevanlinna the-
ory:

As an immediate consequence of Nevanlinna’s First fundamental theorem (([8],
Theorem 1.2, p.5)) we have

(A another form of the First Fundamental Theorem (see [16], Theorem
1.2, p.8)). Let f(z) be a nonconstant meromorphic function and for a a ∈ C.
Then

T (r,
1

f − a
) = T (r, f) +O(1),

where O(1) is a bounded quantity depending on a.
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(A another form of the Second Fundamental Theorem (see [16], Theorem
1.6’, p.22)). Let f be a nonconstant meromorphic function on C and let a1, a2, ...,
aq be distinct points of C. Then

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N(r,
1

f − ai
)−N0(r,

1

f ′ ) + S(r, f),

where N0(r,
1
f ′ ) is the counting function of those zeros of f ′, which are not zeros of

function (f − a1)...(f − aq), and S(r, f) = o(T (r, f)) for all r, except for a set of
finite Lebesgue measure.

We need some lemmas.

Lemma 2.1. ([6]) For any nonconstant meromorphic function f, we have

i) T (r, f (k)) ≤ (k + 1)T (r, f) + S(r, f);

ii) S(r, f (k)) = S(r, f).

([19]) For any nonconstant meromorphic function f,

N(r,
1

f ′ ) ≤ N(r,
1

f
) +N(r, f) + S(r, f).

Definition. Let f be a nonconstant meromorphic function, and k be a positive
integer. We denote by N (k(r, f) the counting function of the poles of order ≥ k of
f , where each pole is counted only once. If z is a zero of f , denote by νf (z) its
multiplicity. We denote by N(r, 1

f ′ ; f ̸= 0) the counting function of the zeros z of

f
′
satisfying f(z) ̸= 0, where each zero is counted only once.

Let be given two nonconstant meromorphic functions f and g. For simplicity,
denote by ν1(z) = νf (z) (resp.,ν2(z) = νg(z)), if z is a zero of f(resp.,g). Let
f−1(0) = g−1(0). We denote by N(r, 1

f
; ν1 = ν2 = 1)(resp., N(r, 1

f
; ν1 > ν2 ≥ 1))

the counting function of the common zeros z, satisfying ν1(z) = ν2(z) = 1(resp.,
ν1(z) > ν2(z) ≥ 1, where each zero is counted only once), and by N(r, 1

f
; ν1 ≥ 2)

the counting function of the zeros z of f , satisfying ν1(z) ≥ 2. Similarly, we define
the counting functions N(r, 1

g
; ν2 > ν1 ≥ 1), N(r, 1

g
; ν2 ≥ 2).

Lemma 2.2. ([[1], Lemma 2.3]) Let f, g be two nonconstant meromorphic functions
such that f−1(0) = g−1(0). Set

F =
1

f
, G =

1

g
, L =

F
′′

F ′ −
G

′′

G′ .
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Suppose that L ̸≡ 0. Then

1) N(r, L) ≤ N (2(r, f) +N (2(r, g)+

N(r,
1

f
; ν1 > ν2 ≥ 1) +N(r,

1

g
; ν2 > ν1 ≥ 1) +N(r,

1

f ′ ; f ̸= 0)+

N(r,
1

g′ ; g ̸= 0).

Moreover, if a is a common simple zero of f and g, then L(a) = 0.

2) N(r,
1

f
) +N(r,

1

g
) +N(r,

1

f
; ν1 > ν2 ≥ 1) +N(r,

1

g
; ν2 > ν1 ≥ 1)

≤ N(r, L) +
1

2
(N(r,

1

f
) +N(r,

1

g
)) +N(r,

1

f
; ν1 ≥ 2) +N(r,

1

g
; ν2 ≥ 2)

+S(r, f) + S(r, g).

Lemma 2.3. ([12], Lemma 1) Let f, g be two nonconstant meromorphic functions.
Then (fn + afn−1)(gn + agn−1) ̸≡ b, where a, b are nonzero finite constants and
n(≥ 5) is an integer.

Lemma 2.4. Let f, g be two non-constant meromorphic functions and a is nonzero
finite constant. If f and g share a CM, then one of the following three cases holds:

i)

T (r, f) ≤ N(r, f) +N (2(r, f) +N(r, g) +N (2(r, g) +N(r,
1

f
)

+N (2(r,
1

f
) +N(r,

1

g
) +N (2(r,

1

g
) + S(r, f) + S(r, g),

the same inequality holding for T(r, g);
ii)

fg = a2;

iii)

f = g.

Proof. Set F =
f

a
, =

g

a
. Then N(r, F ) = N(r, f), N (2(r, F ) = N (2(r, f),

N(r,G) = N(r, g), N (2(r,G) = N (2(r, g), N(r, 1
F
) = N(r, 1

f
), N (2(r,

1
F
) = N (2(r,

1
f
),

N(r, 1
G
) = N(r, 1

g
), N (2(r,

1
G
) = N (2(r,

1
g
). From this and ([15], Lemma 3) we obtain

Lemma 2.4.
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Lemma 2.5. Let P (z) = zn + azn−1 + b, where a, b ∈ C be nonzero constants and

n ≥ 2. If
b

an
̸= (−1)n(n− 1)n−1

nn
, then P (z) has no multiple zeros.

For the proof, see ([14], Lemma 2.7, Part (ii)).

3. Proof of Theorem 1
Note that P (z) has no multiple zeros from Lemma 2.5, and therefore P (z)

has n distinct simple roots. Then P (z) = (z − a1)...(z − an), and recall that

P
′
(z) = nzn−2(z − a′), where a′ = −n− 1

n
a, S = {z ∈ C : P (z) = 0}. Set

F =
1

P (f)
, G =

1

P (g)
, L =

F
′′

F ′ −
G

′′

G′ ,

T (r) = T (r, f) + T (r, g), S(r) = S(r, f) + S(r, g).

Then T (r, P (f)) = nT (r, f)+S(r, f) and T (r, P (g)) = nT (r, g)+S(r, g), and hence
S(r, P (f)) = S(r, f) and S(r, P (g)) = S(r, g).

We prove following.

Lemma 3.1. Let Ef (S) = Eg(S). Then P (f) = P (g) if one of the following
conditions is satisfied:

i) All zeros and poles of f and g have multiplicity at least s, l, respectively, and

n ≥ 5 +
6

l
+

4

s
, where l, s ≥ 1;

ii) n ≥ 15.
Proof. We put S(r) = S(r, f) + S(r, g) and T (r) = T (r, f) + T (r, g).

Assume that condition i) is satisfied. We first prove that:

If n ≥ 5 +
6

l
+

4

s
, then L ≡ 0, where l, s ≥ 1.

Suppose L ̸≡ 0.
Claim 1. We have

nT (r) ≤ (
1

l
+
1

s
)T (r)+N(r,

1

P (f)
)+N(r,

1

P (g)
)−N0(r,

1

f ′ )−N0(r,
1

g′ )+S(r), (3.1)

where N0(r,
1
f ′ ) (N0(r,

1
g′
)) is the counting function of those zeros of f ′, which are

not zeros of the function (f − a1)...(f − an)f(f − a′)((g − a1)...(g − an)g(g − a′)).
Indeed, applying a another form of two Fundamental Theorems to the functions
f, g and the values a1, a2, ..., an, 0, a

′, and noting that

n∑
i=1

N(r,
1

f − ai
) = N(r,

1

P (f)
),

n∑
i=1

N(r,
1

g − ai
) = N(r,

1

P (g)
),
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we obtain

(n+ 1)T (r) ≤ N(r, f) +N(r, g) +N(r,
1

P (f)
) +N(r,

1

P (g)
) +N(r,

1

f
) +N(r,

1

g
)

+N(r,
1

f − a′
) +N(r,

1

g − a′
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) + S(r). (3.2)

On the other hand,

N(r, f) +N(r, g) ≤ 1

l
(T (r, f) + T (r, g)) + S(r) =

1

l
T (r) + S(r),

N(r,
1

f
) +N(r,

1

g
) ≤ 1

s
(T (r, f) + T (r, g)) + S(r) =

1

s
T (r) + S(r),

N(r,
1

f − a′
) +N(r,

1

g − a′
) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r).

From this and (3.2) we obtain (3.1).
Claim 2. We have

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤

(
n

2
+ 1 +

2

l
)T (r) +N(r,

1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) + S(r).

Indeed, by Ef (S) = Eg(S) we get (P (f))−1(0) = (P (g))−1(0). For simplicity, we
set ν1 = ν1(z), ν2 = ν2(z), where ν1(z) = νP (f)(z), ν2(z) = νP (g)(z). Note that

N (2(r, P (f)) = N(r, f), N (2(r, P (g)) = N(r, g),

S(r, P (f)) = S(r, f), S(r, P (g)) = S(r, g), S(r) = S(r, f) + S(r, g).

Applying the Lemma 2.2 to the functions P (f), P (g). Then we obtain

N(r, L) ≤ N(r, f) +N(r, g) +N(r,
1

P (f)
; ν1 > ν2 ≥ 1) +N(r,

1

P (g)
; ν2 > ν1 ≥ 1)

+N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0), (3.3)

and

N(r,
1

P (f)
) +N(r,

1

P (g)
) +N(r,

1

P (f)
; ν1 > ν2 ≥ 1)+
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N(r,
1

P (g)
; ν2 > ν1 ≥ 1) ≤ N(r, L) +

1

2
(N(r,

1

P (f)
) +N(r,

1

P (g)
))+

N(r,
1

P (f)
; ν1 ≥ 2) +N(r,

1

P (g)
; ν2 ≥ 2)) + S(r). (3.4)

Morover,

N(r, f) +N(r, g) ≤ 1

l
T (r) + S(r). (3.5)

Obviously,

N(r,
1

P (f)
) ≤ nT (r, f) + S(r, f);N(r,

1

P (g)
) ≤ nT (r, g) + S(r, g),

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤ nT (r) + S(r). (3.6)

On the other hand, from P (f) = (f − a1)...(f − an) it follows that if z0 is a zero
of P (f) with multiplicity ≥ 2, then z0 is a zero of f − ai with multiplicity ≥ 2 for
some i ∈ {1, 2, ..., n}, and therefore, it is a zero of f

′
, so we have N(r, 1

P (f)
; ν1 ≥

2) ≤ N(r, 1
f ′ ). From this and Lemma 2.1 we obtain

N(r,
1

P (f)
; ν1 ≥ 2) ≤ N(r,

1

f ′ ) ≤

N(r,
1

f
) +N(r, f) + S(r, f) ≤ T (r, f) +

1

l
T (r, f) + S(r, f).

Similarly, we have

N(r,
1

P (g)
; ν2 ≥ 2) ≤ N(r,

1

g′ ) ≤ T (r, g) +
1

l
T (r, g) + S(r, g).

Therefore,

N(r,
1

P (f)
; ν1 ≥ 2) +N(r,

1

P (g)
; ν2 ≥ 2) ≤ (1 +

1

l
)T (r) + S(r). (3.7)

Combining (3.1)-(3.7) we get

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤

(
n

2
+ 1 +

2

l
)T (r) +N(r,

1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) + S(r).
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Claim 2 is proved.
Claim 3. We have

N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) ≤ (1 +

1

s
)T (r) +N0(r,

1

f ′ )+

N0(r,
1

g′ ) + S(r).

We have

N(r,
1

[P (f)]′
;P (f) ̸= 0) = N(r,

1

fn−2(f − a′)f ′ ;P (f) ̸= 0) ≤ N(r,
1

f
)+

N(r,
1

f − a′
) +N0(r,

1

f ′ ) ≤ (1 +
1

s
)T (r, f) +N0(r,

1

f ′ ) + S(r, f). (3.8)

Similarly,

N(r,
1

[P (g)]′
;P (g) ̸= 0) ≤ (1 +

1

s
)T (r, g) +N0(r,

1

g′ ) + S(r, g). (3.9)

Inequalities (3.8) and (3.9) give us

N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0)

≤ (1 +
1

s
)T (r) +N0(r,

1

f ′ ) +N0(r,
1

g′ ) + S(r).

Claim 3 is proved.
Claim 1, 2, 3 give us:

nT (r) ≤ (
n

2
+ 2 +

3

l
+

2

s
)T (r) + S(r). So (n− 4− 6

l
− 4

s
)T (r) ≤ S(r).

This is a contradiction to the assumption that n ≥ 5 +
6

l
+

4

s
. So L ≡ 0. Then, we

have 1
P (f)

= c
P (g)

+ c1 for some constants c ̸= 0 and c1. Now we return the proof

of the Lemma 3.1. Set F = P (f) − b, G = P (g) − b. Therefore F = fn−1(f + a),
G = gn−1(g + a) and 1

F+b
= c

G+b
+ c1. From this it follows F and G share −b CM.

Then applying Lemma 2.4 to the functions F,G we get:
Case 1.

T (r, F ) ≤ N(r, F ) +N (2(r, F ) +N(r,G) +N (2(r,G) +N(r,
1

F
)
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+N (2(r,
1

F
) +N(r,

1

G
) +N (2(r,

1

G
) + S(r, F ) + S(r,G), (3.10)

the same inequality holding for T (r,G). Note that N(r, F ) = N(r, f) = N (2(r, F ),
N(r,G) = N(r, g) = N (2(r,G), N(r, 1

F
) = N(r, 1

f
)+N(r, 1

f+a
), N (2(r,

1
F
) = N(r, 1

f
)+

N (2(r,
1

f+a
), N(r, 1

G
) = N(r, 1

g
) + N(r, 1

g+a
), N (2(r,

1
G
) = N(r, 1

g
) + N (2(r,

1
g+a

).

Moreover N(r, f) + N(r, g) ≤ 1

l
T (r) + O(1), N(r, 1

f
) +N(r, 1

g
) ≤ 1

s
T (r) + O(1),

N(r, 1
f+a

) + N(r, 1
g+a

) ≤ T (r) + O(1), N (2(r,
1

f+a
) + N (2(r,

1
g+a

) ≤ T (r) + O(1),

S(r, F ) = S(r, f), S(r,G) = S(r, g). From this and (3.10) we get

T (r, F ) = nT (r, f) +O(1) ≤ (2 +
2

l
+

2

s
)T (r) + S(r),

T (r,G) = nT (r, g) +O(1) ≤ (2 +
2

l
+

2

s
)T (r) + S(r).

Adding the side with the side of the two inequalities above we obtain

nT (r) ≤ (4 +
4

l
+

4

s
)T (r) + S(r), (n− 4− 4

l
− 4

s
)T (r) ≤ S(r).

This is a contradiction to the assumption that n ≥ 5 +
6

l
+

4

s
.

Case 2. F.G = b2. Then (fn+afn−1)(gn+agn−1) = b2. Because n ≥ 5+
6

l
+
4

s
> 5,

and then we have (fn+afn−1)(gn+agn−1) ̸≡ b2 since Lemma 2.3. A contradiction.
Case 3. F = G. Therefore P (f) = P (g). Thanks to Lemma 2.3.

Now if condition ii) is satisfied: n ≥ 15, then by a similar argument as in i)
with l = s = 1 we get P (f) = P (g).

Lemma 3.2. Let f and g be two nonconstant meromorphic functions, and assume
that all zeros and poles of f and g have multiplicity at least s, l, respectively, and if

either l ≥ 2 or s ≥ 2 such that n ≥ 5 +
6

l
+

4

s
, and let P (f) = P (g). Then f = g.

Proof. We have P (z) = zn + azn−1 + b. Set h =
f

g
. Since P (f) = P (g) we obtain

fn + afn−1 = gn + agn−1. (3.11)

It implies

g = −a
hn−1 − 1

hn − 1
. (3.12)
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Suppose that h is not a constant. Let t1, t2, ..., tn−2, (resp.,r1, r2, ..., rn−1,) be the
roots of unity of degree n− 1, (resp., n), ti ̸= 1, i = 1, 2, ..., n− 2 (resp.,ri ̸= 1, i =
1, 2, ..., n− 1). From (3.12) we get

T (r, g) = T (r,
hn−1 − 1

hn − 1
) = (n− 1)T (r, h) +O(1), T (r, h) =

1

n− 1
T (r, g) +O(1).

(3.13)
By (3.16) and g is a nonconstant meromorphic function it implies that so is h , and
S(r, h) = S(r, g). Then, applying a another form of two Fundamental Theorems to
t1, t2, ..., tn−2, r1, r2, ..., rn−1, since (3.12)- (3.13) we obtain

(2n− 4)T (r, h) ≤ N(r, h) +
n−2∑
i=1

N(r,
1

h− ti
) +

n−1∑
i=1

N(r,
1

h− ri
) + S(r, h),

2n− 4

n− 1
T (r, g) ≤ N(r, g)+N(r,

1

g
)+S(r, g),

2n− 4

n− 1
T (r, g) ≤ (

1

l
+
1

s
)T (r, g)+S(r, g),

(2− 2

n− 1
− 1

l
− 1

s
)T (r, g) ≤ S(r, g).

A contradiction, since n ≥ 5 +
6

l
+

4

s
> 5, and either l ≥ 2 or s ≥ 2 .

So h is a constant. Then from (3.11) it implies hn = 1 and hn−1 = 1, because g is
not a constant. Therefore h = 1 and f = g.
Now we return the proof of Theorem 1.
Applying Lemma 3.1 with n ≥ 15 we get P (f) = P (g), fn + afn−1 = gn + agn−1.
Then proceeding similarly as in the line of proof of [p.80 -p. 81, Case II, Theorem

2, ([18])], we get either f = g or f = −ah(hn−1 − 1)

hn − 1
, g = −a(hn−1 − 1)

hn − 1
, where

h =
f

g
.

Applying Lemma 3.1, Lemma 3.2 with either l ≥ 2 or s ≥ 2 and n ≥ 5+
6

l
+

4

s
we

get f = g.
Theorem 1 is proved.
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