South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 99-114

DOI: 10.56827/SEAJMMS.2024.2001.8

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ON UNIQUENESS OF MEROMORPHIC FUNCTIONS IGNORING MULTIPLICITY CONCERNING A QUESTION OF YI

Vu Hoai An and Phommavong Chanthaphone*

Thang Long Institute of Mathematics and Applied Sciences, Hanoi, VIET NAM

E-mail: vuhoaianlinh@gmail.com

*Thai Nguyen University, Education, VIET NAM

E-mail : ctppmv@gmail.com

(Received: Feb. 01, 2024 Accepted: Mar. 10, 2024 Published: Apr. 30, 2024)

Abstract: Let $S = \{z \in \mathbb{C} : P(z) = z^n + az^{n-1} + b = 0\}$, where $a, b \in \mathbb{C}$ be nonzero constants satisfying $\frac{b}{a^n} \neq \frac{(-1)^n (n-1)^{n-1}}{n^n}$. The uniqueness of meromorphic functions sharing S counting multiplicity(resp. with weight 2) has been studied by Yi ([18]) (resp. Lahiri, Banerjee ([12])). In this paper, we consider the uniqueness of meromorphic functions sharing S ignoring multiplicity. We first obtain the analog of Yi's Theorem 2 ([18]). Next, we show that S is a unique range set for the class of meromorphic functions ignoring multiplicity of higher multiplicities of either zeros or poles, which different from S. Mallick - D. Sarkar's ([13]). We discuss some applications of the main result. Our results are inspired by a work of Yi ([18]) and Khoai ([11]).

Keywords and Phrases: Uniqueness, ignoring multiplicity, multiplicities of zeros, poles of meromorphic functions.

2020 Mathematics Subject Classification: 30D35.

1. Introduction and Main Results

Let f be a meromorphic function in \mathbb{C} , $a \in \mathbb{C} \cup \{\infty\}$, and k be a nonnegative integer or infinity. We assume that the reader is familiar with the notations of Nevanlinna theory (see, for example ([6]), ([8])): T(r, f), N(r, f), m(r, f), $\Theta(\infty, f)$,

Denote by $E_f(a)$ the set of all a- points of f where an a- point is counted with its multiplicity, and by $\overline{E}_f(a)$ where an a- point is counted only one time, and by $E_f(a, k)$ the set of all a- points of f where an a- point of multiplicity mis counted m times if $m \leq k$ and k + 1 times if m > k.

For a nonempty subset $S \subset \mathbb{C} \cup \{\infty\}$, define $E_f(S) = \bigcup_{a \in S} E_f(a)$, and similarly for $\overline{E}_f(S)$, $E_f(S, k)$. Let \mathcal{F} be a nonempty subset of $\mathcal{M}(\mathbb{C})$. Two meromorphic functions f, g of \mathcal{F} are said to share S, counting multiplicity, (share $S \ CM$), if $E_f(S) = E_g(S)$, and to share S, ignoring multiplicity, (share $S \ IM$), if $\overline{E}_f(S) = \overline{E}_g(S)$, and to share S with weight k if $E_f(S, k) = E_g(S, k)$.

If the condition $E_f(S) = E_g(S)$ (resp. $\overline{E}_f(S) = \overline{E}_g(S)$) implies f = g for any two nonconstant meromorphic (entire) functions f, g of \mathcal{F} , then S is called a unique range set for meromorphic (entire) functions of \mathcal{F} counting multiplicity(resp.ignoring multiplicity), and similarly for unique range set for meromorphic (entire) functions of \mathcal{F} with weight k. Clearly $E_f(S) = E_f(S, \infty)$, and $\overline{E}_f(S) = \overline{E}_f(S, 0)$.

In 1976 Gross ([7]) proved that there exist three finite sets S_j (j = 1, 2, 3) such that any two entire functions f and g satisfying $E_f(S_j) = E_g(S_j)$, j = 1, 2, 3 must be identical. In the same paper Gross ([7]) posed the following question:

Question A. Can one find two (or possible even one) finite set S_j (j = 1, 2) such that any two entire functions f and g satisfying $E_f(S_j) = E_g(S_j)$ (j = 1, 2) must be identical?

Yi first gave an affirmative answer to Question A for entire functions (see ([17]), ([18])).

In response to Question A Yi ([18]) proved for meromorphic functions the following result.

Theorem A. ([18]) Let n and m be two positive integers such that n > 2m + 8, $m \ge 2$ and (n,m) = 1. Let $a, b \in \mathbb{C}$ be nonzero constants such that the $P(z) = z^n + az^{n-m} + b$ has no multiple zeros and $S = \{z : P(z) = 0\}$. Then for any two nonconstant meromorphic functions f and g, the condition $E_f(S) = E_g(S)$ implies f = g.

In the same paper Yi ([18]) asked:

Question B. What can be said if m = 1 in Theorem A?

In this connection Yi ([18]) proved the following theorem.

Theorem B. ([18]) Let n and m be two positive integers such that $n \ge 11$. Let $a, b \in \mathbb{C}$ be nonzero constants such that the $P(z) = z^n + az^{n-1} + b$ has no multiple zeros and $S = \{z : P(z) = 0\}$. If f and g are nonconstant meromorphic functions satisfying

$$E_f(S) = E_g(S)$$
 then either $f = g$ or $f = -\frac{ah(h^{n-1}-1)}{h^n - 1}$, $g = -\frac{a(h^{n-1}-1)}{h^n - 1}$, where $h = \frac{f}{g}$.

Remark.

In response to Question B Lahiri, Banerjee ([12]) proved that:

If f and g are nonconstant meromorphic functions satisfying $E_f(S, 2) = E_g(S, 2)$ and $\Theta(\infty, f) + \Theta(\infty, g) > \frac{4}{n-1}$ and $n \ge 9$, then f = g.

In 2018 Ha Huy Khoai, Vu Hoai An and Nguyen Xuan Lai ([11]) investigated the uniqueness problems for meromorphic functions with higher multiplicities of zeros and poles. Denote by \mathcal{F}_{sl} the class of meromorphic functions whose zeros and poles are of multiplicities at least s, l, respectively, and denote by S_K the set S in Theorem 1.2 ([11]). From Corollary 1.1 and Part 1 of Theorem 1.2 ([11]) it clearly implies the following:

i) If s = 1, l = 2, then there exist unique range sets S_K of 9 elements for \mathcal{F}_{12} counting multiplicity.

ii) If s = 1, l = 3, then there exist unique range sets S_K of 8 elements for \mathcal{F}_{13} counting multiplicity.

iii) If s = 2, l = 2, then there exist unique range sets S_K of 7 elements for \mathcal{F}_{22} counting multiplicity.

iv) If s = 2, l = 3, then there exist unique range sets S_K of 6 elements for \mathcal{F}_{13} counting multiplicity.

In 2018 S. Mallick, D. Sarkar studied unique range sets for powers of meromorphic functions ([13]). Denote by $\mathcal{M}^d(\mathbb{C})$ to be the collection of all such meromorphic functions which are powers of some meromorphic functions of power at least d, where d is a positive integer, and denote by S_M the set S in Theorem 1 ([13]). Clearly, $\mathcal{M}^1(\mathbb{C}) = \mathcal{M}(\mathbb{C}) \neq \mathcal{F}_{11}$ and $\mathcal{M}^d(\mathbb{C}) \neq \mathcal{F}_{sl}$ if $d \geq 2$ and if s or l is not a multiple of d.

Example 1. We have $u = \frac{(z-1)^s}{(z-2)^l} \in \mathcal{F}_{sl}$. Clear $u \notin \mathcal{M}^d(\mathbb{C})$ if $d \ge 2$ and if s or l is not a multiple of d.

From Part (i) of Theorem 1 ([13]) it clearly implies the following:

i) If d = 1, then there exist unique range sets S_M of 17 (10) elements for meromorphic(entire) functions ignoring multiplicity.

ii) If d = 2, then there exist unique range sets S_M of 10 (6) elements for meromorphic (entire) functions ignoring multiplicity.

iii) If d = 3, then there exist unique range sets S_M of 7 (5) elements for

meromorphic (entire) functions ignoring multiplicity.

iv) If d = 4, then there exist unique range sets S_M of 6 (4) elements for meromorphic (entire) functions ignoring multiplicity.

v) If d = 5, then there exist unique range sets S_M of 5 (4) elements for meromorphic (entire) functions ignoring multiplicity.

vi) If d = 8, then there exist unique range sets S_M of 4 (4) elements for meromorphic (entire) functions ignoring multiplicity.

Note that $S \neq S_K$, $S \neq S_M$ and $S_K \neq S_M$ (see ([11]) and ([13])).

Regarding Theorems A and B and Remark it is natural to ask the following question which motivates us to write this paper.

Question 1. What will happen if we replace CM sharing by IM sharing in Theorem B ?

In this paper, we apply the arguments used in ([11]) and ([1]) to answer to Question 1.

We shall prove the following main theorem.

Theorem 1. Let $S = \{z \in \mathbb{C} : P(z) = z^n + az^{n-1} + b = 0\}$, where $a, b \in \mathbb{C}$ be nonzero constants satisfying $\frac{b}{a^n} \neq \frac{(-1)^n (n-1)^{n-1}}{n^n}$. Then for any two nonconstant meromorphic functions f and g, the condition $\overline{E}_f(S) = \overline{E}_g(S)$ implies:

Either f = g or $f = -\frac{ah(h^{n-1}-1)}{h^n-1}$, $g = -\frac{a(h^{n-1}-1)}{h^n-1}$, where $h = \frac{f}{g}$, if $n \ge 15$.

If all zeros and poles of f and g have multiplicity at least s, l respectively and if either $l \ge 2$ or $s \ge 2$, and $n \ge 5 + \frac{6}{l} + \frac{4}{s}$, then f = g.

Following example shows that the condition either $l \ge 2$ or $s \ge 2$ is sharp.

Example 2. Let $h = \frac{z-2}{z}$ and let $g = -\frac{a(h^{n-1}-1)}{h^n-1}$, and let f = gh, and S be as in Theorem 1. Then $\overline{E}_f(S) = \overline{E}_g(S)$. Since $h - r, r \neq 1$, has only simple zeros and simple poles. Therefore all zeros and poles of f and g have multiplicity 1. Clear $f \neq g$.

Applications. We discuss some applications of Theorem 1.

Let $S = \{z \in \mathbb{C} : P(z) = z^n + az^{n-1} + b = 0\}$, where $a, b \in \mathbb{C}$ be nonzero constants satisfying $\frac{b}{a^n} \neq \frac{(-1)^n (n-1)^{n-1}}{n^n}$, $n \geq 2$. From Example 2 it clearly implies:

For every $n \geq 2$, S is not a unique range set for $\mathcal{M}(\mathbb{C})$ ignoring multiplicities.

Theorem 2. There exist the sets of 10 elements such that for arbitrary two meromorphic functions f, g and for an integer $d \geq 2$, the condition $\overline{E}_{f^d}(S) = \overline{E}_{g^d}(S)$ implies f = tg, where t is a root of unity of degree d.

Indeed, for two meromorphic functions f, g and $d \ge 2$, if f, g have zeros and poles. Because all zeros and poles of the functions f and g have multiplicity at least 2, if we take s = l = 2 and P(z) as in Theorem 1, then the hypothesis of Theorem 1 is satisfied. In this case the zero set of P(z) has 10 elements. Then, the condition $\overline{E}_{f^d}(S) = \overline{E}_{g^d}(S)$ implies $f^d = g^d$ and therefore f = tg, where t is a root of unity of degree d. If f, g have only zeros. Then proceeding similarly as in the line of proof of Theorem 1 and note that $\overline{N}(r, f) = 0$, $\overline{N}(r, g) = 0$, we get f = gfrom $n \ge 7$ when s = 2. By using similar arguments as in this case we obtain the proof of other cases.

Giving specific values for s, l in Theorem 1, we can get the following interesting cases:

i) If s = 1, l = 2 (resp. s = 1, l = 3), then S is a unique range set for \mathcal{F}_{12} (resp. \mathcal{F}_{13}) ignoring multiplicities for $n \ge 12$ (resp. $n \ge 11$).

ii) If s = 1, l = 6 (resp. s = 2, l = 2), then S is a unique range set for \mathcal{F}_{16} (resp. \mathcal{F}_{22}) ignoring multiplicities for $n \ge 10$.

iii) If s = 2, l = 3 (resp. s = 2, l = 6), then S is a unique range set for \mathcal{F}_{23} (resp. \mathcal{F}_{26}) ignoring multiplicities for $n \ge 9$ (resp. $n \ge 8$).

iv) If s = 3, l = 9 (resp. s = 11, l = 10), then S is a unique range set for \mathcal{F}_{39} (resp. \mathcal{F}_{1110}) ignoring multiplicities for $n \geq 7$ (resp. $n \geq 6$).

Let f is a Weierstrass elliptic function. Note that each pole of Weierstrass elliptic function has order equals 2. As a consequence of Theorem 1 and i), we see that there exist the sets S with 12 elements such that for any meromorphic functions g, the condition $g^{-1}(S) = f^{-1}(S)$ implies that g is the Weierstrass elliptic function.

2. Lemmas and Definitions

We have a another form of two Fundamental Theorems of the Nevanlinna theory:

As an immediate consequence of Nevanlinna's First fundamental theorem (([8], Theorem 1.2, p.5)) we have

(A another form of the First Fundamental Theorem (see [16], Theorem 1.2, p.8)). Let f(z) be a nonconstant meromorphic function and for a $a \in \mathbb{C}$. Then

$$T(r, \frac{1}{f-a}) = T(r, f) + O(1),$$

where O(1) is a bounded quantity depending on a.

(A another form of the Second Fundamental Theorem (see [16], Theorem 1.6', p.22)). Let f be a nonconstant meromorphic function on \mathbb{C} and let $a_1, a_2, ..., a_q$ be distinct points of \mathbb{C} . Then

$$(q-1)T(r,f) \le \overline{N}(r,f) + \sum_{i=1}^{q} \overline{N}(r,\frac{1}{f-a_i}) - N_0(r,\frac{1}{f'}) + S(r,f),$$

where $N_0(r, \frac{1}{f'})$ is the counting function of those zeros of f', which are not zeros of function $(f - a_1)...(f - a_q)$, and S(r, f) = o(T(r, f)) for all r, except for a set of finite Lebesgue measure.

We need some lemmas.

Lemma 2.1. ([6]) For any nonconstant meromorphic function f, we have i) $T(r, f^{(k)}) \leq (k+1)T(r, f) + S(r, f);$ ii) $S(r, f^{(k)}) = S(r, f).$ ([19]) For any nonconstant meromorphic function f,

$$N(r, \frac{1}{f'}) \le N(r, \frac{1}{f}) + \overline{N}(r, f) + S(r, f).$$

Definition. Let f be a nonconstant meromorphic function, and k be a positive integer. We denote by $\overline{N}_{(k}(r, f)$ the counting function of the poles of order $\geq k$ of f, where each pole is counted only once. If z is a zero of f, denote by $\nu_f(z)$ its multiplicity. We denote by $\overline{N}(r, \frac{1}{f'}; f \neq 0)$ the counting function of the zeros z of f' satisfying $f(z) \neq 0$, where each zero is counted only once.

Let be given two nonconstant meromorphic functions f and g. For simplicity, denote by $\nu_1(z) = \nu_f(z)$ (resp., $\nu_2(z) = \nu_g(z)$), if z is a zero of f(resp.,g). Let $f^{-1}(0) = g^{-1}(0)$. We denote by $N(r, \frac{1}{f}; \nu_1 = \nu_2 = 1)(\text{resp.}, \overline{N}(r, \frac{1}{f}; \nu_1 > \nu_2 \ge 1))$ the counting function of the common zeros z, satisfying $\nu_1(z) = \nu_2(z) = 1(\text{resp.}, \nu_1(z) > \nu_2(z) \ge 1$, where each zero is counted only once), and by $N(r, \frac{1}{f}; \nu_1 \ge 2)$ the counting function of the zeros z of f, satisfying $\nu_1(z) \ge 2$. Similarly, we define the counting functions $\overline{N}(r, \frac{1}{a}; \nu_2 > \nu_1 \ge 1)$, $N(r, \frac{1}{a}; \nu_2 \ge 2)$.

Lemma 2.2. ([[1], Lemma 2.3]) Let f, g be two nonconstant meromorphic functions such that $f^{-1}(0) = g^{-1}(0)$. Set

$$F = \frac{1}{f}, \ G = \frac{1}{g}, \ L = \frac{F''}{F'} - \frac{G''}{G'}.$$

Suppose that $L \not\equiv 0$. Then

1)
$$N(r,L) \leq \overline{N}_{(2}(r,f) + \overline{N}_{(2}(r,g) + \overline{N}(r,\frac{1}{f};\nu_1 > \nu_2 \geq 1) + \overline{N}(r,\frac{1}{g};\nu_2 > \nu_1 \geq 1) + \overline{N}(r,\frac{1}{f'};f \neq 0) + \overline{N}(r,\frac{1}{g'};g \neq 0).$$

Moreover, if a is a common simple zero of f and g, then L(a) = 0.

2)
$$\overline{N}(r, \frac{1}{f}) + \overline{N}(r, \frac{1}{g}) + \overline{N}(r, \frac{1}{f}; \nu_1 > \nu_2 \ge 1) + \overline{N}(r, \frac{1}{g}; \nu_2 > \nu_1 \ge 1)$$

 $\le N(r, L) + \frac{1}{2}(N(r, \frac{1}{f}) + N(r, \frac{1}{g})) + N(r, \frac{1}{f}; \nu_1 \ge 2) + N(r, \frac{1}{g}; \nu_2 \ge 2) + S(r, f) + S(r, g).$

Lemma 2.3. ([12], Lemma 1) Let f, g be two nonconstant meromorphic functions. Then $(f^n + af^{n-1})(g^n + ag^{n-1}) \not\equiv b$, where a, b are nonzero finite constants and $n(\geq 5)$ is an integer.

Lemma 2.4. Let f, g be two non-constant meromorphic functions and a is nonzero finite constant. If f and g share a CM, then one of the following three cases holds: i)

$$T(r,f) \leq \overline{N}(r,f) + \overline{N}_{(2}(r,f) + \overline{N}(r,g) + \overline{N}_{(2}(r,g) + \overline{N}(r,\frac{1}{f}) + \overline{N}_{(2}(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{g}) + \overline{N}_{(2}(r,\frac{1}{g}) + S(r,f) + S(r,g),$$

the same inequality holding for T(r, g); ii)

$$fg = a^2;$$

iii)

f = g.

Proof. Set $F = \frac{f}{a}$, $= \frac{g}{a}$. Then $\overline{N}(r,F) = \overline{N}(r,f)$, $\overline{N}_{(2}(r,F) = \overline{N}_{(2}(r,f))$, $\overline{N}(r,G) = \overline{N}(r,g)$, $\overline{N}_{(2}(r,G) = \overline{N}_{(2}(r,g))$, $\overline{N}(r,\frac{1}{F}) = \overline{N}(r,\frac{1}{f})$, $\overline{N}_{(2}(r,\frac{1}{F}) = \overline{N}_{(2}(r,\frac{1}{f}))$, $\overline{N}(r,\frac{1}{g}) = \overline{N}(r,\frac{1}{g})$, $\overline{N}_{(2}(r,\frac{1}{g}) = \overline{N}_{(2}(r,\frac{1}{g}))$. From this and ([15], Lemma 3) we obtain Lemma 2.4.

Lemma 2.5. Let $P(z) = z^n + az^{n-1} + b$, where $a, b \in \mathbb{C}$ be nonzero constants and $n \geq 2$. If $\frac{b}{a^n} \neq \frac{(-1)^n (n-1)^{n-1}}{n^n}$, then P(z) has no multiple zeros. For the proof, see ([14], Lemma 2.7, Part (ii)).

3. Proof of Theorem 1

Note that P(z) has no multiple zeros from Lemma 2.5, and therefore P(z) has n distinct simple roots. Then $P(z) = (z - a_1)...(z - a_n)$, and recall that $P'(z) = nz^{n-2}(z - a')$, where $a' = -\frac{n-1}{n}a$, $S = \{z \in \mathbb{C} : P(z) = 0\}$. Set

$$F = \frac{1}{P(f)}, \ G = \frac{1}{P(g)}, \ L = \frac{F''}{F'} - \frac{G''}{G'},$$

$$T(r) = T(r, f) + T(r, g), S(r) = S(r, f) + S(r, g).$$

Then T(r, P(f)) = nT(r, f) + S(r, f) and T(r, P(g)) = nT(r, g) + S(r, g), and hence S(r, P(f)) = S(r, f) and S(r, P(g)) = S(r, g).

We prove following.

Lemma 3.1. Let $\overline{E}_f(S) = \overline{E}_g(S)$. Then P(f) = P(g) if one of the following conditions is satisfied:

i) All zeros and poles of f and g have multiplicity at least s, l, respectively, and $n \ge 5 + \frac{6}{l} + \frac{4}{s}$, where $l, s \ge 1$; ii) $n \ge 15$.

Proof. We put S(r) = S(r, f) + S(r, g) and T(r) = T(r, f) + T(r, g). Assume that condition i) is satisfied. We first prove that:

If $n \ge 5 + \frac{6}{l} + \frac{4}{s}$, then $L \equiv 0$, where $l, s \ge 1$. Suppose $L \not\equiv 0$.

Claim 1. We have

$$nT(r) \le \left(\frac{1}{l} + \frac{1}{s}\right)T(r) + \overline{N}(r, \frac{1}{P(f)}) + \overline{N}(r, \frac{1}{P(g)}) - N_0(r, \frac{1}{f'}) - N_0(r, \frac{1}{g'}) + S(r), \quad (3.1)$$

where $N_0(r, \frac{1}{f'})$ $(N_0(r, \frac{1}{g'}))$ is the counting function of those zeros of f', which are not zeros of the function $(f - a_1)...(f - a_n)f(f - a')((g - a_1)...(g - a_n)g(g - a'))$. Indeed, applying a another form of two Fundamental Theorems to the functions f, g and the values $a_1, a_2, ..., a_n, 0, a'$, and noting that

$$\sum_{i=1}^{n} \overline{N}(r, \frac{1}{f - a_i}) = \overline{N}(r, \frac{1}{P(f)}), \ \sum_{i=1}^{n} \overline{N}(r, \frac{1}{g - a_i}) = \overline{N}(r, \frac{1}{P(g)}),$$

we obtain

$$(n+1)T(r) \leq \overline{N}(r,f) + \overline{N}(r,g) + \overline{N}(r,\frac{1}{P(f)}) + \overline{N}(r,\frac{1}{P(g)}) + \overline{N}(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{g}) + \overline{N}(r,\frac{1}{g}) + \overline{N}(r,\frac{1}{g-a'}) + \overline{N}(r,\frac{1}{g-a'}) - N_0(r,\frac{1}{f'}) - N_0(r,\frac{1}{g'}) + S(r).$$
(3.2)

On the other hand,

$$\overline{N}(r,f) + \overline{N}(r,g) \le \frac{1}{l}(T(r,f) + T(r,g)) + S(r) = \frac{1}{l}T(r) + S(r),$$

$$\overline{N}(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{g}) \le \frac{1}{s}(T(r,f) + T(r,g)) + S(r) = \frac{1}{s}T(r) + S(r),$$

$$\overline{N}(r,\frac{1}{f-a'}) + \overline{N}(r,\frac{1}{g-a'}) \le (T(r,f) + T(r,g)) + S(r) = T(r) + S(r).$$

From this and (3.2) we obtain (3.1). Claim 2. We have

$$\overline{N}(r,\frac{1}{P(f)}) + \overline{N}(r,\frac{1}{P(g)}) \leq (\frac{n}{2} + 1 + \frac{2}{l})T(r) + \overline{N}(r,\frac{1}{[P(f)]'};P(f) \neq 0) + \overline{N}(r,\frac{1}{[P(g)]'};P(g) \neq 0) + S(r).$$

Indeed, by $\overline{E}_f(S) = \overline{E}_g(S)$ we get $(P(f))^{-1}(0) = (P(g))^{-1}(0)$. For simplicity, we set $\nu_1 = \nu_1(z), \nu_2 = \nu_2(z)$, where $\nu_1(z) = \nu_{P(f)}(z), \nu_2(z) = \nu_{P(g)}(z)$. Note that

$$\overline{N}_{(2}(r, P(f)) = \overline{N}(r, f), \ \overline{N}_{(2}(r, P(g)) = \overline{N}(r, g),$$

$$S(r, P(f)) = S(r, f), \ S(r, P(g)) = S(r, g), S(r) = S(r, f) + S(r, g).$$

Applying the Lemma 2.2 to the functions P(f), P(g). Then we obtain

$$N(r,L) \leq \overline{N}(r,f) + \overline{N}(r,g) + \overline{N}(r,\frac{1}{P(f)};\nu_1 > \nu_2 \geq 1) + \overline{N}(r,\frac{1}{P(g)};\nu_2 > \nu_1 \geq 1) + \overline{N}(r,\frac{1}{[P(f)]'};P(f) \neq 0) + \overline{N}(r,\frac{1}{[P(g)]'};P(g) \neq 0),$$
(3.3)

and

$$\overline{N}(r,\frac{1}{P(f)}) + \overline{N}(r,\frac{1}{P(g)}) + \overline{N}(r,\frac{1}{P(f)};\nu_1 > \nu_2 \ge 1) + \overline{N}(r,\frac{1}{P(f)};\nu_2 \ge 1) + \overline{N}(r,\frac{1}{P(f)};\nu$$

South East Asian J. of Mathematics and Mathematical Sciences

$$\overline{N}(r, \frac{1}{P(g)}; \nu_2 > \nu_1 \ge 1) \le N(r, L) + \frac{1}{2}(N(r, \frac{1}{P(f)}) + N(r, \frac{1}{P(g)})) + N(r, \frac{1}{P(f)}; \nu_1 \ge 2) + N(r, \frac{1}{P(g)}; \nu_2 \ge 2)) + S(r).$$
(3.4)

Morover,

$$\overline{N}(r,f) + \overline{N}(r,g) \le \frac{1}{l}T(r) + S(r).$$
(3.5)

Obviously,

$$N(r, \frac{1}{P(f)}) \le nT(r, f) + S(r, f); N(r, \frac{1}{P(g)}) \le nT(r, g) + S(r, g),$$
$$N(r, \frac{1}{P(f)}) + N(r, \frac{1}{P(g)}) \le nT(r) + S(r).$$
(3.6)

On the other hand, from $P(f) = (f - a_1)...(f - a_n)$ it follows that if z_0 is a zero of P(f) with multiplicity ≥ 2 , then z_0 is a zero of $f - a_i$ with multiplicity ≥ 2 for some $i \in \{1, 2, ..., n\}$, and therefore, it is a zero of f', so we have $N(r, \frac{1}{P(f)}; \nu_1 \geq 2) \leq N(r, \frac{1}{f'})$. From this and Lemma 2.1 we obtain

$$N(r, \frac{1}{P(f)}; \nu_1 \ge 2) \le N(r, \frac{1}{f'}) \le N(r, \frac{1}{f}) + \overline{N}(r, f) + S(r, f) \le T(r, f) + \frac{1}{l}T(r, f) + S(r, f).$$

Similarly, we have

$$N(r, \frac{1}{P(g)}; \nu_2 \ge 2) \le N(r, \frac{1}{g'}) \le T(r, g) + \frac{1}{l}T(r, g) + S(r, g).$$

Therefore,

$$N(r, \frac{1}{P(f)}; \nu_1 \ge 2) + N(r, \frac{1}{P(g)}; \nu_2 \ge 2) \le (1 + \frac{1}{l})T(r) + S(r).$$
(3.7)

Combining (3.1)-(3.7) we get

$$\overline{N}(r, \frac{1}{P(f)}) + \overline{N}(r, \frac{1}{P(g)}) \le (\frac{n}{2} + 1 + \frac{2}{l})T(r) + \overline{N}(r, \frac{1}{[P(f)]'}; P(f) \neq 0) + \overline{N}(r, \frac{1}{[P(g)]'}; P(g) \neq 0) + S(r).$$

Claim 2 is proved. Claim 3. We have

$$\overline{N}(r, \frac{1}{[P(f)]'}; P(f) \neq 0) + \overline{N}(r, \frac{1}{[P(g)]'}; P(g) \neq 0) \le (1 + \frac{1}{s})T(r) + N_0(r, \frac{1}{f'}) + N_0(r, \frac{1}{g'}) + S(r).$$

We have

$$\overline{N}(r, \frac{1}{[P(f)]'}; P(f) \neq 0) = \overline{N}(r, \frac{1}{f^{n-2}(f-a')f'}; P(f) \neq 0) \le \overline{N}(r, \frac{1}{f}) + \overline{N}(r, \frac{1}{f-a'}) + \overline{N}_0(r, \frac{1}{f'}) \le (1 + \frac{1}{s})T(r, f) + \overline{N}_0(r, \frac{1}{f'}) + S(r, f).$$
(3.8)

Similarly,

$$\overline{N}(r, \frac{1}{[P(g)]'}; P(g) \neq 0) \le (1 + \frac{1}{s})T(r, g) + \overline{N}_0(r, \frac{1}{g'}) + S(r, g).$$
(3.9)

Inequalities (3.8) and (3.9) give us

$$\begin{split} \overline{N}(r, \frac{1}{[P(f)]'}; P(f) \neq 0) + \overline{N}(r, \frac{1}{[P(g)]'}; P(g) \neq 0) \\ \leq (1 + \frac{1}{s})T(r) + \overline{N}_0(r, \frac{1}{f'}) + \overline{N}_0(r, \frac{1}{g'}) + S(r). \end{split}$$

Claim 3 is proved.

Claim 1, 2, 3 give us:

$$nT(r) \le (\frac{n}{2} + 2 + \frac{3}{l} + \frac{2}{s})T(r) + S(r).$$
 So $(n - 4 - \frac{6}{l} - \frac{4}{s})T(r) \le S(r).$

This is a contradiction to the assumption that $n \ge 5 + \frac{6}{l} + \frac{4}{s}$. So $L \equiv 0$. Then, we have $\frac{1}{P(f)} = \frac{c}{P(g)} + c_1$ for some constants $c \ne 0$ and c_1 . Now we return the proof of the Lemma 3.1. Set F = P(f) - b, G = P(g) - b. Therefore $F = f^{n-1}(f + a)$, $G = g^{n-1}(g + a)$ and $\frac{1}{F+b} = \frac{c}{G+b} + c_1$. From this it follows F and G share -b CM. Then applying Lemma 2.4 to the functions F, G we get: **Case 1.**

$$T(r,F) \le \overline{N}(r,F) + \overline{N}_{(2)}(r,F) + \overline{N}(r,G) + \overline{N}_{(2)}(r,G) + \overline{N}(r,\frac{1}{F})$$

South East Asian J. of Mathematics and Mathematical Sciences

$$+\overline{N}_{(2)}(r,\frac{1}{F}) + \overline{N}(r,\frac{1}{G}) + \overline{N}_{(2)}(r,\frac{1}{G}) + S(r,F) + S(r,G), \qquad (3.10)$$

the same inequality holding for T(r, G). Note that $\overline{N}(r, F) = \overline{N}(r, f) = \overline{N}_{(2}(r, F), \overline{N}(r, G) = \overline{N}(r, g) = \overline{N}_{(2}(r, G), \overline{N}(r, \frac{1}{F}) = \overline{N}(r, \frac{1}{f}) + \overline{N}(r, \frac{1}{f+a}), \overline{N}_{(2}(r, \frac{1}{F}) = \overline{N}(r, \frac{1}{f}) + \overline{N}_{(2}(r, \frac{1}{f+a}), \overline{N}_{(2}(r, \frac{1}{F})) = \overline{N}(r, \frac{1}{f}) + \overline{N}_{(2}(r, \frac{1}{f+a}), \overline{N}_{(2}(r, \frac{1}{g}) = \overline{N}(r, \frac{1}{g}) + \overline{N}_{(2}(r, \frac{1}{g+a})).$ Moreover $\overline{N}(r, f) + \overline{N}(r, g) \leq \frac{1}{l}T(r) + O(1), \overline{N}(r, \frac{1}{f}) + \overline{N}(r, \frac{1}{g}) \leq \frac{1}{s}T(r) + O(1), \overline{N}(r, \frac{1}{f+a}) + \overline{N}_{(2}(r, \frac{1}{g+a}) \leq T(r) + O(1), \overline{N}(r, \frac{1}{f+a}) + \overline{N}_{(2}(r, \frac{1}{g+a}) \leq T(r) + O(1), \overline{N}(r, F) = S(r, f), S(r, G) = S(r, g).$ From this and (3.10) we get

$$T(r,F) = nT(r,f) + O(1) \le (2 + \frac{2}{l} + \frac{2}{s})T(r) + S(r),$$

$$T(r,G) = nT(r,g) + O(1) \le (2 + \frac{2}{l} + \frac{2}{s})T(r) + S(r)$$

Adding the side with the side of the two inequalities above we obtain

$$nT(r) \le (4 + \frac{4}{l} + \frac{4}{s})T(r) + S(r), \ (n - 4 - \frac{4}{l} - \frac{4}{s})T(r) \le S(r).$$

This is a contradiction to the assumption that $n \ge 5 + \frac{6}{l} + \frac{4}{s}$.

Case 2. $F.G = b^2$. Then $(f^n + af^{n-1})(g^n + ag^{n-1}) = b^2$. Because $n \ge 5 + \frac{6}{l} + \frac{4}{s} > 5$, and then we have $(f^n + af^{n-1})(g^n + ag^{n-1}) \not\equiv b^2$ since Lemma 2.3. A contradiction. **Case 3.** F = G. Therefore P(f) = P(g). Thanks to Lemma 2.3.

Now if condition ii) is satisfied: $n \ge 15$, then by a similar argument as in i) with l = s = 1 we get P(f) = P(g).

Lemma 3.2. Let f and g be two nonconstant meromorphic functions, and assume that all zeros and poles of f and g have multiplicity at least s, l, respectively, and if either $l \ge 2$ or $s \ge 2$ such that $n \ge 5 + \frac{6}{l} + \frac{4}{s}$, and let P(f) = P(g). Then f = g. **Proof.** We have $P(z) = z^n + az^{n-1} + b$. Set $h = \frac{f}{g}$. Since P(f) = P(g) we obtain

$$f^{n} + af^{n-1} = g^{n} + ag^{n-1}.$$
(3.11)

It implies

$$g = -a\frac{h^{n-1}-1}{h^n-1}.$$
(3.12)

Suppose that *h* is not a constant. Let $t_1, t_2, ..., t_{n-2}$, (resp., $r_1, r_2, ..., r_{n-1}$,) be the roots of unity of degree n - 1, (resp., n), $t_i \neq 1$, i = 1, 2, ..., n - 2 (resp., $r_i \neq 1$, i = 1, 2, ..., n - 1). From (3.12) we get

$$T(r,g) = T(r,\frac{h^{n-1}-1}{h^n-1}) = (n-1)T(r,h) + O(1), \ T(r,h) = \frac{1}{n-1}T(r,g) + O(1).$$
(3.13)

By (3.16) and g is a nonconstant meromorphic function it implies that so is h, and S(r,h) = S(r,g). Then, applying a another form of two Fundamental Theorems to $t_1, t_2, ..., t_{n-2}, r_1, r_2, ..., r_{n-1}$, since (3.12)- (3.13) we obtain

$$(2n-4)T(r,h) \le \overline{N}(r,h) + \sum_{i=1}^{n-2} \overline{N}(r,\frac{1}{h-t_i}) + \sum_{i=1}^{n-1} \overline{N}(r,\frac{1}{h-r_i}) + S(r,h),$$

$$\begin{aligned} \frac{2n-4}{n-1}T(r,g) &\leq \overline{N}(r,g) + \overline{N}(r,\frac{1}{g}) + S(r,g), \ \frac{2n-4}{n-1}T(r,g) \leq (\frac{1}{l} + \frac{1}{s})T(r,g) + S(r,g), \\ (2 - \frac{2}{n-1} - \frac{1}{l} - \frac{1}{s})T(r,g) \leq S(r,g). \end{aligned}$$

A contradiction, since $n \ge 5 + \frac{6}{l} + \frac{4}{s} > 5$, and either $l \ge 2$ or $s \ge 2$. So h is a constant. Then from (3.11) it implies $h^n = 1$ and $h^{n-1} = 1$, because g is not a constant. Therefore h = 1 and f = g. Now we return the proof of Theorem 1.

Applying Lemma 3.1 with $n \ge 15$ we get P(f) = P(g), $f^n + af^{n-1} = g^n + ag^{n-1}$. Then proceeding similarly as in the line of proof of [p.80 -p. 81, Case II, Theorem 2, ([18])], we get either f = g or $f = -\frac{ah(h^{n-1}-1)}{h^n-1}$, $g = -\frac{a(h^{n-1}-1)}{h^n-1}$, where $h = \frac{f}{a}$.

Applying Lemma 3.1, Lemma 3.2 with either $l \ge 2$ or $s \ge 2$ and $n \ge 5 + \frac{6}{l} + \frac{4}{s}$ we get f = g. Theorem 1 is proved.

Acknowledgement

The authors are very grateful to the referees for carefully reading the manuscript and for the valuable suggestions.

References

- An Vu Hoai, A new class of unique range sets for meromorphic functions ignoring multiplicity with 15 elements, Journal of Mathematics and Mathematical Sciences, Vol. 1 (2022), 103-115.
- [2] An Vu Hoai, Khoai Ha Huy, Phuong Nguyen Duy, Determining a Meromorphic Function by its preimages of finite sets, Annales Univ. Sci. Budapest., Sect. Comp., 54 (2023), 71-94.
- [3] Banerjee A., Chakraborty B., Mallickc S., Further Investigations on Fujimoto Type Strong Uniqueness Polynomials, Filomat 31, 16 (2017), 5203-5216.
- [4] Fujimoto H., On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math., 122 (2000), 1175-1203.
- [5] Fujimoto H., On uniqueness polynomials for meromorphic functions, Nagoya Math. J., 170 (2003), 33-46.
- [6] Goldberg A. A. and Ostrovskii I. V., Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs, Vol. 236 (2008).
- [7] Gross F., Factorization of meromorphic functions and some open problems, Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, Ky. (1976)), pp. 51-69, Lecture Notes in Math. Vol. 599, Springer, Berlin, (1977).
- [8] Hayman W. K., Meromorphic Functions, Clarendon, Oxford, 1964.
- [9] Khoai Ha Huy, Some remarks on the genericity of unique range sets for meromorphic functions, Sci. China Ser. A Mathematics, Vol. 48 (2005), 262-267.
- [10] Khoai Ha Huy, An Vu Hoai, and Hoa Pham Ngoc, On functional equations for meromorphic functions and applications, Arch. Math, Vol. 109 (2017), 539-549.
- [11] Khoai Ha Huy, An Vu Hoai and Lai Nguyen Xuan, Strong uniqueness polynomials of degree 6 and unique range sets for powers of meromorphic functions, Int. J. Math., Vol. 29, N. 5 (2018), 122-140.
- [12] Lahiri I., Banerjee A., Uniqueness of Meromorphic Functions with Deficient Poles, KYUNGPOOK Math. J., 44 (2004), 575-584.

- [13] Mallick S., Sarkar D., Unique range sets for powers of meromorphic functions, Mat. Stud., 50 (2018), 143-157.
- [14] Min Li X. and Yi H. X., Meromorphic functions sharing three values, J. Math. Soc. Japan, Vol. 56, No. 1 (2004), 147-167.
- [15] Yang C. C. and Hua X. H., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), 395-406.
- [16] Yang C. C., Yi H. X., Uniqueness theory of meromorphic functions, Kluwer Acad. Publ., 2003.
- [17] Yi H. X., A question of Gross and the uniqueness of entire functions, Nagoya Math. J., Vol. 138 (1995), 169-177.
- [18] Yi H. X., Unicity theorems for meromorphic and entire functions III, Bull. Austral. Math. Soc., 53 (1996), 71-82.
- [19] Zhang J. L. and Yang L. Z., Some results related to a conjecture of R.Brück, J. Inequal. Pure Appl. Math., 8(1) (2007), Art. 18.

This page intentionally left blank.