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1. Introduction

Let k be any positive integer. The results will be presented using the notations
listed below:

Tk = {z ∈ C : |z| = k},

D−
k = {z ∈ C : |z| < k},

D+
k = {z ∈ C : |z| > k}.
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Let Pn be the class of complex polynomials p(z) of degree at most n and p′(z) be
the derivative of p(z). According to the famous result of Bernstein [4] if p(z) ∈ Pn,
then

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)

If p(z) has all the zeros at the origin, then equality holds in (1.1).
In 1944, Lax [7] proved the Erdös conjectured that

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)| (1.2)

for polynomials p(z) of degree n and having no zeros in D−
1 . Equality in (1.2) holds

for p(z) = λzn+µ, |λ| = |µ|. Futhermore, if p(z) is a polynomial of degree n having
no zeros in D+

1 , then

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|. (1.3)

Inequality (1.3) was showed by Turán [11] and equality in (1.3) holds for polyno-
mials which have all its zeros on |z| = 1.
From now on, we let

w(z) :=
n∏

j=1

(z − aj),

B(z) :=
n∏

j=1

(
1− ajz

z − aj

)
=

w∗(z)

w(z)

where aj ∈ C for j = 1, 2, 3, . . . , n and

w∗(z) = znw

(
1

z

)
.

The product B(z) is called Blaschke product with |B(z)| = 1 for z ∈ T1.
Now, we define Rm,n by

Rm,n(a1, a2, . . . , an) :=

{
p(z)

w(z)
: p ∈ Pm and m ≤ n

}
.

Then Rm,n is the set of all rational functions with poles a1, a2, . . . , an at most and
with finite limit at ∞.

Li et al. [8] extended inequality (1.1) to rational functions r(z) by substituting
polynomials p(z) by rational functions r(z) and zn by Blaschke product B(z). They
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proved the results as follows.

Theorem 1.1. If r(z) ∈ Rm,n, then

|r′(z)| ≤ |B′(z)||r(z)|

for z ∈ T1. The equality holds for r(z) = λB(z) with |λ| = 1.

Theorem 1.2. If r(z) ∈ Rm,n has all its zeros in T1 ∪D+
1 , then

|r′(z)| ≤ 1

2
|B′(z)|max

z∈T1

|r(z)|

for z ∈ T1. The equality holds for r(z) = ηB(z) + λ with |η| = |λ| = 1.
On the other hand, Li et al. [8] proved the following results.

Theorem 1.3. If r(z) ∈ Rm,n has all its zeros in T1 ∪D−
1 , then

|r′(z)| ≥ 1

2
|B′(z)|max

z∈T1

|r(z)|

for z ∈ T1. The equality holds for r(z) = ηB(z) + λ with |η| = |λ| = 1.

Theorem 1.4. If r(z) ∈ Rm,n, where r(z) has n poles a1, a2, . . . , an and all the
zeros of r(z) lie in T1 ∪D−

1 , then for z ∈ T1

|r′(z)| ≥ 1

2
(|B′(z)| − (n−m))|r(z)|

where m is the number of zeros of r(z).
In 2004, Aziz and Shah [1] extended Theorem 1.4 to the class of rational functions
Rm,n having all its zeros in Tk ∪D−

k , k ≤ 1.

Theorem 1.5. If r(z) ∈ Rm,n, where r(z) has n poles a1, a2, . . . , an and all the
zeros of r(z) lie in Tk ∪D−

k , k ≤ 1, then for z ∈ T1

|r′(z)| ≥ 1

2
(|B′(z)|+ 2m− n(1 + k)

1 + k
)|r(z)|

where m is the number of zeros of r(z).
In 2021, Gulzar et al. [5] demonstrated the following interesting result.

Theorem 1.6. If r(z) = p(z)
w(z)

∈ Rm,n and c1, c2, . . . , cm are the zeros of r(z) all

lying in Tk ∪D−
k , k ≤ 1. Then for z ∈ T1

|r′(z)| ≥ 1

2

[
|B′(z)|+

m∑
j=1

2

1 + |cj|
− n

]
|r(z)|
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where m is the number of zeros of r(z).
In 2022, Gupta et al. [6] proved that if r(z) ∈ Rm,n has t−folds zeros at the origin
and the remaining m− t in T1 ∪D+

1 , then for z ∈ T1

|r′(z)| ≤ 1

2
[|B′(z)| − (n−m− t)] |r(z)|. (1.4)

There are other refinements and generalizations of the above results that can be
found in the literature [3, 9, 10].

2. Main Results
We start by showing the following lemmas that we apply to support our theo-

rems. The first lemma was shown by Aziz and Zargar [2].

Lemma 2.1. If |z| = 1, then

Re

(
zw′(z)

w(z)

)
=

n− |B′(z)|
2

.

The next lemmas was proved by Li et al. [8].

Lemma 2.2. If r(z) ∈ Rm,n and r∗ = B(z)r(1
z
), then

|(r∗(z))′|+ |r′(z)| ≤ |B′(z)| |r(z)|

for z ∈ T1.

Lemma 2.3. Let z be a complex number. Then

Re(z) ≤ 1

2
⇔ |z| ≤ |z − 1|.

Additionally, the statement holds when ≤ is changed to < at each occurrence.
In this paper, we prove some refinements and generalizations of Theorem 1.2, The-
orem 1.4, Theorem 1.5 and Theorem 1.6.

Theorem 2.4. Let r(z) = (z−z0)ts(z)
w(z)

∈ Rm,n with |z0| > k and c1, c2, . . . , cm−t be

the zeros of s(z) all lying in Tk ∪D−
k , k ≤ 1. Then we obtain

|r′(z)| ≥ 1

2

[
|B′(z)| − n+ 2

m−t∑
j=1

1

1 + |cj|
+

2t

1 + |z0|

]
|r(z)|

for z ∈ T1.

Proof. Suppose r(z) = (z−z0)ts(z)
w(z)

with |z0| > k and c1, c2, . . . , cm−t are the zeros of
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s(z) all lying in Tk ∪D−
k , k ≤ 1. It’s easy to see that

zr′(z)

r(z)
=

zs′(z)

s(z)
+

tz

z − z0
− zw′(z)

w(z)
.

Since

zs′(z)

s(z)
=

m−t∑
j=1

z

z − cj
,

it follows that

Re

(
zr′(z)

r(z)

)
= Re

(
m−t∑
j=1

z

z − cj

)
−Re

(
zw′(z)

w(z)

)
+Re

(
tz

z − z0

)
.

Applying Lemma 2.1 provides

Re

(
zr′(z)

r(z)

)
≥

m−t∑
j=1

1

1 + |cj|
−
(
n− |B′(z)|

2

)
+Re

(
tz

z − z0

)
for z ∈ T1. Therefore

Re

(
zr′(z)

r(z)

)
≥ |B′(z)|

2
+

m−t∑
j=1

1

1 + |cj|
− n

2
+

t

1 + |z0|

for z ∈ T1. Consequently,

|r′(z)| ≥ 1

2

[
|B′(z)| − n+ 2

m−t∑
j=1

1

1 + |cj|
+

2t

1 + |z0|

]
|r(z)|

for z ∈ T1. The proof is complete.

Remark 2.5. By letting t = 0 in Theorem 2.4, we get that if r(z) = s(z)
w(z)

and

c1, c2, . . . , cm are the zeros of s(z) all lying in Tk ∪D−
k , k ≤ 1, then we obtain

|r′(z)| ≥ 1

2

[
|B′(z)| − n+

m∑
j=1

2

1 + |cj|

]
|r(z)|

for z ∈ T1. That is, Theorem 2.4 reduces to Theorem 1.6.
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Corollary 2.6. Since |cj| ≤ k ≤ 1 for j = 1, 2, 3 . . . ,m− t, we get

1

1 + |cj|
≥ 1

1 + k
.

Theorem 2.4 implies that if r(z) = (z−z0)ts(z)
w(z)

with |z0| > k and c1, c2, . . . , cm−t are

the zeros of s(z) all lying in Tk ∪D−
k , k ≤ 1, then

|r′(z)| ≥ 1

2

[
|B′(z)|+ 2(m− t)− n(1 + k)

1 + k
+

2t

1 + |z0|

]
|r(z)|

for z ∈ T1.

Remark 2.7. By letting t = 0 in Corollary 2.6, we get that if r(z) = s(z)
w(z)

and

c1, c2, . . . , cm are the zeros of s(z) all lying in Tk ∪D−
k , k ≤ 1, then

|r′(z)| ≥ 1

2

[
|B′(z)|+ 2m− n(1 + k)

1 + k

]
|r(z)|

for z ∈ T1. That is, Corollary 2.6 reduces to Theorem 1.5.
If k = 1 in Corollary 2.6, then the result is as follows.

Corollary 2.8. If r(z) = (z−z0)ts(z)
w(z)

∈ Rm,n with |z0| > 1 and c1, c2, . . . , cm−t are

the zeros of s(z) lie in T1 ∪D−
1 , then

|r′(z)| ≥ 1

2

[
|B′(z)| − n+m− t+

2t

1 + |z0|

]
|r(z)|

for z ∈ T1.

Remark 2.9. By letting t = 0 in Corollary 2.8, we get that if r(z) = s(z)
w(z)

∈ Rm,n

and all of the zeros of s(z) lie in T1 ∪D−
1 , then

|r′(z)| ≥ 1

2
[|B′(z)| − n+m] |r(z)|

for z ∈ T1. That is, Corollary 2.8 reduces to Theorem 1.4.

Theorem 2.10. Let r(z) = zts(z)
w(z)

∈ Rm,n and c1, c2, . . . , cm−t be the zeros of s(z)

all lying in Tk ∪D+
k , k ≥ 1 except t-fold at the origin. Then we obtain

|r′(z)| ≤ 1

2

[
|B′(z)|+ 2(m− t)− n(1 + k)

1 + k
+ 2t

]
|r(z)|
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for z ∈ T1.

Proof. Suppose r(z) = zts(z)
w(z)

∈ Rm,n and c1, c2, . . . , cm−t are the zeros of s(z) all

lying in Tk ∪D+
k , k ≥ 1 except t-fold at the origin. Differentiation with respect to

z, this yields
zr′(z)

r(z)
=

zs′(z)

s(z)
+ t− zw′(z)

w(z)
. (2.1)

We have

zs′(z)

s(z)
=

m−t∑
j=1

z

z − cj
.

Since |cj| ≥ k ≥ 1 for j = 1, 2, 3, . . . ,m− t, we can see

| z

z − cj
| ≤ | z

z − cj
− 1|

for z ∈ T1 and z ̸= cj. Applying Lemma 2.3, we obtain

Re(
z

z − cj
) ≤ 1

1 + k

for j = 1, 2, 3, . . . ,m− t. From (2.1) and Lemma 2.1, we also provides

Re

(
zr′(z)

r(z)

)
≤ m− t

1 + k
−
(
n− |B′(z)|

2

)
+ t

for z ∈ T1. Moreover, we have ([8], p.529)

|z(r
∗(z))′

r(z)
|2 = | |B′(z)| − zr′(z)

r(z)
|2

= |B′(z)|2 − 2|B′(z)||zr
′(z)

r(z)
|+ |zr

′(z)

r(z)
|2

≥ |B′(z)|2 − 2|B′(z)|Re

(
zr′(z)

r(z)

)
+ |zr

′(z)

r(z)
|2

≥ |B′(z)|2 + |zr
′(z)

r(z)
|2 − 2|B′(z)|

[
m− t

1 + k
−
(
n− |B′(z)|

2

)
+ t

]
for z ∈ T1. Afterward

|(r∗(z))′|2 ≥ |B′(z)|2|r(z)|2+|r′(z)|2−2|B′(z)||r(z)|2
[
m− t

1 + k
−
(
n− |B′(z)|

2

)
+ t

]
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for z ∈ T1. That is,[
|r′(z)|2 +

(
n− 2(m− t)

1 + k
− 2t

)
|B′(z)||r(z)|2

] 1
2

≤ |(r∗(z))′|

for z ∈ T1. Lemma 2.2 implies that

|r′(z)|2 +
(
n− 2(m− t)

1 + k
− 2t

)
|B′(z)||r(z)|2 ≤ (|B′(z)||r(z)| − |r′(z)|)2

for z ∈ T1. Continuing simplification, we conclude that

|r′(z)| ≤ 1

2

[
|B′(z)|+ 2(m− t)− n(1 + k)

1 + k
+ 2t

]
|r(z)|

for z ∈ T1. Consequently, the proof is complete.
If t = 0 in Theorem 2.10, then the results is as below.

Corollary 2.11. If r(z) ∈ Rm,n and the zeros of r(z) lie in Tk ∪D+
k , k ≥ 1, then

for z ∈ T1

|r′(z)| ≤ 1

2

[
|B′(z)|+ 2m− n(1 + k)

1 + k

]
|r(z)|.

Remark 2.12. By letting k = 1 in Theorem 2.10, we get that if r(z) = zts(z)
w(z)

∈
Rm,n and c1, c2, . . . , cm−t are the zeros of s(z) all lying in T1 ∪D+

1 , except t-fold at
the origin, then we obtain

|r′(z)| ≤ 1

2
[|B′(z)| − (n−m− t)] |r(z)|

for z ∈ T1. That is, Theorem 2.10 generalize inequality (1.4).

Theorem 2.13. Let r(z) = (z−z0)ts(z)
w(z)

∈ Rm,n with |z0| < k and c1, c2, . . . , cm−t be

the zeros of s(z) all lying in Tk ∪D+
k , k ≥ 1. Then

|r′(z)| ≤ 1

2

[
|B′(z)|+ 2(m− t)− n(1 + k)

1 + k
+

2t

1− |z0|

]
|r(z)|

for z ∈ T1.

Proof. Suppose r(z) = (z−z0)ts(z)
w(z)

∈ Rm,n with |z0| < k and c1, c2, . . . , cm−t are the

zeros of s(z) all lying in Tk ∪D+
k , k ≥ 1. Differentiation with respect to z, we get

zr′(z)

r(z)
=

zs′(z)

s(z)
− zw′(z)

w(z)
+

tz

z − z0
.
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This implies that

Re

(
zr′(z)

r(z)

)
= Re

(
zs′(z)

s(z)

)
−Re

(
zw′(z)

w(z)

)
+Re

(
tz

z − z0

)
.

We have

zs′(z)

s(z)
=

m−t∑
j=1

z

z − cj
.

Since |cj| ≥ k ≥ 1 for j = 1, 2, 3, . . . ,m− t, we can see

| z

z − cj
| ≤ | z

z − cj
− 1|

for z ∈ T1 and z ̸= cj. By using Lemma 2.3, we get

Re(
z

z − cj
) ≤ 1

1 + k

for j = 1, 2, 3, . . . ,m− t. Lemma 2.1 also provides

Re

(
zr′(z)

r(z)

)
≤ m− t

1 + k
−
(
n− |B′(z)|

2

)
+Re

(
tz

z − z0

)
≤ m− t

1 + k
−
(
n− |B′(z)|

2

)
+

t

1− |z0|

for z ∈ T1. We have ([8], p.529)

|z(r
∗(z))′

r(z)
|2 = | |B′(z)| − zr′(z)

r(z)
|2

≥ |B′(z)|2 − 2|B′(z)|Re

(
zr′(z)

r(z)

)
+ |zr

′(z)

r(z)
|2

≥ |B′(z)|2 + |zr
′(z)

r(z)
|2 − 2|B′(z)|

[
m− t

1 + k
−
(
n− |B′(z)|

2

)
+

t

1− |z0|

]
.

for z ∈ T1. That is,[
|r′(z)|2 +

(
n− 2(m− t)

1 + k
− 2t

1− |z0|

)
|B′(z)||r(z)|2

] 1
2

≤ |(r∗(z))′|
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for z ∈ T1. Applying Lemma 2.2, we get

|r′(z)|2 +
(
n− 2(m− t)

1 + k
− 2t

1− |z0|

)
|B′(z)||r(z)|2 ≤ (|B′(z)||r(z)| − |r′(z)|)2

for z ∈ T1. Continuing simplification, we conclude that

|r′(z)| ≤ 1

2

[
|B′(z)|+ 2(m− t)− n(1 + k)

1 + k
+

2t

1− |z0|

]
|r(z)|

for z ∈ T1. The proof is already complete.

Remark 2.14. By letting z0 = 0 in Theorem 2.13, we get that if r(z) = (z)ts(z)
w(z)

∈
Rm,n and c1, c2, . . . , cm−t are the zeros of s(z) all lying in Tk ∪D+

k , k ≥ 1, then

|r′(z)| ≤ 1

2

[
|B′(z)|+ 2(m− t)− n(1 + k)

1 + k
+ 2t

]
|r(z)|

for z ∈ T1. That is, Theorem 2.13 reduces to Theorem 2.10.
If k = 1 in Theorem 2.13, then the result is as follows.

Corollary 2.15. If r(z) = (z−z0)ts(z)
w(z)

with |z0| < 1 and c1, c2, . . . , cm−t are the zeros

of s(z) all lying in T1 ∪D+
1 , then

|r′(z)| ≤ 1

2

[
|B′(z)| − n+m− t+

2t

1− |z0|

]
|r(z)|

for z ∈ T1.

Remark 2.16. By letting t = 0 and r(z) ∈ Rm,n, we get that if r(z) = s(z)
w(z)

and

c1, c2, . . . , cm are the zeros of s(z) all lying in T1 ∪D+
1 , then

|r′(z)| ≤ 1

2
[|B′(z)| − n+m] |r(z)|

for z ∈ T1. That is, Corollary 2.15 reduces to Theorem 1.2.

3. Conclusions
In this paper, we generalize well-know inequalities for the modulus of derivative

of rational functions. The results are as follows:
1. A lower bound of a modulus of the derivative of rational functions

r(z) =
(z − z0)

ts(z)

w(z)
∈ Rm,n,
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where r(z) has the zero z0 with |z0| > k and the remaining m − t zeros lie in
Tk ∪D−

k , k ≤ 1.
2. An upper bound of a modulus of the derivative of rational functions

r(z) =
zts(z)

w(z)
∈ Rm,n,

where r(z) has exactly n poles and all the zeros of r(z) lie in Tk ∪D+
k , k ≥ 1 except

the zeros of order t lying in the origin.
3. An upper bound of a modulus of the derivative of rational functions

r(z) =
(z − z0)

ts(z)

w(z)
∈ Rm,n,

where r(z) has the zero z0 with |z0| < k and the remaining m − t zeros lie in
Tk ∪D+

k , k ≥ 1.

4. Future scope of work
Future research could focus on extending known inequalities for the modulus

of rational functions to composite functions. This could expand the scope of zeros
within a variety of regions of the complex plane.
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