South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 47-58

DOI: 10.56827/SEAJMMS.2024.2001.4

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

INEQUALITIES CONCERNING THE MODULUS OF RATIONAL FUNCTIONS WITH FIXED ZEROS

Arnisa Rasri and Jiraphorn Somsuwan Phanwan*

Department of Data Analytics and Actuarial Science, Faculty of Science at Sriracha Campus, Kasetsart University, Chon Buri, 20230, THAILAND

E-mail : arnisa.r@ku.th

*Department of Mathematics, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, THAILAND

E-mail : jira.somsu@hotmail.com

(Received: May 29, 2023 Accepted: Apr. 23, 2024 Published: Apr. 30, 2024)

Abstract: In this paper, we investigate the lower bound and the upper bound of the modulus of rational functions with fixed zeros. Some well-known results are generalized by our results.

Keywords and Phrases: Rational functions, Inequalities, zeros.

2020 Mathematics Subject Classification: 30A05, 26D07, 30A10.

1. Introduction

Let k be any positive integer. The results will be presented using the notations listed below:

$$T_{k} = \{ z \in \mathbb{C} : |z| = k \},\$$
$$D_{k}^{-} = \{ z \in \mathbb{C} : |z| < k \},\$$
$$D_{k}^{+} = \{ z \in \mathbb{C} : |z| > k \}.$$

Let P_n be the class of complex polynomials p(z) of degree at most n and p'(z) be the derivative of p(z). According to the famous result of Bernstein [4] if $p(z) \in P_n$, then

$$|p'(z)| \le n \max_{|z|=1} |p(z)|.$$
(1.1)

If p(z) has all the zeros at the origin, then equality holds in (1.1). In 1944, Lax [7] proved the Erdös conjectured that

$$\max_{|z|=1} |p'(z)| \le \frac{n}{2} \max_{|z|=1} |p(z)|$$
(1.2)

for polynomials p(z) of degree n and having no zeros in D_1^- . Equality in (1.2) holds for $p(z) = \lambda z^n + \mu$, $|\lambda| = |\mu|$. Furthermore, if p(z) is a polynomial of degree n having no zeros in D_1^+ , then

$$\max_{|z|=1} |p'(z)| \ge \frac{n}{2} \max_{|z|=1} |p(z)|.$$
(1.3)

Inequality (1.3) was showed by Turán [11] and equality in (1.3) holds for polynomials which have all its zeros on |z| = 1. From now on, we let

$$w(z) := \prod_{j=1}^{n} (z - a_j),$$
$$B(z) := \prod_{j=1}^{n} \left(\frac{1 - \overline{a_j}z}{z - a_j}\right) = \frac{w^*(z)}{w(z)}$$

where $a_j \in \mathbb{C}$ for $j = 1, 2, 3, \ldots, n$ and

$$w^*(z) = z^n \overline{w\left(\frac{1}{\overline{z}}\right)}.$$

The product B(z) is called Blaschke product with |B(z)| = 1 for $z \in T_1$. Now, we define $R_{m,n}$ by

$$R_{m,n}(a_1, a_2, \dots, a_n) := \left\{ \frac{p(z)}{w(z)} : p \in P_m \text{ and } m \le n \right\}.$$

Then $R_{m,n}$ is the set of all rational functions with poles a_1, a_2, \ldots, a_n at most and with finite limit at ∞ .

Li et al. [8] extended inequality (1.1) to rational functions r(z) by substituting polynomials p(z) by rational functions r(z) and z^n by Blaschke product B(z). They

proved the results as follows.

Theorem 1.1. If $r(z) \in R_{m,n}$, then

 $|r'(z)| \le |B'(z)||r(z)|$

for $z \in T_1$. The equality holds for $r(z) = \lambda B(z)$ with $|\lambda| = 1$.

Theorem 1.2. If $r(z) \in R_{m,n}$ has all its zeros in $T_1 \cup D_1^+$, then

$$|r'(z)| \le \frac{1}{2} |B'(z)| \max_{z \in T_1} |r(z)|$$

for $z \in T_1$. The equality holds for $r(z) = \eta B(z) + \lambda$ with $|\eta| = |\lambda| = 1$. On the other hand, Li et al. [8] proved the following results.

Theorem 1.3. If $r(z) \in R_{m,n}$ has all its zeros in $T_1 \cup D_1^-$, then

$$|r'(z)| \ge \frac{1}{2}|B'(z)|\max_{z\in T_1}|r(z)|$$

for $z \in T_1$. The equality holds for $r(z) = \eta B(z) + \lambda$ with $|\eta| = |\lambda| = 1$.

Theorem 1.4. If $r(z) \in R_{m,n}$, where r(z) has n poles a_1, a_2, \ldots, a_n and all the zeros of r(z) lie in $T_1 \cup D_1^-$, then for $z \in T_1$

$$|r'(z)| \ge \frac{1}{2}(|B'(z)| - (n-m))|r(z)|$$

where m is the number of zeros of r(z).

In 2004, Aziz and Shah [1] extended Theorem 1.4 to the class of rational functions $R_{m,n}$ having all its zeros in $T_k \cup D_k^-$, $k \leq 1$.

Theorem 1.5. If $r(z) \in R_{m,n}$, where r(z) has n poles a_1, a_2, \ldots, a_n and all the zeros of r(z) lie in $T_k \cup D_k^-$, $k \leq 1$, then for $z \in T_1$

$$|r'(z)| \ge \frac{1}{2}(|B'(z)| + \frac{2m - n(1+k)}{1+k})|r(z)|$$

where m is the number of zeros of r(z).

In 2021, Gulzar et al. [5] demonstrated the following interesting result.

Theorem 1.6. If $r(z) = \frac{p(z)}{w(z)} \in R_{m,n}$ and c_1, c_2, \ldots, c_m are the zeros of r(z) all lying in $T_k \cup D_k^-, k \leq 1$. Then for $z \in T_1$

$$|r'(z)| \ge \frac{1}{2} \left[|B'(z)| + \sum_{j=1}^{m} \frac{2}{1+|c_j|} - n \right] |r(z)|$$

where m is the number of zeros of r(z). In 2022, Gupta et al. [6] proved that if $r(z) \in R_{m,n}$ has t-folds zeros at the origin and the remaining m - t in $T_1 \cup D_1^+$, then for $z \in T_1$

$$|r'(z)| \le \frac{1}{2} \left[|B'(z)| - (n - m - t) \right] |r(z)|.$$
(1.4)

There are other refinements and generalizations of the above results that can be found in the literature [3, 9, 10].

2. Main Results

We start by showing the following lemmas that we apply to support our theorems. The first lemma was shown by Aziz and Zargar [2].

Lemma 2.1. If |z| = 1, then

$$Re\left(\frac{zw'(z)}{w(z)}\right) = \frac{n - |B'(z)|}{2}.$$

The next lemmas was proved by Li et al. [8].

Lemma 2.2. If $r(z) \in R_{m,n}$ and $r^* = B(z)\overline{r(\frac{1}{\overline{z}})}$, then

$$|(r^*(z))'| + |r'(z)| \le |B'(z)| |r(z)|$$

for $z \in T_1$.

Lemma 2.3. Let z be a complex number. Then

$$Re(z) \le \frac{1}{2} \Leftrightarrow |z| \le |z-1|.$$

Additionally, the statement holds when \leq is changed to < at each occurrence. In this paper, we prove some refinements and generalizations of Theorem 1.2, Theorem 1.4, Theorem 1.5 and Theorem 1.6.

Theorem 2.4. Let $r(z) = \frac{(z-z_0)^t s(z)}{w(z)} \in R_{m,n}$ with $|z_0| > k$ and $c_1, c_2, \ldots, c_{m-t}$ be the zeros of s(z) all lying in $T_k \cup D_k^-$, $k \leq 1$. Then we obtain

$$|r'(z)| \ge \frac{1}{2} \left[|B'(z)| - n + 2\sum_{j=1}^{m-t} \frac{1}{1+|c_j|} + \frac{2t}{1+|z_0|} \right] |r(z)|$$

for $z \in T_1$. **Proof.** Suppose $r(z) = \frac{(z-z_0)^t s(z)}{w(z)}$ with $|z_0| > k$ and $c_1, c_2, \ldots, c_{m-t}$ are the zeros of s(z) all lying in $T_k \cup D_k^-, k \leq 1$. It's easy to see that

$$\frac{zr'(z)}{r(z)} = \frac{zs'(z)}{s(z)} + \frac{tz}{z - z_0} - \frac{zw'(z)}{w(z)}$$

Since

$$\frac{zs'(z)}{s(z)} = \sum_{j=1}^{m-t} \frac{z}{z - c_j},$$

it follows that

$$Re\left(\frac{zr'(z)}{r(z)}\right) = Re\left(\sum_{j=1}^{m-t} \frac{z}{z-c_j}\right) - Re\left(\frac{zw'(z)}{w(z)}\right) + Re\left(\frac{tz}{z-z_0}\right).$$

Applying Lemma 2.1 provides

$$Re\left(\frac{zr'(z)}{r(z)}\right) \ge \sum_{j=1}^{m-t} \frac{1}{1+|c_j|} - \left(\frac{n-|B'(z)|}{2}\right) + Re\left(\frac{tz}{z-z_0}\right)$$

for $z \in T_1$. Therefore

$$Re\left(\frac{zr'(z)}{r(z)}\right) \ge \frac{|B'(z)|}{2} + \sum_{j=1}^{m-t} \frac{1}{1+|c_j|} - \frac{n}{2} + \frac{t}{1+|z_0|}$$

for $z \in T_1$. Consequently,

$$|r'(z)| \ge \frac{1}{2} \left[|B'(z)| - n + 2\sum_{j=1}^{m-t} \frac{1}{1+|c_j|} + \frac{2t}{1+|z_0|} \right] |r(z)|$$

for $z \in T_1$. The proof is complete.

Remark 2.5. By letting t = 0 in Theorem 2.4, we get that if $r(z) = \frac{s(z)}{w(z)}$ and c_1, c_2, \ldots, c_m are the zeros of s(z) all lying in $T_k \cup D_k^-, k \leq 1$, then we obtain

$$|r'(z)| \ge \frac{1}{2} \left[|B'(z)| - n + \sum_{j=1}^{m} \frac{2}{1+|c_j|} \right] |r(z)|$$

for $z \in T_1$. That is, Theorem 2.4 reduces to Theorem 1.6.

Corollary 2.6. Since $|c_j| \le k \le 1$ for j = 1, 2, 3 ..., m - t, we get

$$\frac{1}{1+|c_j|} \ge \frac{1}{1+k}.$$

Theorem 2.4 implies that if $r(z) = \frac{(z-z_0)^t s(z)}{w(z)}$ with $|z_0| > k$ and $c_1, c_2, \ldots, c_{m-t}$ are the zeros of s(z) all lying in $T_k \cup D_k^-$, $k \leq 1$, then

$$|r'(z)| \ge \frac{1}{2} \left[|B'(z)| + \frac{2(m-t) - n(1+k)}{1+k} + \frac{2t}{1+|z_0|} \right] |r(z)|$$

for $z \in T_1$.

Remark 2.7. By letting t = 0 in Corollary 2.6, we get that if $r(z) = \frac{s(z)}{w(z)}$ and c_1, c_2, \ldots, c_m are the zeros of s(z) all lying in $T_k \cup D_k^-, k \leq 1$, then

$$|r'(z)| \ge \frac{1}{2} \left[|B'(z)| + \frac{2m - n(1+k)}{1+k} \right] |r(z)|$$

for $z \in T_1$. That is, Corollary 2.6 reduces to Theorem 1.5. If k = 1 in Corollary 2.6, then the result is as follows.

Corollary 2.8. If $r(z) = \frac{(z-z_0)^t s(z)}{w(z)} \in R_{m,n}$ with $|z_0| > 1$ and $c_1, c_2, \ldots, c_{m-t}$ are the zeros of s(z) lie in $T_1 \cup D_1^-$, then

$$|r'(z)| \ge \frac{1}{2} \left[|B'(z)| - n + m - t + \frac{2t}{1 + |z_0|} \right] |r(z)|$$

for $z \in T_1$.

Remark 2.9. By letting t = 0 in Corollary 2.8, we get that if $r(z) = \frac{s(z)}{w(z)} \in R_{m,n}$ and all of the zeros of s(z) lie in $T_1 \cup D_1^-$, then

$$|r'(z)| \ge \frac{1}{2} [|B'(z)| - n + m] |r(z)|$$

for $z \in T_1$. That is, Corollary 2.8 reduces to Theorem 1.4.

Theorem 2.10. Let $r(z) = \frac{z^t s(z)}{w(z)} \in R_{m,n}$ and $c_1, c_2, \ldots, c_{m-t}$ be the zeros of s(z) all lying in $T_k \cup D_k^+, k \ge 1$ except t-fold at the origin. Then we obtain

$$|r'(z)| \le \frac{1}{2} \left[|B'(z)| + \frac{2(m-t) - n(1+k)}{1+k} + 2t \right] |r(z)|$$

for $z \in T_1$.

Proof. Suppose $r(z) = \frac{z^{t}s(z)}{w(z)} \in R_{m,n}$ and $c_1, c_2, \ldots, c_{m-t}$ are the zeros of s(z) all lying in $T_k \cup D_k^+, k \ge 1$ except *t*-fold at the origin. Differentiation with respect to z, this yields

$$\frac{zr'(z)}{r(z)} = \frac{zs'(z)}{s(z)} + t - \frac{zw'(z)}{w(z)}.$$
(2.1)

We have

$$\frac{zs'(z)}{s(z)} = \sum_{j=1}^{m-t} \frac{z}{z - c_j}.$$

Since $|c_j| \ge k \ge 1$ for $j = 1, 2, 3, \dots, m - t$, we can see

$$\left|\frac{z}{z-c_j}\right| \le \left|\frac{z}{z-c_j} - 1\right|$$

for $z \in T_1$ and $z \neq c_j$. Applying Lemma 2.3, we obtain

$$Re(\frac{z}{z-c_j}) \le \frac{1}{1+k}$$

for $j = 1, 2, 3, \ldots, m - t$. From (2.1) and Lemma 2.1, we also provides

$$Re\left(\frac{zr'(z)}{r(z)}\right) \le \frac{m-t}{1+k} - \left(\frac{n-|B'(z)|}{2}\right) + t$$

for $z \in T_1$. Moreover, we have ([8], p.529)

$$\begin{aligned} |\frac{z(r^*(z))'}{r(z)}|^2 &= ||B'(z)| - \frac{zr'(z)}{r(z)}|^2 \\ &= |B'(z)|^2 - 2|B'(z)||\frac{zr'(z)}{r(z)}| + |\frac{zr'(z)}{r(z)}|^2 \\ &\ge |B'(z)|^2 - 2|B'(z)|Re\left(\frac{zr'(z)}{r(z)}\right) + |\frac{zr'(z)}{r(z)}|^2 \\ &\ge |B'(z)|^2 + |\frac{zr'(z)}{r(z)}|^2 - 2|B'(z)|\left[\frac{m-t}{1+k} - \left(\frac{n-|B'(z)|}{2}\right) + t\right] \end{aligned}$$

for $z \in T_1$. Afterward

$$|(r^*(z))'|^2 \ge |B'(z)|^2 |r(z)|^2 + |r'(z)|^2 - 2|B'(z)||r(z)|^2 \left[\frac{m-t}{1+k} - \left(\frac{n-|B'(z)|}{2}\right) + t\right]$$

for $z \in T_1$. That is,

$$\left[|r'(z)|^2 + \left(n - \frac{2(m-t)}{1+k} - 2t\right)|B'(z)||r(z)|^2\right]^{\frac{1}{2}} \le |(r^*(z))'|$$

for $z \in T_1$. Lemma 2.2 implies that

$$|r'(z)|^{2} + \left(n - \frac{2(m-t)}{1+k} - 2t\right)|B'(z)||r(z)|^{2} \le \left(|B'(z)||r(z)| - |r'(z)|\right)^{2}$$

for $z \in T_1$. Continuing simplification, we conclude that

$$|r'(z)| \le \frac{1}{2} \left[|B'(z)| + \frac{2(m-t) - n(1+k)}{1+k} + 2t \right] |r(z)|$$

for $z \in T_1$. Consequently, the proof is complete.

If t = 0 in Theorem 2.10, then the results is as below.

Corollary 2.11. If $r(z) \in R_{m,n}$ and the zeros of r(z) lie in $T_k \cup D_k^+, k \ge 1$, then for $z \in T_1$

$$|r'(z)| \le \frac{1}{2} \left[|B'(z)| + \frac{2m - n(1+k)}{1+k} \right] |r(z)|.$$

Remark 2.12. By letting k = 1 in Theorem 2.10, we get that if $r(z) = \frac{z^t s(z)}{w(z)} \in R_{m,n}$ and $c_1, c_2, \ldots, c_{m-t}$ are the zeros of s(z) all lying in $T_1 \cup D_1^+$, except t-fold at the origin, then we obtain

$$|r'(z)| \le \frac{1}{2} [|B'(z)| - (n - m - t)] |r(z)|$$

for $z \in T_1$. That is, Theorem 2.10 generalize inequality (1.4).

Theorem 2.13. Let $r(z) = \frac{(z-z_0)^t s(z)}{w(z)} \in R_{m,n}$ with $|z_0| < k$ and $c_1, c_2, \ldots, c_{m-t}$ be the zeros of s(z) all lying in $T_k \cup D_k^+, k \ge 1$. Then

$$|r'(z)| \le \frac{1}{2} \left[|B'(z)| + \frac{2(m-t) - n(1+k)}{1+k} + \frac{2t}{1-|z_0|} \right] |r(z)|$$

for $z \in T_1$.

Proof. Suppose $r(z) = \frac{(z-z_0)^t s(z)}{w(z)} \in R_{m,n}$ with $|z_0| < k$ and $c_1, c_2, \ldots, c_{m-t}$ are the zeros of s(z) all lying in $T_k \cup D_k^+, k \ge 1$. Differentiation with respect to z, we get

$$\frac{zr'(z)}{r(z)} = \frac{zs'(z)}{s(z)} - \frac{zw'(z)}{w(z)} + \frac{tz}{z - z_0}.$$

This implies that

$$Re\left(\frac{zr'(z)}{r(z)}\right) = Re\left(\frac{zs'(z)}{s(z)}\right) - Re\left(\frac{zw'(z)}{w(z)}\right) + Re\left(\frac{tz}{z-z_0}\right).$$

We have

$$\frac{zs'(z)}{s(z)} = \sum_{j=1}^{m-t} \frac{z}{z-c_j}.$$

Since $|c_j| \ge k \ge 1$ for $j = 1, 2, 3, \dots, m - t$, we can see

$$|\frac{z}{z-c_j}| \le |\frac{z}{z-c_j} - 1|$$

for $z \in T_1$ and $z \neq c_j$. By using Lemma 2.3, we get

$$Re(\frac{z}{z-c_j}) \le \frac{1}{1+k}$$

for $j = 1, 2, 3, \ldots, m - t$. Lemma 2.1 also provides

$$Re\left(\frac{zr'(z)}{r(z)}\right) \leq \frac{m-t}{1+k} - \left(\frac{n-|B'(z)|}{2}\right) + Re\left(\frac{tz}{z-z_0}\right)$$
$$\leq \frac{m-t}{1+k} - \left(\frac{n-|B'(z)|}{2}\right) + \frac{t}{1-|z_0|}$$

for $z \in T_1$. We have ([8], p.529)

$$\begin{aligned} |\frac{z(r^*(z))'}{r(z)}|^2 &= ||B'(z)| - \frac{zr'(z)}{r(z)}|^2 \\ &\ge |B'(z)|^2 - 2|B'(z)|Re\left(\frac{zr'(z)}{r(z)}\right) + |\frac{zr'(z)}{r(z)}|^2 \\ &\ge |B'(z)|^2 + |\frac{zr'(z)}{r(z)}|^2 - 2|B'(z)|\left[\frac{m-t}{1+k} - \left(\frac{n-|B'(z)|}{2}\right) + \frac{t}{1-|z_0|}\right]. \end{aligned}$$

for $z \in T_1$. That is,

$$\left[|r'(z)|^2 + \left(n - \frac{2(m-t)}{1+k} - \frac{2t}{1-|z_0|}\right)|B'(z)||r(z)|^2\right]^{\frac{1}{2}} \le |(r^*(z))'|$$

for $z \in T_1$. Applying Lemma 2.2, we get

$$|r'(z)|^{2} + \left(n - \frac{2(m-t)}{1+k} - \frac{2t}{1-|z_{0}|}\right)|B'(z)||r(z)|^{2} \le \left(|B'(z)||r(z)| - |r'(z)|\right)^{2}$$

for $z \in T_1$. Continuing simplification, we conclude that

$$|r'(z)| \le \frac{1}{2} \left[|B'(z)| + \frac{2(m-t) - n(1+k)}{1+k} + \frac{2t}{1-|z_0|} \right] |r(z)|$$

for $z \in T_1$. The proof is already complete.

Remark 2.14. By letting $z_0 = 0$ in Theorem 2.13, we get that if $r(z) = \frac{(z)^t s(z)}{w(z)} \in R_{m,n}$ and $c_1, c_2, \ldots, c_{m-t}$ are the zeros of s(z) all lying in $T_k \cup D_k^+, k \ge 1$, then

$$|r'(z)| \le \frac{1}{2} \left[|B'(z)| + \frac{2(m-t) - n(1+k)}{1+k} + 2t \right] |r(z)|$$

for $z \in T_1$. That is, Theorem 2.13 reduces to Theorem 2.10. If k = 1 in Theorem 2.13, then the result is as follows.

Corollary 2.15. If $r(z) = \frac{(z-z_0)^t s(z)}{w(z)}$ with $|z_0| < 1$ and $c_1, c_2, \ldots, c_{m-t}$ are the zeros of s(z) all lying in $T_1 \cup D_1^+$, then

$$|r'(z)| \le \frac{1}{2} \left[|B'(z)| - n + m - t + \frac{2t}{1 - |z_0|} \right] |r(z)|$$

for $z \in T_1$.

Remark 2.16. By letting t = 0 and $r(z) \in R_{m,n}$, we get that if $r(z) = \frac{s(z)}{w(z)}$ and c_1, c_2, \ldots, c_m are the zeros of s(z) all lying in $T_1 \cup D_1^+$, then

$$|r'(z)| \le \frac{1}{2} [|B'(z)| - n + m] |r(z)|$$

for $z \in T_1$. That is, Corollary 2.15 reduces to Theorem 1.2.

3. Conclusions

In this paper, we generalize well-know inequalities for the modulus of derivative of rational functions. The results are as follows:

1. A lower bound of a modulus of the derivative of rational functions

$$r(z) = \frac{(z - z_0)^t s(z)}{w(z)} \in R_{m,n},$$

where r(z) has the zero z_0 with $|z_0| > k$ and the remaining m - t zeros lie in $T_k \cup D_k^-, k \leq 1$.

2. An upper bound of a modulus of the derivative of rational functions

$$r(z) = \frac{z^t s(z)}{w(z)} \in R_{m,n},$$

where r(z) has exactly *n* poles and all the zeros of r(z) lie in $T_k \cup D_k^+, k \ge 1$ except the zeros of order *t* lying in the origin.

3. An upper bound of a modulus of the derivative of rational functions

$$r(z) = \frac{(z - z_0)^t s(z)}{w(z)} \in R_{m,n}$$

where r(z) has the zero z_0 with $|z_0| < k$ and the remaining m - t zeros lie in $T_k \cup D_k^+, k \ge 1$.

4. Future scope of work

Future research could focus on extending known inequalities for the modulus of rational functions to composite functions. This could expand the scope of zeros within a variety of regions of the complex plane.

Acknowledgment

The first author is supported by Faculty of Science at Sriracha Campus, Kasetsart University, Thailand. The second author is supported by Faculty of Science, Nakhon Phanom University, Thailand.

References

- Aziz A., Shah W. M., Some properties of rational functions with prescribed poles and restricted zeros, Math. Balkanica, 19 (2004), 33-40.
- [2] Aziz A., Zargar B. A., Some properties of rational functions with prescribed poles, Canad. Math. Bull., 42 (1999), 417-426.
- [3] Ahanger U. M., Shah W. M., inequalities for the Derivatives of Rational Functions with Prescribed Poles and Restricted Zeros, Vestnik St. Petersb. Univ. Math., 56 (2023), 392-402.
- [4] Bernstein S., Lecons sur les propriétés extrémales et la meilleure approximation des functions analytique d'une variable réelle, Gauthier Villars, Paris, 1926.

- [5] Gulzar M. H., Zargar B. A., Akhter Rubia, Some inequalities for the rational functions with prescribed poles and restricted zeros, J. Anal., 30 (2021), 35-41.
- [6] Gupta P., Hans S., Mir A., Generalizations of some inequalities for rational functions with prescribed and restricted zeros, Anal. Math. Phys., 12 (2022), 34.
- [7] Lax P. D., Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. (N.S.), 50 (1944), 509-513.
- [8] Li X., Mohapatra R. N., Rodgriguez R. S., Bernstein-type inequalities for rational functions with prescribed poles, J. Lond. Math. Soc., 51 (1995), 523-531.
- [9] Mir M. Y., Wali S. L., Shah W. M., Improvement of some inequalities for rational functions, J. Math. Sci., 271 (2023), 546-554.
- [10] Mir M. Y., Wali S. L., Shah W. M., Generalizations of certain well-know inequalities for rational functions, Prol. Anal. Issue Anal., 12 (2023), 25–33.
- [11] Turán P., Über die Ableitung von Polynomen, Compos. Math., 7 (1939), 89-95.