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1. Introduction
The property

∞∑
n=0

yntn =
1

∞∑
m=0

zmt
m

, y0 = z0 = 1, (1)
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is very interesting because automatically it implies the Cauchy convolution [13,
22]:

n∑
k=0

zkyn−k = 0, n ≥ 1, (2)

and the connection between yj and zk via the partial Bell polynomials [7, 8, 11,
14, 21, 28, 29]:

yn =
1

n!

n∑
k=0

(−1)kk!Bn,k(1!z1, 2!z2, · · · , (n− k + 1)!zn−k+1), n ≥ 0. (3)

For example, for the Bernoulli polynomials [5, 20, 25] we can construct the differ-
ences between them and the corresponding Bernoulli numbers:

Qm(y) := Bm(y)−Bm, Bm = Bm(0), m ≥ 0, Q0(y) = 0, (4)

that is:

Q1(y) = y, Q2(y) = y2 − y, Q3(y) = y3 − 3

2
y2 +

1

2
y, Q4(y) = y4 − 2y3 + y2, (5)

then it is possible to obtain the properties [9, 19]:

∞∑
n=0

xn+1tn

(n+ 1)!
Qn+1

(
1

x

)
=

1
∞∑

m=0

tm

(m+ 1)!x
Qm+1(x)

, (6)

n∑
k=0

xk

(k + 1)!(n− k + 1)!
Qk+1

(
1

x

)
Qn−k+1(x) = 0, n ≥ 1, (7)

Qn+1

(
1

x

)
=

(n+ 1)
n∑

k=0

(−1)kk!

xn+k+1
Bn,k

(
1

2
Q2(x),

1

3
Q3(x), · · · ,

1

n− k + 2
Qn−k+2(x)

)
, (8)

n ≥ 0,
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in harmony with (1), (2) and (3).
The classical Bernoulli polynomials Bn(x) and the classical Euler polynomials

En(x), together with their familiar generalizations B
(α)
n (x) and E

(α)
n (x) of (real

or complex) order α, are usually defined by means of the following generating
functions (See [18, 23]):(

z

ez − 1

)α

exz =
∞∑
n=0

B(α)
n (x)

zn

n!
(|z| < 2π; 1α := 1) (9)

and (
2

ez + 1

)α

exz =
∞∑
n=0

E(α)
n (x)

zn

n!
(|z| < π; 1α := 1), (10)

so that, obviously,

Bn(x) := B(1)
n (x) and En(x) := E(1)

n (x) (n ∈ N0), (11)

where
N0 = N ∪ {0} (N := {1, 2, 3, · · · }).

For the classical Bernoulli numbers Bn and the classical Euler numbers En, we
readily find from (11) that

Bn := Bn(0) = B(1)
n (0) and En := En(0) = E(1)

n (0) (n ∈ N0). (12)

Some interesting analogues of the classical Bernoulli polynomials and numbers were
investigated by Apostol [4] and by Srivastava [24].

Motivated by the generalizations in (9) and (10) of the classical Bernoulli poly-
nomials and the classical Euler polynomials involving a real or complex parameter
α, the authors [15] introduced and investigated the so-called Apostol–Bernoulli
polynomials of order α and the Apostol–Euler polynomials of order α. These poly-
nomials and numbers have numerous important applications in Combinatorics,
Number theory and Numerical analysis. They have therefore been studied exten-
sively over the last two decades.

The difference between Apostol-Bernoulli polynomials, Apostol-Euler polyno-
mials and other polynomials are elaborated in [27] (also see in [16, 17]).

In [26], the authors have established some generating functions for the gener-
alized Gauss type hypergeometric type function which was introduced by them.
Further, in [1], the authors have established certain generating functions for the
generalized Gauss hypergeometric functions.
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In [10], the authors discussed a comparative study on generating function rela-
tions for generalized hypergeometric functions via generalized fractional operators.

By the motivation of the works reported in [1, 26], in [2], the authors have
established certain new integrals involving the generalized Gauss hypergeometric
function, generalized confluent hypergeometric function, and the Laguerre Polyno-
mials.

In [3], the authors have introduced a trustworthy method for solving a mathe-
matical physics model of fractional-order, advection–dispersion equation, numeri-
cally. This method was based on a class of orthogonal polynomials which is called
the shifted Vieta–Lucas polynomials. In [12], the authors considered the shifted
Legendre polynomials for constructing the numerical solution for a class of multi-
term variable-order fractional differential equations.

This paper is organized as follows. In the Section 2, we consider certain type
of generating functions which allow to deduce relations like to (1), which have
immediate application to Apostol-Bernoulli and Apostol-Euler polynomials [6, 16,
17].

2. Generating Functions
We put attention to functions with the following structure:

R(x, t) = γ(t)
f(xt)

f(t)
, (13)

where we can make the changes:

x → 1

x
and t → xt, (14)

to obtain that:

R(
1

x
, xt) = γ(xt)

f(t)

f(xt)
= γ(xt)γ(t)

1

γ(t)
f(xt)

f(t)

=
γ(xt)γ(t)

R(x, t)
. (15)

If now we accept that R(x, t) is a generating function:

∞∑
n=0

Nn(x)
tn

n!
= R(x, t), (16)

then (15) gives the opportunity to construct relations type (1) if in (16) we apply
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the changes (14), in fact:

∞∑
n=0

Nn

(
1

x

)
xntn

n!
=

γ(xt)γ(t)
∞∑

m=0

Nm(x)
tm

m!

. (17)

We can consider two special cases:
Case 1. γ(t) = Constant = a with f(0) ̸= 0
Thus, from (13) and (16):

∞∑
n=0

Nn(x)
tn

n!
= a

f(xt)

f(t)
∴ N0(x) = a ̸= 0, (18)

hence (17) implies the expression:

∞∑
n=0

1

a
Nn

(
1

x

)
xntn

n!
=

1
∞∑

m=0

1

a
Nm(x)

tm

m!

, (19)

with the structure (1) such that:

yn =
1

a
Nn

(
1

x

)
xn

n!
, zm =

1

a
Nm(x)

1

m!
, y0 = z0 = 1, (20)

thus (2) and (3) generate the interesting identities:

n∑
k=0

(
n

k

)
Nk(x)Nn−k

(
1

x

)
xn−k = 0, n ≥ 1, (21)

Nn

(
1

x

)
=

1

xn

n∑
k=0

(−1)kk!

ak−1
Bn,k (N1(x), N2(x), · · · , Nn−k+1(x)) , n ≥ 0. (22)

For the Apostol-Euler polynomials[6, 16, 17] we have the relation:

∞∑
n=0

Hn (x;λ)
tn

n!
=

2(λext + 1)

λet + 1
, (23)
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that is:

Nn(x) = Hn(x;λ), f(t) = λet + 1, a = 2, (24)

therefore, from (21) and (22):

n∑
k=0

(
n

k

)
Hk(x;λ)Hn−k

(
1

x
;λ

)
xn−k = 0, n ≥ 1, (25)

Hn

(
1

x
;λ

)
=

1

xn

n∑
k=0

(−1)kk!

2k−1
Bn,k (H1(x;λ), H2(x;λ), · · ·, Hn−k+1(x;λ)) , (26)

n ≥ 0.

Case 2. γ(t) = t with f(0) ̸= 0
Then, from (13) and (16):

∞∑
n=0

Nn(x)
tn

n!
= t

f(xt)

f(t)
, ∴ N0(x) = 0, N1(x) = 1, (27)

and (17) gives the expression:

∞∑
j=0

Nj+1

(
1

x

)
xj

(t+ 1)!
tj =

1
∞∑
l=0

Nl+1(x)
tl

(l + 1)!

, (28)

in accordance with (1) such that:

yj = Nj+1

(
1

x

)
xj

j + 1
, zl = Nl+1(x)

1

(l + 1)!
, y0 = z0 = 1, (29)

hence from (2) and (3):

n∑
k=0

(
n+ 2

k + 1

)
Nk+1(x)Nn−k+1

(
1

x

)
xn−k = 0, n ≥ 1, (30)

Nn+1

(
1

x

)
=

n+ 1

xn

n∑
k=0

(−1)kk!Bn,k

(
1

2
N2(x),

1

3
N3(x), · · ·,

1

n− k + 2
Nn−k+2(x)

)
, (31)

n ≥ 0.
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For the Apostol-Bernoulli polynomials [6, 16, 17] we have the expression:

∞∑
n=0

Dn (x;λ)
tn

n!
=

t(λext − 1)

λet − 1
, (32)

that is:

Nn(x) = Dn(x;λ), f(t) = λet − 1, λ ̸= 1, (33)

then (30) and (31) imply the following identities:

n∑
k=0

(
n+ 2

k + 1

)
Dk+1 (x;λ)Dn−k+1

(
1

x
;λ

)
xn−k = 0, n ≥ 1, (34)

Dn+1

(
1

x
;λ

)
=

n+ 1

xn

n∑
k=0

(−1)kk!Bn,k

(
D2(x;λ)

2
,
D3(x;λ)

3
, · · ·, Dn−k+2(x;λ)

n− k + 2

)
, (35)

n ≥ 0.

3. Conclusion
In this paper, it is shown that the generating functions of the type

R(x, t) = γ(t)
f(xt)

f(t)
allow us to construct Cauchy convolutions for the Apostol-

Euler and Apostol-Bernoulli polynomials and their connection with partial Bell
Polynomials. Furthermore, in the generating functions the series are formal re-
gardless of their convergence; by the way, it is evident that the Bell polynomials
are convergent. These works further can be extended to generalizations of the
Apostol–Bernoulli and Apostol–Euler polynomials.
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