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1. Introduction and Definitions
Huang and Zhang [7] proposed the idea of cone metric space. They define cone

metric space and order Banach space in lieu of real numbers in this study. The
fixed point theorem in cone metric spaces ensures that this map must have a unique
fixed point. They also provided an example of a function that is contraction in the
cone metric category but not contraction when evaluated across metric spaces.

Later, in cone metric space, Rezapour and Halbarani [13] did not include the
normalcy assumption. Subsequently, a number of publications in cone metric space
began to surface (see to [3, 4, 8, 12, 14, 15] and their references).

Many authors improved the classical concept of metric space by changing the
metric criteria. The Banach contraction principle is an important technique for de-
termining the existence of solutions to mathematical models of real-world situations
including functional, differential, integral, matrix, and other forms of equations.
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Theorists have long sought to better the contractive condition and the underlying
space. The process of developing new fixed point theorems in the complete metric
spaces is in progress under various new restrictions. In this regard, we can find
very nice results that appeared in [1, 2, 6, 10, 11] and their references.

Let E be a real Banach space. A subset P of E is called a cone if

1. P is closed, non-empty and P ̸= 0

2. a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P

3. P ∩ (−P ) = 0.

Given a cone P ⊂ E we define the partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P . We write x < y to denote that x ≤ y but x ̸= y, while
x << y will stand for y − x ∈ int.P (interior of P ).

There are two kinds of cone. They are normal cone and non-normal cones. A
cone P ⊂ E is normal if there is a number K > 0 such that for all x, y ∈ P ,
0 ≤ x ≤ y ⇒∥ x ∥≤ K ∥ y ∥. In other words if xn ≤ yn ≤ zn and limn→∞xn =
limn→∞zn = x imply limn→∞yn = x. Also, a cone P ⊂ E is regular if every
increasing sequence which is bounded above is convergent.

Definition 1.1. [7] Let X be a nonempty set. Suppose the mapping d : X×X → E
satisfies the following conditions:

1. 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.2. [7] Let (X, d) be a cone metric space(CMS), x ∈ X and {xn}n≥1

be a sequence in X. Then,

1. {xn}n≥1 converges to x whenever for every c ∈ E with 0 << c there is a
natural number N such that d(xn, x) << c for all n ≥ N . It is denoted by
limn→∞xn = x or xn → x.

2. {xn}n≥1 is a Cauchy sequence whenever for every c ∈ E with 0 << c there is
a natural number N such that d(xn, xm) << c for all n,m ≥ N

3. (X, d) is a complete cone metric space if every Cauchy sequence is convergent.
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Definition 1.3. [7] Let (X, d) be a cone metric space(CMS), P be a normal cone
with normal constant K and {xn} be a sequence in X. Then, the sequence {xn}
converges to x if and only if d(xn, x) → 0 or ∥ d(xn, x) ∥→ 0 as n → ∞.

Let us recall that a mapping T on metric space (X, d) is called a Kannan [9]
contraction if there exists α ∈ [0, 1

2
) such that

d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty)

for all x, y ∈ X.
In the year 2006, Huang and Zhang [7] proved cone version of Kannan [9]

contraction as:

Theorem 1.4. [7] Let (X, d) be a complete cone metric space and P a normal cone
with normal constant K. Suppose a mapping T : X → X satisfies the contractive
condition

d(Tx, Ty) ≤ k[d(Tx, x) + d(Ty, y)], for all x, y ∈ X, (1)

where k ∈ [0, 1
2
) is a constant. Then T has a unique fixed point in X. And for any

x ∈ X, iterative sequence, {T nx} converges to the fixed point.
In 1972, Chatterjea [5] obtained a similar result by considering a constant λ ∈

[0, 1
2
) and a mapping T : X → X such that

d(Tx, Ty) ≤ λ[d(x, Ty) + d(y, Tx)].

Also, in the year 2006, Huang and Zhang [7] proved cone version of Chatterjea
contraction as:

Theorem 1.5. [7] Let (X, d) be a complete cone metric space and P a normal cone
with normal constant K. Suppose the mapping T : X → X satisfies the contractive
condition

d(Tx, Ty) ≤ k[d(Tx, y) + d(Ty, x)], for all x, y ∈ X, (2)

where k ∈ [0, 1
2
) is a constant. Then T has a unique fixed point in X. And for any

x ∈ X, iterative sequence, {T nx} converges to the fixed point.

2. Preliminary Theorems
Let X be a nonempty set and let D : X × X → E be a given mapping. For

every x ∈ X, let us define the set

C(D,X, x) =
{
{xn} ⊂ X : lim

n→∞
D(xn, x) = 0

}
Definition 2.1. D is called a generalised cone metric on X if it satisfies the
following conditions:
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1. For every (x, y) ∈ X ×X, we have D(x, y) = 0 ⇒ x = y.

2. For all (x, y) ∈ X ×X, we have D(x, y) = D(y, x).

3. There exixts a real constant C > 0 such that, for all (x, y)inX × X and
{xn} ∈ C(D,X, x), we have D(x, y) ≤ C limn→∞ supD(xn, y).

The pair (X,D) is called a generalised cone metric space.

Remark 2.2. If the set C(D,X, x) is empty for every x ∈ X, then (X,D) is a
generalised cone metric space if and only if 1 and 2 are satisfied.

Definition 2.3. Let (X,D) be a generalised cone metric space, let {xn} be a
sequence in X and let x ∈ X. We say that {xn} is D−converges to x in X if
{xn} ∈ C(D,X, x).

Remark 2.4. Let {xn} be the sequence defined by xn = x for all n ∈ N . If it
D-converges to x, then D(x, x) = 0.

Definition 2.5. Let (X,D) be a generalised cone metric space. A sequence {xn}
in X is called a D-Cauchy sequence if

lim
m,n→∞

D(xn, xm, x) = 0.

The space (X,D) is said to be D−complete if every D-Cauchy sequence in X is
D−convergent to some element in X.

Definition 2.6. Let (X,D) be a generalised cone metric space and let {xn} be a
sequence in X. We say that {xn} is a D−Cauchy sequence in if

lim
m,n→∞

D(xn, xm, x) = 0.

Proposition 2.7. C(D,X, x) is a non-empty set if and only if D(x, x) = 0.
Proof. If C(D,X, x) ̸= ϕ, then there exists a sequence {xn} ⊂ X such that
limn→∞ D(xn, x) = 0. Using property 3, we obtain

D(x, x) ≤ C lim
n→∞

supD(xn, x),

and thus D(x, x) = 0. Assume that D(x, x) = 0. The sequence {xn} ⊂ X defined
by xn = x for all n ∈ N D-converges to x, which ends the proof.

The focus of this work is on the cone version contraction types of Kannan
and Chatterjea. We prove certain fixed point findings in the recently released
generalised cone metric spaces. In order to demonstrate the usefulness of the
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outcomes, we also provide a few instances.

3. Main Theorems

Proposition 3.1. Let (X,D) be a generalised cone metric space and let T : X → X
be a mapping satisfying inequality (1) for some λ ∈ [0, 1

2
). Then any fixed point

u ∈ X of T satisfies
D(u, u) < ∞ ⇒ D(u, u) = 0.

Proof. Let u ∈ X be a fixed point of T such that D(u, u) < ∞. Using (1), we
obtain

D(u, u) = D(Tu, Tu)

= λ(D(u, Tu) +D(u, Tu))

= 2λD(u, u).

Since 2λ ∈ [0, 1), we obtain D(u, u) = 0. For every x ∈ X, we define

δ(D,T, x) = sup
{
D(T ix, T jx) : i, j ∈ N

}
.

Theorem 3.2. Let (X,D) be a D−complete generalised cone metric space and
let T be a self-mapping on X satisfying (1) for some constant λ ∈ [0, 1

2
) such that

Cλ < 1.
If there exists an element x0 ∈ X such that δ(D,T, x0) < ∞, then the sequence{

T n
}
D-converges to some u ∈ X. Moreover, if D(u, Tu) < ∞, then u is a fixed

point of T . Moreover, for each fixed point u
′
of T in X such that D(u

′
, u

′
) < ∞,

we have u = u
′
.

Proof. Let n ∈ N(n ≥ 1). For all i, j ∈ N , we have

D(T n+ix0, T
n+jx0) ≤ λ[D(T n+i−1)x0, T

n+ix0 +D(T n+j−1)x0, T
n+jx0]

and then
D(T n+ix0, T

n+jx0) ≤ 2λδ(D,T, T n−1x0),

which gives
δ(D,T, T nx0) ≤ 2λδ(D,T, T n−1x0).

Consequently, we obtain

δ(D,T, T nx0) ≤ (2λ)nδ(D,T, x0)

and
D(T nx0, T

mx0) ≤ δ(D,T, T nx0) ≤ (2λ)nδ(D,T, x0) (3)
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for all integers m such that m > n. Since δ(D,T, x0) < ∞ and 2λ ∈ [0, 1), we
obtain

lim
m,n→∞

D(T nx0, T
mx0) = 0.

It follows that {T nx0} is a D-Cauchy sequence and thus there exists u ∈ X such
that

lim
n→∞

D(T nx0, u) = 0

and
D(Tu, u) ≤ C lim

n→∞
supD(Tu, T n+1x0. (4)

By (1), we have

D(T n+1x0, Tu) ≤ λ(D(T n+1x0, T
nx0) +D(u, fu)). (5)

By (3) and (5) we obtain

lim
n→∞

D(Tw, T n+1x0) ≤ λD(u, Tu).

Using (4), we obtain
D(u, Tu) ≤ CλD(u, Tu).

Since Cλ < 1 and D(u, Tu) < ∞, we deduce that D(u, Tu) = 0, which implies
that Tu = u. If u

′
is any fixed point of T such that D(u

′
, u

′
) < ∞, we obtain

D(u, u
′
) = D(Tu, Tu

′
)

≤ λ(D(Tu, u) +D(Tu
′
, u

′
))

≤ λ(D(u, u) +D(u
′
, u

′
))

≤ 0

which implies u
′
= u.

Example 3.3. Let X = [0, 1], E = [0,∞) and let D : X×X → E be the mapping
defined by

D(x, y) = {x+ y if x ̸= 0 and y ̸= 0

D(0, x) = D(x, 0) =
x

2
for all x ∈ X.

conditions 1 and 2 are trivially satisfied. By Proposition 2.7 we need to verify
condition 3 only for elements x of X such that D(x, x) = 0, which implies that
x = 0.
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Let {xn} ⊂ X be a sequence such that limn→∞D(xn, 0) = 0. For all n ∈ N and
y ∈ X, we have:

D(xn, y) = xn + y if xn ̸= 0

D(xn, y) =
y

2
if xn = 0.

Then
y

2
≤ D(xn, y),

which implies that

D(0, y) =
y

2
≤ lim

n→∞
supD(xn, y).

It follows that (X,D) is a generalised cone metric space that is not a standard
metric space since the triangular inequality does not hold: If x, y ∈ X − {0}, then
we have D(x, y) = x+ y and D(x, 0) +D(0, y) = x+y

2
, and thus

D(x, y) > D(x, 0) +D(0, y).

Note that (X,D) is D-complete. Define the mapping f on X by

f(x) =
x

x+ 2
for all x ∈ X.

For any x ∈ X, we have:

D(f(x), f(0)) = D(
x

x+ 2
, 0) =

x

2(x+ 2)

and
D(f(x), x) +D(0, T (0)) = D(

x

x+ 2
, x) +D(0, 0) =

x

x+ 2
+ x.

Then

D(f(x), f(0)) ≤ 1

3
(D(f(x), x) +D(0, f(0))).

For x, y ∈ X − {0}, we have

D(f(x), f(y)) = D(
x

x+ 2
,

y

y + 2
) =

x

2(x+ 2)
+

y

2(y + 2)

and

D(f(x), x) +D(y, f(y)) = D(
x

x+ 2
, x) +D(y,

y

y + 2
) =

x

x+ 2
+

y

y + 2
+ x+ y.
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Then

D(f(x), f(y)) ≤ 1

3
[D(f(x), x) +D(y, f(y))].

The hypothesis of Theorem 3.2 are satisfied. Therefore f has a unique fixed point
since D is bounded and f(0) = 0.

Lemma 3.4. Let λ be a real number such that 0 ≤ λ < 1 and let {bn} be a
sequence of positives real numbers such that limn→∞ bn = 0. Then, for any sequence
of positives numbers {an} satisfying

an+1 ≤ λan + bn for all n ∈ N,

we have

lim
n→∞

an = 0

Theorem 3.5. Let (X,D) be a D−complete generalised cone metric space, λ ∈
[0, 1

2
) and let T a self-mapping on X such that

D(Tx, Ty) ≤ λ(D(y, Tx) +D(x, Ty)) (6)

for all x, y ∈ X. If there exists a point x0 ∈ X such that δ(D,T, x0) < ∞, then the
sequence {T nx0} D-converges to u ∈ X. Moreover, if D(x0, Tu) < ∞, then u is a
fixed point of T , and for any fixed point u

′
of T such that D(u, u

′
) < ∞, we have

u = u
′
.

Proof. Let n ∈ N(n ≥ 1). For all integers i, j, we have

D(T n+ix0, T
n+jx0) ≤ λ[D(T n+ix0, T

n+j−1x0) +D(T n+i−1x0, T
n+jx0)]

which implies that

D(T n+ix0, T
n+jx0) ≤ 2λδ(D,T, T n−1x0).

Hence

δ(D,T, T nx0) ≤ 2λδ(D,T, T n−1x0)

and consequently

δ(D,T, T nx0) ≤ (2λ)nδ(D,T, x0).

This inequality implies that

D(T nx0, T
mx0) ≤ δ(D,T, T nx0) ≤ (2λ)nδ(D,T, x0)
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for all integers n,m such that m > n. Since δ(D,T, x0) < ∞ and 2λ ∈ [0, 1), we
obtain

lim
m,n→∞

D(T nx0, T
mx0) = 0.

It follows that {T nx0} is a D-Cauchy sequence and thus there exists u ∈ X such
that

lim
n→∞

D(T nx0, u) = 0.

By (3) we have

D(T nx0, u) ≤ C lim
n→∞

supD(T nx0, T
mx0) ≤ (2λ)nCδ(D,T, x0) ≤ Cδ(D,T, x0).

Then
D(T nx0, u) < ∞ for all n ∈ N.

By (6) we have

D(T n+1x0, Tu) ≤ λ[D(T n+1x0, u) +D(T nx0, Tu)].

Since D(x0, Tu) < ∞, we have D(T nx0, Tu) < ∞ for all n ∈ N . By Lemma 3.4,
we obtain

lim
n→∞

D(T nx0, Tu) = 0.

It follows that Tu = u.
Let u

′
be any fixed point of X. Then we have

D(u, u
′
) = D(Tu, Tu

′
)

≤ λ(D(Tu, u
′
) +D(Tu

′
, u))

≤ λ(D(u, u
′
) +D(u

′
, u))

≤ 2λD(u, u
′
).

Since D(u, u
′
) < ∞, we obtain D(u, u

′
) = 0 which ends the proof.

Example 3.6. Let X = [0, 1], E = [0,∞) be defined by

D(x, 1) = D(1, x) = ∞ for all x ∈ [0, 1]

D(x, y) = x+ y if x ̸= 1 and y ̸= 1.

It is easy to see that (X,D) is a D-complete generalised come metric space with
C = 1.
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Consider the function f : [0, 1] → [0, 1] given by

f(x) =
1

2
x if x ∈ [0, 1[,

f(1) = 1.

The function f satisfies (6) with λ = 1
3
in (X,D). By theorem 3.5 f has a fixed

point.
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