J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 11, No. 1 (2023), pp. 145-158 DOI: 10.56827/JRSMMS.2023.1101.10 ISSN (Online):

ISSN (Online): 2582-5461 ISSN (Print): 2319-1023

α -PRECOMPACT SPACE IN FUZZY TOPOLOGICAL SPACE

Anjana Bhattacharyya

Department of Mathematics Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, INDIA E-mail : anjanabhattacharyya@hotmail.com

(Received: Oct. 27, 2023 Accepted: Dec. 27, 2023 Published: Dec. 30, 2023)

Abstract: In this paper we introduce and study a new type of compactness, viz., fuzzy α -precompactness by using fuzzy α -preopen set [1] as a basic tool. Here we also characterize this space by fuzzy net and prefilterbase. We have shown that fuzzy α -precompactness implies fuzzy almost compactness [4] and the converse is true only on fuzzy α -preregular space [1].

Keywords and Phrases: Fuzzy α -preopen set, fuzzy α -preregular space, fuzzy regularly α -preclosed set, fuzzy α -precompact set (space), α -preadherent point of a prefilterbase, α -precluster point of a fuzzy net.

2020 Mathematics Subject Classification: 54A40, 03E72.

1. Introduction

In [4], fuzzy almost compactness is introduced. In this paper we introduce fuzzy α -precompactness which is weaker than fuzzy almost compactness. Here we use fuzzy net [8] and prefilterbase [6] to characterize fuzzy α -precompactness.

2. Preliminary

Throughout this paper, (X, τ) or simply by X we shall mean an fts. In 1965, L.A. Zadeh introduced fuzzy set [9] A which is a function from a non-empty set X into the closed interval I = [0, 1], i.e., $A \in I^X$. The support [9] of a fuzzy set A, denoted by suppA and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t \ (0 < t \leq 1)$ will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [9] of a fuzzy set A in an fts X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A, B in $X, A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [9] while AqB means A is quasi-coincident (q-coincident, for short) [8] with B, i.e., there exists $x \in X$ such that A(x) + B(x) > 1. The negation of these two statements will be denoted by $A \not\leq B$ and $A \not AB$ respectively. For a fuzzy set A, clA and intA will stand for fuzzy closure [3] and fuzzy interior [3] of A respectively. A fuzzy set A in X is called a fuzzy neighbourhood (fuzzy nbd, for short) [8] of a fuzzy point x_t if there exists a fuzzy open set G in X such that $x_t \in G \leq A$. If, in addition, A is fuzzy open, then A is called fuzzy open nbd of x_t . A fuzzy set A is said to be a fuzzy q-nbd of a fuzzy point x_t in an fts X if there is a fuzzy open set U in X such that $x_tqU \leq A$. If, in addition, A is fuzzy open, then A is called a fuzzy open q-nbd [8] of x_t .

A fuzzy set A in an fts (X, τ) is called fuzzy α -open [2] if $A \leq int(cl(intA))$. The complement of a fuzzy α -open set is called fuzzy α -closed [2]. The union (intersection) of all fuzzy α -open (resp., fuzzy α -closed) sets contained in (resp., containing) a fuzzy set A is called fuzzy α -interior [2] (resp., fuzzy α -closure [2]) of A, denoted by $\alpha intA$ (resp., αclA).

Let (D, \geq) be a directed set and X be an ordinary set. Let J denote the collection of all fuzzy points in X. A function $S: D \to J$ is called a fuzzy net in X [8]. It is denoted by $\{S_n : n \in (D, \geq)\}$. A non empty family \mathcal{F} of fuzzy sets in X is called a prefilterbase on X if (i) $0_X \notin \mathcal{F}$ and (ii) for any $U, V \in \mathcal{F}$, there exists $W \in \mathcal{F}$ such that $W \leq U \bigcap V$ [6].

3. Fuzzy α -Preopen Sets : Some Prerequisites

In this section we recall some definitions and results from [1, 3, 4, 5, 7] for ready references. Also some new results are established here.

Definition 3.1. [1] A fuzzy set A in an fts (X, τ) is called fuzzy α -preopen if $A \leq \alpha int(clA)$. The complement of this set is called fuzzy α -preclosed set.

The union (resp., intersection) of all fuzzy α -preopen (resp., fuzzy α -preclosed) sets contained in (containing) a fuzzy set A is called fuzzy α -preinterior (resp., fuzzy α -preclosure) of A, denoted by $\alpha pintA$ (resp., $\alpha pclA$).

Definition 3.2. [1] A fuzzy set A in an fts (X, τ) is called fuzzy α -prenbd of a fuzzy point x_t in X if there exists a fuzzy α -preopen set U in X such that $x_t \in U \leq A$. If, in addition, A is fuzzy α -preopen, then A is called fuzzy α -preopen nbd of x_t .

Definition 3.3. [1] A fuzzy set A in an fts (X, τ) is called fuzzy α -pre q-nbd of a fuzzy point x_t in X if there exists a fuzzy α -preopen set U in X such that $x_t qU \leq A$.

If, in addition, A is fuzzy α -preopen, then A is called fuzzy α -preopen q-nbd of x_t .

Result 3.4. [1] Union (resp., intersection) of any two fuzzy α -preopen (resp., fuzzy α -preclosed) sets is also so.

Result 3.5. [1] $x_t \in \alpha pclA$ if and only if every fuzzy α -preopen q-nbd U of x_t , UqA.

Result 3.6. [1] $\alpha pcl(\alpha pclA) = \alpha pclA$ for any fuzzy set A in an fts (X, τ) .

Result 3.7. $\alpha pcl(A \lor B) = \alpha pclA \lor \alpha pclB$, for any two fuzzy sets A, B in X. **Proof.** It is clear that

$$\alpha pclA \bigvee \alpha pclB \subseteq \alpha pcl(A \bigvee B) \tag{1}$$

Conversely, let $x_t \in \alpha pcl(A \lor B)$. Then for any fuzzy α -preopen q-nbd U of x_t , $Uq(A \lor B) \Rightarrow$ there exists $y \in X$ such that $U(y) + max\{A(y), B(y)\} > 1 \Rightarrow$ either $U(y) + A(y) > 1 \Rightarrow UqA$ or $U(y) + B(y) > 1 \Rightarrow UqB \Rightarrow$ either $x_t \in \alpha pclA$ or $x_t \in \alpha pclB \Rightarrow x_t \in \alpha pclA \lor \alpha pclB$.

Result 3.8. For any fuzzy set A in an fts (X, τ) ,

(i) $\alpha pcl(1_X \setminus A) = 1_X \setminus \alpha pintA$,

(ii) $\alpha pint(1_X \setminus A) = 1_X \setminus \alpha pclA.$

Proof. (i). Let $x_t \in \alpha pcl(1_X \setminus A)$ for any $A \in I^X$. If possible, let $x_t \notin 1_X \setminus \alpha pintA$. Then $x_tq(\alpha pintA)$. Then there exists a fuzzy α -preopen set B in X with $B \leq A$ such that x_tqB . Then B is a fuzzy α -preopen q-nbd of x_t . By assumption, $Bq(1_X \setminus A) \Rightarrow Aq(1_X \setminus A)$, which is absurd.

Conversely, let $x_t \in 1_X \setminus \alpha pintA$ for any $A \in I^X$. Then $x_t \not(\alpha pintA)$ and so $x_t \not/ qU$ for any fuzzy α -preopen set U in X with $U \leq A \Rightarrow x_t \in 1_X \setminus U$ which is fuzzy α -preclosed set in X with $1_X \setminus A \leq 1_X \setminus U$. So $x_t \in \alpha pcl(1_X \setminus A)$. (ii) Writing $1_X \setminus A$ for A in (i), we get the result.

Definition 3.9. Let A be a fuzzy set in an fts (X, τ) . A collection \mathcal{U} of fuzzy sets in X is called a fuzzy cover of A if $\sup\{U(x) : U \in \mathcal{U}\} = 1$, for each $x \in \operatorname{supp} A$ [5]. If each member of \mathcal{U} is fuzzy open (resp., fuzzy α -preopen), we call \mathcal{U} is fuzzy open [5] (resp., fuzzy α -preopen) cover of A. In particular, if $A = 1_X$, we get the definition of fuzzy cover of X [3].

Definition 3.10. A fuzzy cover \mathcal{U} of a fuzzy set A in an fts (X, τ) is said to have a finite (resp., finite proximate) subcover \mathcal{U}_0 if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such that $\bigvee \mathcal{U}_0 \ge A$ [5] (resp., $\bigvee \{clU : U \in \mathcal{U}_0\} \ge A$ [7]). In particular, if $A = 1_X$, we get $\bigvee \mathcal{U}_0 = 1_X$ (resp., $\bigvee \{clU : U \in \mathcal{U}_0\} = 1_X$ [4]).

Definition 3.11. [4] An fts (X, τ) is called fuzzy almost compact space if every

fuzzy open cover has a finite proximate subcover.

4. Fuzzy α -Precompact Space

In this section we first introduce fuzzy α -precompactness and then characterize this space via fuzzy net and prefilterbase.

Definition 4.1. A fuzzy set A in an fts (X, τ) is said to be a fuzzy α -precompact set if every fuzzy α -preopen cover \mathcal{U} of A has a finite α p-proximate subcover, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\bigvee \{ \alpha pclU : U \in \mathcal{U}_0 \} \geq A$. If, in addition, $A = 1_X$, we say that the fts X is fuzzy α -precompact space.

Definition 4.2. Let x_t be a fuzzy point in an fts (X, τ) . A prefilterbase \mathcal{F} on X is called

(a) αp -adhere at x_t , written as $x_t \in \alpha p$ -ad \mathcal{F} , if for each fuzzy α -preopen q-nbd U of x_t and each $F \in \mathcal{F}$, $Fq(\alpha pclU)$, i.e., $x_t \in \alpha pclF$, for each $F \in \mathcal{F}$;

(b) αp -converge to x_t , written as $\mathcal{F} \overrightarrow{\alpha p} x_t$, if to each fuzzy α -preopen q-nbd U of x_t , there corresponds some $F \in \mathcal{F}$ such that $F \leq \alpha pclU$.

Definition 4.3. Let x_t be a fuzzy point in an fts (X, τ) . A fuzzy net $\{S_n : n \in (D, \geq)\}$ is said to

(a) αp -adhere at x_t , denoted by $x_t \in \alpha p$ -ad (S_n) , if for each fuzzy α -preopen q-nbd U of x_t and each $n \in D$, there exists $m \in D$ with $m \ge n$ such that $S_m q(\alpha pcl U)$;

(b) αp -converge to x_t , denoted by $S_n \overrightarrow{\alpha p} x_t$, if for each fuzzy α -preopen q-nbd U of x_t , there exists $m \in D$ such that $S_nq(\alpha pclU)$, for all $n \ge m(n \in D)$.

Theorem 4.4. For a fuzzy set A in an fts X, the following statements are equivalent:

(a) A is a fuzzy α -precompact set,

(b) for every prefilterbase \mathcal{B} in X, $[\bigwedge \{ \alpha pclB : B \in \mathcal{B} \}] \bigwedge A = 0_X \Rightarrow$ there exists a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $\bigwedge \{ \alpha pintB : B \in \mathcal{B}_0 \} \not A$,

(c) for any family \mathcal{F} of fuzzy α -preclosed sets in X with $\bigwedge \{F : F \in \mathcal{F}\} \bigwedge A = 0_X$, there exists a finite subcollection \mathcal{F}_0 of \mathcal{F} such that $\bigwedge \{\alpha \text{pint} F : F \in \mathcal{F}_0\} \not A$,

(d) every prefilterbase on X, each member of which is q-coincident with A, αp -adheres at some fuzzy point in A.

Proof. (a) \Rightarrow (b). Let \mathcal{B} be a prefilterbase in X such that $[\bigwedge\{\alpha pclB : B \in \mathcal{B}\}] \land A = 0_X$. Then for any $x \in suppA$, $[\bigwedge\{\alpha pclB : B \in \mathcal{B}\}](x) = 0 \Rightarrow 1 - [\bigwedge\{\alpha pclB(x) : B \in \mathcal{B}\}] = 1 \Rightarrow \bigvee[(1_X \setminus \alpha pclB)(x) : B \in \mathcal{B}] = 1 \Rightarrow sup\{\alpha pint(1_X \setminus B)(x) : B \in \mathcal{B}\} = 1 \Rightarrow \{\alpha pint(1_X \setminus B) : B \in \mathcal{B}\}$ is a fuzzy α -preopen cover of A. By (a), there exists a finite αp -proximate subcover $\{\alpha pint(1_X \setminus B_1), \alpha pint(1_X \setminus B_2), ..., \alpha pint(1_X \setminus B_n)\}$ (say) of it for A. Thus $A \leq \bigvee_{i=1}^n \alpha pcl(\alpha pint(1_X \setminus B_i))$

$$\begin{split} &= \bigvee_{i=1}^{n} [1_X \setminus apint(apclB_i)] = 1_X \setminus \bigwedge_{i=1}^{n} apint(apclB_i) \Rightarrow \bigwedge_{i=1}^{n} apint(apclB_i) \leq 1_X \setminus A \Rightarrow \\ &A \not A \not A \inf_{i=1}^{n} apint(apclB_i) \Rightarrow A \not A \bigwedge_{i=1}^{n} apintB_i. \\ &(b) \Rightarrow (a). Let the condition (b) hold, and suppose that there exists a fuzzy apresence over \mathcal{U} of A having no finite αp -proximate subcover for A . Then for every finite subcollection \mathcal{U}_0 of \mathcal{U} , there exists $x \in suppA$ such that $sup\{apclU(x) : U \in \mathcal{U}_0\} < A(x), i.e., 1 - sup\{(apclU)(x) : U \in \mathcal{U}_0\} > 1 - A(x) \geq 0 \Rightarrow inf\{(1_X \setminus apclU)(x) : U \in \mathcal{U}_0\} > 0. Thus \{\bigwedge_{U \in \mathcal{U}_0} (1_X \setminus apclU) : \mathcal{U}_0 \text{ is a finite subcollection of } \mathcal{U}\} \\ &(=\mathcal{B}, \text{say}) \text{ is a prefilterbase in } X. If there exists a finite subcollection $\{U_1, U_2, ..., U_n\}$ (say) of \mathcal{U} such that $\bigwedge_{i=1}^{n} apint(1_X \setminus apclU_i) / qA$, then $A \leq 1_X \setminus \bigwedge_{i=1}^{n} apint(1_X \setminus apclU_i) = \bigvee_{i=1}^{n} apclU_i$ (by Result 3.6). Thus \mathcal{U} has a finite αp -proximate subcover for A , contradicts our hypothesis. Hence for every finite subcollection $\{\sum_{U \in \mathcal{U}_i} (1_X \setminus apclU_i), ..., \sum_{U \in \mathcal{U}_i} (1_X \setminus apclU_i) \} of \mathcal{B},$ where $\mathcal{U}_1, ..., \mathcal{U}_k$ are finite subset of \mathcal{U} , we have $[\bigwedge_{U \in \mathcal{U}_i} (\sum_{U \in \mathcal{U}_i} (\sum_{$$$$

(c) \Rightarrow (b). Let \mathcal{B} be a prefilterbase in X such that $[\bigwedge \{ \alpha pclB : B \in \mathcal{B} \}] \bigwedge A = 0_X$. Then the family $\mathcal{F} = \{ \alpha pclB : B \in \mathcal{B} \}$ is a family of fuzzy α -preclosed sets in X with $(\bigwedge F) \bigwedge A = 0_X$. By (c), there is a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $[\bigwedge \{ \alpha pint(\alpha pclB) : B \in \mathcal{B}_0 \}] \not A A \Rightarrow (\bigwedge_{B \in \mathcal{B}_0} \alpha pintB) \not A A.$

(a) \Rightarrow (d). Let \mathcal{F} be a prefilterbase in X, each member of which is q-coincident with A. If possible, let \mathcal{F} do not αp -adhere at any fuzzy point in A. Then for each $x \in suppA$, there exists $n_x \in \mathcal{N}$ (the set of all natural numbers) such that $x_{1/n_x} \in A$. Then there are a fuzzy α -preopen set $U_{n_x}^x$ and a member $F_{n_x}^x$ of \mathcal{F} such that $x_{1/n_x}qU_{n_x}^x$ and $\alpha pclU_{n_x}^x/qF_{n_x}^x$. Thus $U_{n_x}^x(x) > 1 - 1/n_x$ so that $sup\{U_n^x(x) : n \in \mathcal{N}, n \ge n_x\} = 1$. Thus $\{U_n^x : n \in \mathcal{N}, n \ge n_x, x \in suppA\}$ forms a fuzzy α -preopen cover of A. By (a), there exist finitely many points $x_1, x_2, ..., x_k \in suppA$ and $n_1, n_2, ..., n_k \in \mathcal{N}$ such that $A \le \bigvee_{i=1}^k \alpha pclU_{n_{x_i}}^{x_i}$. Choose

 $F \in \mathcal{F}$ such that $F \leq \bigwedge_{i=1}^{k} F_{n_i}^{x_i}$. Then $F \not A[\bigvee_{i=1}^{k} \alpha pclU_{n_{x_i}}^{x_i}]$, i.e., $F \not A$, a contradiction. (d) \Rightarrow (a). If possible, let there exist a fuzzy α -preopen cover \mathcal{U} of A such

(d) \Rightarrow (a). If possible, let there exist a fuzzy α -preopen cover \mathcal{U} of A such that for every finite subset \mathcal{U}_0 of \mathcal{U} , $\bigvee \{ \alpha pclU : U \in \mathcal{U}_0 \} \not\geq A$. Then $\mathcal{F} = \{ 1_X \setminus \bigvee_{U \in \mathcal{U}_0} \alpha pclU : \mathcal{U}_0 \text{ is a finite subset of } \mathcal{U} \}$ is a prefilterbase on X such that FqA,

for each $F \in \mathcal{F}$. By (d), $\mathcal{F} \alpha p$ -adheres at some fuzzy point $x_t \in A$. As \mathcal{U} is a fuzzy cover of A, $\sup_{U \in \mathcal{U}} U(x) = 1 \Rightarrow$ there exists $U_0 \in \mathcal{U}$ such that $U_0(x) > 1 - t \Rightarrow x_t q U_0$. As $x_t \in \alpha p$ -ad \mathcal{F} and $1_X \setminus \alpha pclU_0 \in \mathcal{F}$, we have $\alpha pclU_0q(1_X \setminus \alpha pclU_0)$, a contradic-

As $x_t \in \alpha p$ -ad \mathcal{F} and $1_X \setminus \alpha pclU_0 \in \mathcal{F}$, we have $\alpha pclU_0q(1_X \setminus \alpha pclU_0)$, a contradiction.

Theorem 4.5. For a fuzzy set A in an fts X, the following implications hold : (a) every fuzzy net in A αp -adheres at some fuzzy point in A,

 \Leftrightarrow (b) every fuzzy net in A has a α p-convergent fuzzy subnet,

 \Leftrightarrow (c) every prefilterbase in A α p-adheres at some fuzzy point in A,

 $\Rightarrow (d) for every family \{B_{\gamma} : \gamma \in \Lambda\} of non-null fuzzy sets with \left[\bigwedge_{\gamma \in \Lambda} \alpha pcl B_{\gamma}\right] \bigwedge A =$

 0_X , there is a finite subset Λ_0 of Λ such that $(\bigwedge_{\gamma \in \Lambda_0} B_{\gamma}) \bigwedge A = 0_X$,

 \Rightarrow (e) A is fuzzy α -precompact set.

Proof. (a) \Rightarrow (b). Let a fuzzy net $\{S_n : n \in (D, \geq)\}$ in A where (D, \geq) is a directed set, αp -adhere at a fuzzy point $x_t \in A$. Let Q_{x_t} denote the set of the fuzzy α -preclosures of all fuzzy α -preopen q-nbds of x_t . For any $B \in Q_{x_t}$, we can choose some $n \in D$ such that S_nqB . Let E denote the set of all ordered pairs (n, B) with the property that $n \in D$, $B \in Q_{x_t}$ and S_nqB . Then (E, \gg) is a directed set where $(m, C) \gg (n, B)$ if and only if $m \ge n$ in D and $C \le B$. Then $T : (E, \gg) \to (X, \tau)$ given by $T(n, B) = S_n$, is a fuzzy subnet of $\{S_n : n \in (D, \ge)\}$. Let V be any fuzzy α -preopen q-nbd of x_t . Then there is $n \in D$ such that that $(n, \alpha pclV) \in E$ and hence $S_nq(\alpha pclV)$. Now, for any $(m, U) \gg (n, \alpha pclV), T(m, U) = S_mqU \le \alpha pclV \Rightarrow T(m, U)q(\alpha pclV)$. Hence $T\alpha px_t$.

(b) \Rightarrow (a). If a fuzzy net $\{S_n : n \in (D, \geq)\}$ does not αp -adhere at a fuzzy point x_t , then there is a fuzzy α -preopen q-nbd U of x_t and an $n \in D$ such that $S_m \not q(\alpha pclU)$, for all $m \geq n$. Then obviously no fuzzy subnet of the fuzzy net can αp -converge to x_t .

(a) \Rightarrow (c). Let $\mathcal{F} = \{F_{\gamma} : \gamma \in \Lambda\}$ be a prefilterbase in A. For each $\gamma \in \Lambda$, choose a fuzzy point $x_{F_{\gamma}} \in F_{\gamma}$ and construct the fuzzy net $S = \{x_{F_{\gamma}} : F_{\gamma} \in \mathcal{F}\}$ in A with (\mathcal{F}, \gg) as domain, where for two members $F_{\gamma}, F_{\beta} \in \mathcal{F}, F_{\gamma} \gg F_{\beta}$ if and only if $F_{\gamma} \leq F_{\beta}$. By (a), the fuzzy net $S \alpha p$ -adheres at some fuzzy point x_s $(0 < s \leq 1) \in A$. Then for any fuzzy α -preopen q-ndd U of x_s and any $F_{\gamma} \in \mathcal{F}$, there exists $F_{\beta} \in \mathcal{F}$ such that $F_{\beta} \gg F_{\gamma}$ and $x_{F_{\beta}}q(\alpha pclU)$. Then $F_{\beta}q(\alpha pclU)$ and hence $F_{\gamma}q(\alpha pclU)$. Thus $\mathcal{F} \alpha p$ -adheres at x_s .

(c) \Rightarrow (a). Let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net in A. Consider the prefilterbase $\mathcal{F} = \{T_n : n \in D\}$ generated by the net, where $T_n = \{S_m : m \in D, m \geq n\}$. By (c), there exists a fuzzy point $a_{\gamma} \in A$ such that $\mathcal{F} \alpha p$ -adheres at a_{γ} . Then for each fuzzy α -preopen q-nbd U of a_{γ} and each $F \in \mathcal{F}$, $Fq(\alpha pclU)$, i.e., $(\alpha pclU)qT_n$, for all $n \in D$. Hence the given fuzzy net αp -adheres at a_{γ} .

(c) \Rightarrow (d). Let $\mathcal{B} = \{B_{\gamma} : \gamma \in \Lambda\}$ be a family of fuzzy sets in X such that for every finite subset Λ_0 of Λ , $(\bigwedge_{\gamma \in \Lambda_0} B_{\gamma}) \bigwedge A \neq 0_X$. Then $\mathcal{F} = \{(\bigwedge_{\gamma \in \Lambda_0} B_{\gamma}) \bigwedge A : \Lambda_0$

is a finite subset of Λ } is a prefilterbase in A. By (c), $\mathcal{F} \alpha p$ -adheres at some fuzzy point $a_t \in A$ ($0 < t \leq 1$). Then for each $\gamma \in \Lambda$ and each fuzzy α -preopen q-nbd U of a_t , $B_{\gamma}q(\alpha pclU)$, i.e., $a_t \in \alpha pclB_{\gamma}$, for each $\gamma \in \Lambda$. Consequently, $(\bigwedge \alpha pclB_{\gamma}) \bigwedge A \neq 0_X$.

 $\gamma \in \Lambda$

(d) \Rightarrow (e). Let $\mathcal{U} = \{U_{\gamma} : \gamma \in \Lambda\}$ be a fuzzy α -preopen cover of a fuzzy set A. Then by (d), $A \bigwedge [\bigwedge_{\gamma \in \Lambda} (1_X \setminus U_{\gamma})] = A \bigwedge [1_X \setminus \bigvee_{\gamma \in \Lambda} U_{\gamma}] = 0_X$. If for some $\gamma \in \Lambda$,

 $1_X \setminus \alpha pclU_{\gamma} = 0_X$, then we are done. If $1_X \setminus \alpha pclU_{\gamma} (=B_{\gamma}, \operatorname{say}) \neq 0_X$, then for each $\gamma \in \Lambda$, $\mathcal{B} = \{B_{\gamma} : \gamma \in \Lambda\}$ is a family of non-null fuzzy sets. We show that

 $\bigwedge_{\gamma \in \Lambda} \alpha pcl B_{\gamma} \leq \bigwedge_{\gamma \in \Lambda} (1_X \setminus U_{\gamma}).$ In fact, let $x_t \ (0 < t \leq 1)$ be a fuzzy point such that $x_t \in U_{\gamma}$ $\alpha pclB_{\gamma} = \alpha pcl(1_X \setminus \alpha pclU_{\gamma})$. If $x_t qU_{\gamma}$, then $\alpha pclU_{\gamma}q(1_X \setminus \alpha pclU_{\gamma})$, which is absurd. Hence $x_t \not A U_{\gamma} \Rightarrow x_t \in 1_X \setminus U_{\gamma}$. Then $[\bigwedge_{\gamma \in \Lambda} \alpha pcl B_{\gamma}] \bigwedge A \leq A \bigwedge [\bigwedge_{\gamma \in \Lambda} (1_X \setminus U_{\gamma})] = 0_X$. By (d), there exists a finite subset Λ_0 of Λ such that $[\bigwedge_{\gamma \in \Lambda} B_{\gamma}] \bigwedge A = 0_X$, i.e.,

$$A \leq 1_X \setminus \bigwedge_{\gamma \in \Lambda_0} B_{\gamma} = \bigvee_{\gamma \in \Lambda_0} (1_X \setminus B_{\gamma}) = \bigvee_{\gamma \in \Lambda_0} \alpha pclU_{\gamma}$$
 and (e) follows

Definition 4.6. A fuzzy set A in an fts (X, τ) is said to be fuzzy regularly α -preopen if $A = \alpha pint(\alpha pclA)$. The complement of such a set is called fuzzy regularly α preclosed.

Definition 4.7. A fuzzy point x_t in X is said to be a fuzzy αp -cluster point of a prefilterbase \mathcal{B} if $x_t \in \alpha pclB$, for all $B \in \mathcal{B}$. If, in addition, $x_t \in A$, for a fuzzy set A, then \mathcal{B} is said to have a fuzzy αp -cluster point in A.

Theorem 4.8. A fuzzy set A in an fts (X, τ) is fuzzy α -precompact if and only if for each prefilterbase \mathcal{F} in X which is such that for each set of finitely many members $F_1, F_2, ..., F_n$ from \mathcal{F} and for any fuzzy regularly α -preclosed set C containing A, one has $(F_1 \wedge ... \wedge F_n) qC$, \mathcal{F} has a fuzzy αp -cluster point in A.

Proof. Let A be fuzzy α -precompact set and suppose \mathcal{F} be a prefilterbase in X such that $[\bigwedge \{ \alpha pclF : F \in \mathcal{F} \}] \bigwedge A = 0_X \dots (1)$. Let $x \in suppA$. Consider any $n \in \mathcal{N}$ (the set of all natural numbers) such that 1/n < A(x), i.e., $x_{1/n} \in A$. By (1), $x_{1/n} \notin \alpha pcl F_x^n$, for some $F_x^n \in \mathcal{F}$. Then there exists a fuzzy α -preopen q-nbd U_x^n of $x_{1/n}$ such that $\alpha pclU_x^n \not qF_x^n$. Now $U_x^n(x) > 1 - 1/n \Rightarrow sup\{U_x^n(x) : x \in U_x^n(x)\}$ $1/n < A(x), n \in \mathcal{N}\} = 1 \Rightarrow \mathcal{U} = \{U_x^n : x \in suppA, n \in \mathcal{N}\}$ forms a fuzzy α preopen cover of A such that for U_x^n , there exists $F_x^n \in \mathcal{F}$ with $U_x^n \not A F_x^n$. Since A is fuzzy α -precompact, there exist finitely many members $U_{x_1}^{n_1}, \ldots, U_{x_k}^{n_k}$ of \mathcal{U} such that

$$A \leq \bigvee_{i=1}^{\kappa} \alpha pclU_{x_i}^{n_i} = \alpha pcl(\bigvee_{i=1}^{\kappa} U_{x_i}^{n_i}) \text{ (by Result 3.7) } (=U, \text{ say). Now } F_{x_1}^{n_1}, \dots, F_{x_k}^{n_k} \in \mathcal{F}$$

such that $U_{x_i}^{n_i} \not q F_{x_i}^{n_i}$ for i = 1, 2, ..., k. Now U is a fuzzy regularly α -preclosed set containing A such that $\alpha pclU \not (F_{x_1}^{n_1} \bigwedge .. \bigwedge F_{x_k}^{n_k}) \Rightarrow U \not (F_{x_1}^{n_1} \bigwedge .. \bigwedge F_{x_k}^{n_k}).$

Conversely, let \mathcal{B} be a prefilterbase in X having no fuzzy αp -cluster point in A. Then by hypothesis, there is a fuzzy regularly α -preclosed set C containing A such that for some finite subcollection \mathcal{B}_0 of \mathcal{B} , $(\bigwedge \mathcal{B}_0) / qC$. Then $(\bigwedge \mathcal{B}_0) / qA$. By Theorem 4.4 (b) \Rightarrow (a), A is fuzzy α -precompact set.

From Theorem 4.4, Theorem 4.5 and Theorem 4.8, we have the characteriza-

tions of fuzzy α -precompact space as follows.

Theorem 4.9. For an fts X, the following statements are equivalent :

- (a) X is fuzzy α -precompact,
- (b) every fuzzy net in X α p-adheres at some fuzzy point in X,
- (c) every fuzzy net in X has a αp -convergent fuzzy subnet,
- (d) every prefilterbase in X α p-adheres at some fuzzy point in X,
- (e) for every family $\{B_{\gamma} : \gamma \in \Lambda\}$ of non-null fuzzy sets with $[\bigwedge_{\gamma \in \Lambda} \alpha pcl B_{\gamma}] = 0_X$,

there is a finite subset Λ_0 of Λ such that $(\bigwedge_{\gamma \in \Lambda_0} B_{\gamma}) = 0_X$,

(f) for every prefilterbase \mathcal{B} in X with $\bigwedge \{ \alpha pclB : B \in \mathcal{B} \} = 0_X$, there is a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $\bigwedge \{ \alpha pintB : B \in \mathcal{B}_0 \} = 0_X$,

(g) for any family \mathcal{F} of fuzzy α -preclosed sets in X with $\bigwedge \mathcal{F} = 0_X$, there exists a finite subcollection \mathcal{F}_0 of \mathcal{F} such that $\bigwedge \{ \alpha pintF : F \in \mathcal{F}_0 \} = 0_X$.

Theorem 4.10. An fts X is fuzzy α -precompact if and only if for any collection $\{F_{\gamma} : \gamma \in \Lambda\}$ of fuzzy α -preopen sets in X having finite intersection property $\bigwedge \{\alpha pclF_{\gamma} : \gamma \in \Lambda\} \neq 0_X.$

Proof. Let X be fuzzy α -precompact space and $\mathcal{F} = \{F_{\gamma} : \gamma \in \Lambda\}$ be a collection of fuzzy α -preopen sets in X with finite intersection property. Suppose $\bigwedge \{\alpha pclF_{\gamma} : \gamma \in \Lambda\} = 0_X$. Then $\{1_X \setminus \alpha pclF_{\gamma} : \gamma \in \Lambda\}$ is a fuzzy α -preopen cover of X. By hypothesis, there exists a finite subset Λ_0 of Λ such that $1_X = \bigvee \{\alpha pcl(1_X \setminus \alpha pclF_{\gamma}) : \gamma \in \Lambda_0\} = \bigvee \{1_X \setminus \alpha pint(\alpha pclF_{\gamma}) : \gamma \in \Lambda_0\} \leq \bigvee \{1_X \setminus F_{\gamma} : \gamma \in \Lambda_0\} = 1_X \setminus \bigwedge_{\gamma \in \Lambda_0} F_{\gamma} \Rightarrow \bigwedge_{\gamma \in \Lambda_0} F_{\gamma} = 0_X$ which contradicts the fact that

 \mathcal{F} has finite intersection property.

Conversely, suppose that X is not fuzzy α -precompact space. Then there is a fuzzy α -preopen cover $\mathcal{F} = \{F_{\gamma} : \gamma \in \Lambda\}$ of X such that for every finite subset Λ_0 of Λ , $\bigvee\{\alpha pclF_{\gamma} : \gamma \in \Lambda_0\} \neq 1_X$. Then $1_X \setminus \bigvee\{\alpha pclF_{\gamma} : \gamma \in \Lambda_0\} \neq 0_X \Rightarrow \bigwedge_{\gamma \in \Lambda_0} (1_X \setminus \alpha pclF_{\gamma}) \neq 0_X$, for every finite subset Λ_0 of Λ . Thus $\{1_X \setminus \alpha pclF_{\gamma} : \gamma \in \Lambda\}$ is

a collection of fuzzy α -preopen sets with finite intersection property. By hypothesis, $\bigwedge_{\gamma \in \Lambda} \alpha pcl(1_X \setminus \alpha pclF_{\gamma}) \neq 0_X, \text{ i.e., } 1_X \setminus \bigvee_{\gamma \in \Lambda} \alpha pint(\alpha pclF_{\gamma}) \neq 0_X \Rightarrow \bigvee_{\gamma \in \Lambda} \alpha pint(\alpha pclF_{\gamma}) \neq 0_X$

1_X. Hence $\bigvee_{\gamma \in \Lambda} F_{\gamma} \neq 1_X$, a contradiction as \mathcal{F} is a fuzzy α -preopen cover of X.

Definition 4.11. Let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net of fuzzy α -preopen sets in X, i.e., for each member n of a directed set (D, \geq) , S_n is a fuzzy α -preopen set in

X. A fuzzy point x_t in X is said to be a fuzzy αp -cluster point of the fuzzy net if for every $n \in D$ and every fuzzy α -preopen q-nbd V of x_t , there exists $m \in D$ with $m \geq n$ such that $S_m qV$.

Theorem 4.12. An fts X is fuzzy α -precompact if and only if every fuzzy net of fuzzy α -preopen sets in X has a fuzzy α p-cluster point in X.

Proof. Let $\mathcal{U} = \{S_n : n \in (D, \geq)\}$ be a fuzzy net of fuzzy α -preopen sets in a fuzzy α -precompact space X. For each $n \in D$, let us put $F_n = \alpha pcl[\bigvee\{S_m : m \in D \text{ and } m \geq n\}]$. Then $\mathcal{F} = \{F_n : n \in D\}$ is a family of fuzzy α -preclosed sets in X with the condition that for every finite subcollection \mathcal{F}_0 of \mathcal{F} , $\bigwedge\{\alpha pintF : F \in \mathcal{F}_0\} \neq 0_X$. By Theorem 4.9 (a) \Rightarrow (g), $\bigwedge_{n \in D} F_n \neq 0_X$. Let $x_t \in \bigwedge_{n \in D} F_n$. Then $x_t \in F_n$, for all $n \in D$. Thus for any fuzzy α -preopen q-nbd A of x_t and any $n \in D$, $Aq[\bigvee\{S_m : m \geq n\}]$ and so there exists some $m \in D$ with $m \geq n$ and $AqS_m \Rightarrow x_t$ is a fuzzy αp -cluster point of \mathcal{U} .

Conversely, let \mathcal{F} be a collection of fuzzy α -preclosed sets in X with the condition that for every finite subcollection \mathcal{F}_0 of \mathcal{F} , $\bigwedge \{\alpha pintF : F \in \mathcal{F}_0\} \neq 0_X$. Let \mathcal{F}^* denote the family of all finite intersections of members of \mathcal{F} directed by the relation ' \gg ' such that for $F_1, F_2 \in \mathcal{F}^*$, $F_1 \gg F_2$ if and only if $F_1 \leq F_2$. Let $F^* = \alpha pintF$, for each $F \in \mathcal{F}^*$. Then $F^* \neq 0_X$. Consider the fuzzy net $\mathcal{U} = \{F^* : F \in (\mathcal{F}^*, \gg)\}$ of non-null fuzzy α -preopen sets of X. By hypothesis, \mathcal{U} has a fuzzy αp -cluster point, say x_t . We claim that $x_t \in \bigwedge \mathcal{F}$. In fact, let $F \in \mathcal{F}$ be arbitrary and A be any fuzzy α -preopen q-nbd of x_t . Since $F \in \mathcal{F}^*$ and x_t is a fuzzy αp -cluster point of \mathcal{U} , there exists $G \in \mathcal{F}^*$ such that $G \gg F$ (i.e., $G \leq F$) and $G^*qA \Rightarrow GqA \Rightarrow FqA \Rightarrow x_t \in \alpha pclF = F$, for each $F \in \mathcal{F} \Rightarrow x_t \in \bigwedge \mathcal{F} \Rightarrow \bigwedge \mathcal{F} \neq 0_X$. By Theorem 4.9 (g) \Rightarrow (a), X is fuzzy α -preopence.

Definition 4.13. A fuzzy cover \mathcal{U} by fuzzy α -preclosed sets of an fts (X, τ) will be called a fuzzy α p-cover of X if for each fuzzy point x_t (0 < t < 1) in X, there exists $U \in \mathcal{U}$ such that U is a fuzzy α -preopen nbd of x_t .

Theorem 4.14. An fts (X, τ) is fuzzy α -precompact if and only if every fuzzy α p-cover of X has a finite subcover.

Proof. Let X be fuzzy α -precompact space and \mathcal{U} be any fuzzy αp -cover of X. Then for each $n \in \mathcal{N}$ (the set of all natural numbers) with n > 1, there exist $U_x^n \in \mathcal{U}$ and a fuzzy α -preopen set V_x^n in X such that $x_{1-1/n} \leq V_x^n \leq U_x^n$. Then $V_x^n(x) \geq 1 - 1/n \Rightarrow \sup\{V_x^n(x) : n \in \mathcal{N}\} = 1 \Rightarrow \mathcal{V} = \{V_x^n : x \in X, n \in \mathcal{N}, n > 1\}$ is a fuzzy α -preopen cover of X. As X is fuzzy α -precompact, there exist finitely many points $x_1, x_2, ..., x_m \in X$ and $n_1, n_2, ..., n_m \in \mathcal{N} \setminus \{1\}$ such that

$$1_X = \bigvee_{k=1}^m \alpha pclV_{x_k}^{n_k} \le \bigvee_{k=1}^m \alpha pclU_{x_k}^{n_k} = \bigvee_{k=1}^m U_{x_k}^{n_k}.$$

Conversely, let \mathcal{U} be fuzzy α -preopen cover of X. For any fuzzy point x_{γ} ($0 < \gamma < 1$) in X, as $\sup U(x) = 1$, there exists $U_{x_{\gamma}} \in \mathcal{U}$ such that $U_{x_{\gamma}}(x) \geq \gamma \ (0 < \gamma < 1)$. $U \in \mathcal{U}$

Then $\mathcal{V} = \{ \alpha pclU : U \in \mathcal{U} \}$ is a fuzzy αp -cover of X and the rest is clear.

The following theorem gives a necessary condition for an fts to be fuzzy α precompact.

Theorem 4.15. If an fts X is fuzzy α -precompact, then every prefilterbase on X with at most one αp -adherent point is αp -convergent.

Proof. Let \mathcal{F} be a prefilterbase with at most one αp -adherent point in a fuzzy α -precompact fts X. Then by Theorem 4.9, \mathcal{F} has at least one αp -adherent point in X. Let x_t be the unique αp -adherent point of \mathcal{F} and if possible, let \mathcal{F} do not αp converge to x_t . Then for some fuzzy α -preopen q-nbd U of x_t and for each $F \in \mathcal{F}$, $F \not\leq \alpha pclU$, so that $F \wedge \{1_X \setminus \alpha pclU\} \neq 0_X$. Then $\mathcal{G} = \{F \wedge (1_X \setminus \alpha pclU) : F \in \mathcal{F}\}$ is a prefilterbase in X and hence has a αp -adherent point y_s (say) in X. Now $\alpha pclU \not qG$, for all $G \in \mathcal{G}$ so that $x_t \neq y_s$. Again, for each fuzzy α -preopen q-nbd V of y_s and each $F \in \mathcal{F}$, $\alpha pclVq(F \wedge (1_X \setminus \alpha pclU)) \Rightarrow \alpha pclVqF \Rightarrow y_s$ is a fuzzy αp -adherent point of \mathcal{F} , where $x_t \neq y_s$. This contradicts the fact that x_t is the only fuzzy αp -adherent point of \mathcal{F} .

Some results on fuzzy α -precompactness of an fts are given by the following theorem.

Theorem 4.16. Let (X, τ) be an fts and $A \in I^X$. Then the following statements are true :

(a) If A is fuzzy α -precompact, then so is $\alpha pclA$,

(b) Union of two fuzzy α -precompact sets is also so,

(c) If X is fuzzy α -precompact, then every fuzzy regularly α -preclosed set A in X is fuzzy α -precompact.

Proof. (a). Let \mathcal{U} be a fuzzy α -preopen cover of $\alpha pclA$. Then \mathcal{U} is also a fuzzy α -preopen cover of A. As A is fuzzy α -precompact, there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $A \leq \bigvee \{ \alpha pclU : U \in \mathcal{U}_0 \} = \alpha pcl \{ \bigvee U : U \in \mathcal{U}_0 \} \Rightarrow \alpha pclA \leq \mathcal{U}_0 \}$ $\alpha pcl\{\alpha pcl[\bigvee \{U: U \in \mathcal{U}_0\}]\} = \alpha pcl\{\bigvee U: U \in \mathcal{U}_0\} = \bigvee \{\alpha pclU: U \in \mathcal{U}_0\}.$ Hence the proof.

(b). Obvious.

(c). Let $\mathcal{U} = \{U_{\gamma} : \gamma \in \Lambda\}$ be a fuzzy α -preopen cover of a fuzzy regularly α preclosed set A in X. Then for each $x \notin suppA$, $A(x) = 0 \Rightarrow (1_X \setminus A)(x) =$ $1 \Rightarrow \mathcal{U} \setminus \{(1_X \setminus A)\}$ is a fuzzy α -preopen cover of X. Since X is fuzzy α - precompact, there are finitely many members $U_1, U_2, ..., U_n$ in \mathcal{U} such that $1_X = (\alpha pclU_1 \bigvee ... \lor \alpha pclU_n) \bigvee \alpha pcl(1_X \setminus A)$. We claim that $\alpha pintA \leq \alpha pclU_1 \bigvee ... \lor \alpha pclU_n$. If not, there exists a fuzzy point $x_t \in \alpha pintA$, but $x_t \notin (\alpha pclU_1 \lor ... \lor \alpha pclU_n)$, i.e., $t > max\{(\alpha pclU_1)(x), ..., (\alpha pclU_n)(x)\}$. As $1_X = (\alpha pclU_1 \lor ... \lor \alpha pclU_n)$ $\lor \alpha pcl(1_X \setminus A), [\alpha pcl(1_X \setminus A)](x) = 1 \Rightarrow 1 - \alpha pintA(x) = 1 \Rightarrow \alpha pintA(x) = 0 \Rightarrow x_t \notin \alpha pintA$, a contradiction. Hence $A = \alpha pcl(\alpha pintA) \leq \alpha pcl(\alpha pclU_1 \lor ...$ $\lor \alpha pclU_n) = \alpha pclU_1 \lor ... \lor \alpha pclU_n$ (by Result 3.6 and Result 3.7) $\Rightarrow A$ is fuzzy α -precompact set.

5. Applications

In this section we establish the mutual relationship between fuzzy almost compactness [4] and fuzzy α -precompactness. Here it is shown that fuzzy α - precompactness implies fuzzy almost compactness, but converse is true in fuzzy α preregular space [1]. Again it is established that fuzzy α - precompactness remains invariant under fuzzy α -preirresolute function [1].

Since for any fuzzy set A in an fts X, $\alpha pclA \leq clA$ (as every fuzzy closed set is fuzzy α -preclosed [1], we can state the following theorem easily.

Theorem 5.1. Every fuzzy α -precompact space is fuzzy almost compact.

To get the converse we have to recall the following definition and theorem for ready references.

Definition 5.2. [1] An fts (X, τ) is said to be fuzzy α -preregular if for each fuzzy α -preclosed set F in X and each fuzzy point x_t in X with $x_tq(1_X \setminus F)$, there exists a fuzzy open set U in X and a fuzzy α -preopen set V in X such that x_tqU , $F \leq V$ and $U \not AV$.

Theorem 5.3. [1] An fts (X, τ) is fuzzy α -preregular iff every fuzzy α -preclosed set is fuzzy closed.

Theorem 5.4. A fuzzy α -preregular, fuzzy almost compact space X is fuzzy α -precompact.

Proof. Let \mathcal{U} be a fuzzy α -preopen cover of a fuzzy α -preregular, fuzzy almost compact space X. Then by Theorem 5.3, \mathcal{U} is a fuzzy open cover of X. As X is fuzzy almost compact, there is a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\bigvee \{ clU : U \in \mathcal{U}_0 \} = \bigvee \{ \alpha pclU : U \in \mathcal{U}_0 \}$ (by Theorem 5.3) = $1_X \Rightarrow X$ is fuzzy α -precompact.

Next we recall the following definition and theorem for ready references.

Definition 5.5. [1] A function $f : X \to Y$ is said to be fuzzy α -preirresolute if the inverse image of every fuzzy α -preopen set in Y is fuzzy α -preopen in X.

Theorem 5.6. [1] For a function $f: X \to Y$, the following statements are equivalent :

(i) f is fuzzy α -preirresolute,

(ii) $f(\alpha pclA) \leq \alpha pcl(f(A)), \text{ for all } A \in I^X,$

(iii) for each fuzzy point x_t in X and each fuzzy α -preopen q-nbd V of $f(x_t)$ in Y, there exists a fuzzy α -preopen q-nbd U of x_t in X such that $f(U) \leq V$.

Theorem 5.7. Fuzzy α -preirresolute image of a fuzzy α -precompact space is fuzzy α -precompact.

Proof. Let $f: X \to Y$ be fuzzy α -preirresolute surjection from a fuzzy α precompact space X to an fts Y, and let \mathcal{V} be a fuzzy α -preopen cover of Y. Let $x \in X$ and f(x) = y. Since $\sup\{V(y) : V \in \mathcal{V}\} = 1$, for each $n \in \mathcal{N}$ (the set of all natural numbers), there exists some $V_x^n \in \mathcal{V}$ with $V_x^n(y) > 1 - 1/n$ and so $y_{1/n}qV_x^n$. By fuzzy α -preirresoluteness of f, by Theorem 5.6 (i) \Rightarrow (iii), $f(U_x^n) \leq V_x^n$, for some fuzzy α -preopen set U_x^n in X q-coincident with $x_{1/n}$. Since $U_x^n(x) > 1 - 1/n, \ \sup\{U_x^n(x) : n \in \mathcal{N}\} = 1.$ Then $\mathcal{U} = \{U_x^n : n \in \mathcal{N}, x \in X\}$ is a

fuzzy α -preopen cover of X. By fuzzy α -precompactness of X, $\bigvee_{i=1} \alpha pclU_{x_i}^{n_i} = 1_X$,

for some finite subcollection $\{U_{x_1}^{n_1}, ..., U_{x_k}^{n_k}\}$ of \mathcal{U} . Then $1_Y = f(\bigvee \alpha pclU_{x_i}^{n_i}) =$

$$\bigvee_{i=1}^{k} f(\alpha pclU_{x_{i}}^{n_{i}}) \leq \bigvee_{i=1}^{k} \alpha pcl(f(U_{x_{i}}^{n_{i}})) \text{ (by Theorem 5.6 (i) } \Rightarrow \text{(ii)}) \leq \bigvee_{i=1}^{k} \alpha pclV_{x_{i}}^{n_{i}} \Rightarrow Y \text{ is}$$
fuzzy α -precompact space

 α -precompact space.

References

- [1] Bhattacharyya, Anjana, A new type of regularity via fuzzy α -preopen set (Communicated).
- [2] Bin Shahna, A. S., On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44 (1991), 303-308.
- 3] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [4] DiConcillio, A. and Gerla, G., Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 13 (1984), 187-192.
- [5] Ganguly, S. and Saha, S., A note on compactness in fuzzy setting, Fuzzy Sets and Systems, 34 (1990), 117-124.

- [6] Lowen, R., Convergence in fuzzy topological spaces, General Topology and Its Appl., 10 (1979), 147-160.
- [7] Mukherjee, M. N. and Sinha, S. P., Almost compact fuzzy sets in fuzzy topological spaces, Fuzzy Sets and Systems, 38 (1990), 389-396.
- [8] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl., 76 (1980), 571-599.
- [9] Zadeh, L. A., Fuzzy Sets, Inform. Control., 8 (1965), 338-353.