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Abstract: In this paper, we introduce the concept of tensor product between
intuitionistic fuzzy submodules. We establish a formal framework for the tensor
product operation, examining its properties and applications within the context of
intuitionistic fuzzy modules. We then establish a relationship between the Hom
functor and the tensor product in the category of intuitionistic fuzzy modules. The
connection between tensor products and hom-functors in some algebraic structures,
such as modules, is made possible via a natural isomorphism known as the Hom-
Tensor adjunction and it establishes a relationship between HomCR-IFM

(B⊗A,C)
and HomCR-IFM

(A,HomCR-IFM
(B,C)). An application of tensor product of in-

tuitionistic fuzzy modules can be used in decision-making processes by embracing
ambiguity and vagueness, making it a valuable tool when exact data is lacking.
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1. Introduction
The tensor product is a fundamental construction in algebra and module theory.

It provides a way to extend the notion of the product of modules, allowing for a
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richer understanding of module structures. Hom-functors and tensor products are
concepts from category theory, often used in algebra and algebraic topology. For
any two objects X and Y in a category C, there is a Hom-functor denoted as
Hom(A,B). It assigns to each object X in the category C the set of morphisms
from X to Y . In other words, Hom(X, Y ) represents the set of all morphisms from
object X to object Y . This concept is fundamental in understanding maps between
objects in a category.

The tensor product is a construction that generalizes the concept of the product
of modules to other algebraic structures. In the context of modules over a ring,
the tensor product of two modules M and N over a ring R, denoted as M ⊗ N ,
is itself a module. It has the property that bilinear maps from M ×N to another
module K uniquely factor through M ⊗N .

Connecting the two concepts, in certain algebraic structures like modules, there
is a natural isomorphism known as the Hom-Tensor adjunction, linking Hom-
functors and tensor products. It establishes a relationship betweenHom(M⊗N,K)
and Hom(M,Hom(N,K)). In the context of intuitionistic fuzzy modules, the ten-
sor product can be applied to extend the module operations and provide a frame-
work for dealing with uncertainty. We extend the concept of tensor product from
classical modules to intuitionistic fuzzy modules. We study the tensor product of
two intuitionistic fuzzy modules, incorporating the notions of intuitionistic fuzzy
sets and their operations. We develop algebraic operations on the tensor product of
intuitionistic fuzzy modules. This involves defining addition and scalar multiplica-
tion in a way that accommodates the inherent uncertainty and vagueness present in
intuitionistic fuzzy sets. We study module homomorphisms and isomorphisms in-
volving the tensor product and explore how mappings between intuitionistic fuzzy
modules interact with the tensor product, preserving the uncertainty characteris-
tics of the involved modules. We generalize classical results from module theory to
the realm of intuitionistic fuzzy modules through the tensor product. We explore
how classical module properties and theorems extend or adapt in the context of
intuitionistic fuzzy modules. With this, we explore interdisciplinary applications
where intuitionistic fuzzy modules and their tensor product can be used. This
might include areas such as decision sciences, optimization, pattern recognition, or
any field where uncertainty needs to be explicitly considered in a modular structure.

In [6], B. Davaaz and others published the perception of the intuitionistic fuzzy
submodule of a module. Later on, numerous mathematicians in [4, 7, 12, 13, 16]
made significant contributions to the study of intuitionistic fuzzy submodules. In
the category of fuzzy modules, H.X. Lui [9] established the relationship between
fuzzy projective module and Hom functor. Authors in [15] studied the relation-
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ship between the intuitionistic fuzzy projective (injective) modules with retraction,
coretraction morphisms in the category of intuitionistic fuzzy modules.

In our earlier paper [14], we defined a category (CR-IFM) of intuitionistic fuzzy
modules over the ring R where the classes of all intuitionistic fuzzy modules and
intuitionistic fuzzy R-homomorphisms constitute objects and morphisms. Hom
functors and tensor functors play an important role in ring theory. In section
3, we study the concept of tensor product in the category of intuitionistic fuzzy
modules(CR−IFM). Furthermore, we established the existence of the tensor product
of two intuitionistic fuzzy R-modules exists. The connection that exists between
Hom functor and tensor functor is then investigated.

2. Preliminary
For conceptual concepts about Category theory and related areas, we follow

Tom Leinster [8] and O. Wyler [18] and concepts about intuitionistic fuzzy modules
and related results we follow Basnet [4] and Davvaz [6]. Throughout the paper, R
is a commutative ring with unity 1 and 1 ̸= 0. M is a unitary R-module, θ is a
zero element of M and I represents the unit interval [0, 1].

Definition 2.1. [14] A mapping A = (µA, νA) : X → I×I is called an intuitionistic
fuzzy set(IFS) on X where the mappings µA : X → I and νA : X → I denotes the
degree of membership (namely µA(x)) and the degree of non-membership (namely
νA(x)) of each element x ∈ X to A, respectively with the condition that µA(x) +
νA(x) ≤ 1 for each x ∈ X.
An intuitionistic fuzzy set A in X can be represented as an object of the form

A = {< x, µA(x), νA(x) >: x ∈ X}.

Remark 2.2.
(i) When µA(x) + νA(x) = 1, ∀x ∈ X i.e., νA(x) = 1− µA(x). Then A is called a
fuzzy set.
(ii) We denote the IFS A = {< x, µA(x), νA(x) >;∀x ∈ X} by A = (µA, νA).

Definition 2.3. [14] An IFS A of an R-module M is called an intuitionistic fuzzy
submodule (IFSM) of M , if for every x, y ∈M and r ∈ R the following conditions
are satisfied:
(i) µA(x+ y) ≥ µA(x) ∧ µA(y) and νA(x+ y) ≤ νA(x) ∨ νA(y);
(ii) µA(rx) ≥ µA(x) and νA(rx) ≤ νA(x);
(iii) µA(θ) = 1 and νA(θ) = 0, where θ is a zero element of M.
Condition (i) and (ii) can be combined to a single condition µA(rx+sy) ≥ µA(x)∧
µA(y) and νA(rx+ sy) ≤ νA(x) ∨ νA(y), where r, s ∈ R and x, y ∈M.

Remark 2.4.
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(i) The set of intuitionistic fuzzy submodules of R-moduleM is denoted by IFSM(M).
(ii) We denote the IFSM A of an R-module M by (µA, νA)M .

Definition 2.5. [14] Let K as a submodule of an R-module M . The intu-
itionistic fuzzy characteristic function of K is denoted by χK and is described by
χK(a) = (µχK

(a), νχK
(a)), where

µχK
(a) =

{
1, if a ∈ K

0, if a /∈ K
; νχK

(a) =

{
0, if a ∈ K

1, if a /∈ K.

Clearly, χK is an IFSM of M . The IFSMs χ{θ}, χM are called trivial IFSMs of
module M . Any IFSM of the module M apart from this is called proper IFSM.

Definition 2.6. [14] Let A = (µA, νA)M , B = (µB, νB)N are IFSM of R-modules
M and N respectively. Then the map f : A → B is called an intuitionistic fuzzy
R-homomorphism ( or IF R-hom ) from A to B if

(i) f :M → N is R-homomorphism and

(ii) µB(f(a)) ≥ µA(a) and νB(f(a)) ≤ νA(a), ∀a ∈M .

To avoid confusion between an R-homomorphism f : M → N and an intuition-
istic fuzzy R-homomorphism f : A → B. We denote the latter by f̄ : A → B.
So, given an IF R-homomorphism f̄ : A → B, f : M → N is the underlying R-
homomorphism of f̄ . The set of all IF R-homomorphisms from A to B is denoted
by Hom(A,B).

Definition 2.7. [14] A category of R-modules denoted by CR-M has R-modules
as objects and R-homomorphisms as morphisms, with composition of morphisms
defined as composition of mappings.

Definition 2.8. [8] Let C = (Ob(C), Hom(C), id, o) and D = (Ob(D), Hom(D), id, o)
be two categories and let F1 : Ob(C) → Ob(D) and F2 : Hom(C) → Hom(D) be
maps. Then the quadruple F = (C,D, F1, F2) is a functor provided:
(i) X ∈ Ob(C) implies F1(X) ∈ Ob(D);
(ii) f ∈ Hom(X, Y ) implies F2(f) ∈ Hom(F1(X), F1(Y )), ∀ X, Y ∈ Ob(C);
(iii) F2 preserves composition, i.e., F2(gof) = F2(g)oF2(f), ∀ f ∈ Hom(X, Y ) and
g ∈ Hom(Y, Z);
(iv) F preserves identities, i.e., F2(eX) = eF1(X), ∀ X ∈ Ob(C).

Remark 2.9. [8]
(i) Instead of F1(X) we write F (X).
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(ii) In preference to F2(f) we write F (f).
(iii) We call F : C → D a functor from C to D.
(iv) A functor defined above is called a covariant functor that preserves both:

� The domains, the codomains and identities.

� The composition of arrows, especially it retains the path of the arrows.

(v) A contravariant functor F is similar to the covariant functor in addition to the
other side of the arrow, F (f) : F (Y ) → F (X) and F (gof) = F (f)oF (g),∀f ∈
Hom(X, Y ), g ∈ Hom(Y, Z).
Thus a contravariant functor F : C → D is the same as a covariant functor
F : Cop → D.

Proposition 2.10. [14] Let HomCR-IFM
(A,B) be the set of all IF R-homomorphisms

from the IFSM A of R-moduleM into the IFSM B of R-module N . Then HomCR-IFM

(A,B) is an abelian additive group. Moreover, it is a unitary R-module when R is
a commutative ring with unity.

Theorem 2.11. [14] Let A = (µA, νA)M and B = (µB, νB)N are two IF modules
of R-modules M and N respectively. Then the function β : Hom(A,B) → I × I
on R-module Hom(A,B) defined by

β(f̄) = (µβ(f̄), νβ(f̄))

where µβ(f̄) = ∧{µB(f̄(a)) : a ∈ M} and νβ(f̄) = ∨{νB(f̄(a)) : a ∈ M} is an
intuitionistic fuzzy submodule of Hom(A,B).

Definition 2.12. [16] Let A,B and C be IFSMs of R-modules M ,N and P re-
spectively. A sequence of the form

0̄ A B C 0̄
f̄ ḡ

is said to be an intutionistic fuzzy short exact sequence if f̄ is an IF-monomorphism,
ḡ is an IF-epimorphism and Im(f̄) = ker(ḡ). We abbreviate the intuitionistic fuzzy
short exact sequence by IFSE sequence.

Example 2.13. [16] Let A = χZ , B = χnZ and C = χ Z
nZ

then

0̄ A B C 0̄ī π̄

is a IFSE sequence where ī and π̄ are IF-inclusion map and natural IF-epimorphism
respectively.
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Example 2.14. [16] Let M = 6Z. Define the IFSs A and B of Z-module M by

µA(x) =

{
0.1, if x ̸= 0

1, if x
.
= 0

; νA(x) =

{
0.4, if x ̸= 0

0, if x
.
= 0.

and

µB(y) =

{
0.6, if y ̸= 0

1, if y
.
= 0

; νB(y) =

{
0.3, if y ̸= 0

0, if y
.
= 0.

Clearly, A and B are IF Z- modules and 0M is a zero IFSM of Z defined by
0M(x) = (0, 1) for all x ∈M . Then

0̄ 0M A B 0̄
f̄ ḡ

is a IFSE sequence, where f̄ is an IF-inclusion map and ḡ is the natural IF-
epimorphism.

Remark 2.15. In [16], it is shown that HomCR-IFM
: CR-IFM → CR-IFM is an in-

variant functor in the sense that it is both a covariant and a contravariant functor.
Also, HomCR-IFM

(A,−) is not left exact in CR-IFM. However, HomCR-IFM
(A,−)

and HomCR-IFM
(−, A) preserve the IFSEs

0̄ HomCR-IFM
(A,B) HomCR-IFM

(A,C) HomCR-IFM
(A,D)

F f̄=f̄∗ F ḡ=ḡ∗

and

B C D 0̄
f̄ ḡ

respectively, provided that f̄ is an IF-split.
Now, we will discuss about the basic concept of tensor product in the Category

of R-modules (CR−M) as discussed in [1].

Definition 2.16. [1] Let M be an R-module and S is subset of M . The set of
all finite linear combinations of the elements of S denoted by L(S), i.e., L(S) =
{
∑n

i=1 rixi : ri ∈ R, xi ∈ S, n ∈ N}, is a submodule of M and it is the smallest
submodule M that contains S.

Definition 2.17. [1] Let M , N and P are R-modules. An R-homomorphism
f : M × N → P is said to be an R-biadditive provided that for all x, x1, x2 ∈ M ,
y, y1, y2 ∈ N and r ∈ R,

(i) f(x1 + x2, y) = f(x1, y) + f(x2, y);

(ii) f(x, y1 + y2) = f(x, y1) + f(x, y2);

(iii) f(xr, y) = f(x, ry) = rf(x, y).
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Definition 2.18. [1] A tensor product of M and N over R is denoted by M ⊗N
and defined as

M ⊗N = (M ×N)/L(S)

Being the quotient module of R-module by its submodule, the tensor product M⊗N
is also an R-module. Then there exists an R-homomorphism τ :M ×N →M ⊗N
such that

τ(m,n) = (m,n) + L(S),

for all m ∈M,n ∈ N . we will denote τ(m,n) by m⊗ n.

Definition 2.19. [1] A tensor product of M and N over R is an R-module
M ⊗ N which is equipped with an R-biadditive τ : M × N → M ⊗ N such that
for each R-module P and each R-biadditive ψ : M × N → P , there is an unique
R-homomorphism ϕ :M ⊗N → P such that ϕ ◦ τ = ψ, i.e., the following diagram
commutes:

M ×N M ⊗N

P

ψ

τ

ϕ

Tensor product of M and N is denoted by the pair (M ⊗N, τ).

Theorem 2.20. [1] The tensor product of two R-modules exist and it is unique
upto isomorphism.

3. Tensor Products in CR-IFM

The construction of tensor products gives a most characteristic strategy for
joining two modules. This section covers the structure and properties of tensor
products derived from two intuitionistic fuzzy modules in the CR-IFM category. In
addition, we investigate whether there is a connection between Hom functor and
tensor product.

Definition 3.1. Let A = (µA, νA), B = (µB, νB) be IFSMs of R-modules M and
N respectively. We defined the cartesian product A × B on L(M × N) is an IFS
defined as

µA×B(
∑

(xi, yi)) = (µA × µB)(
∑

(xi, yi)) = ∧{∨{µA(xi), µB(yi)|i ∈ I}}
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and

νA×B(
∑

(xi, yi)) = (νA × νB)(
∑

(xi, yi)) = ∨{∧{νA(xi), νB(yi)|i ∈ I}}

Proposition 3.2. Let A = (µA, νA), B = (µB, νB) be IFSMs of R-modules M and
N respectively. Then A×B is an IFSM on L(M ×N).
Proof. We will claim that

(i) µA×B(θ1, θ2) = 1 and νA×B(θ1, θ2) = 0, where θ1 and θ2 are zero elements of
M and N respectively.

(ii) µA×B(
∑

(xi, yi) +
∑

(x
′
i, y

′
i)) ≥ µA×B(

∑
(xi, yi)) ∧ µA×B(

∑
(x

′
i, y

′
i))

νA×B(
∑

(xi, yi) +
∑

(x
′
i, y

′
i)) ≤ νA×B(

∑
(xi, yi)) ∨ νA×B(

∑
(x

′
i, y

′
i));

(iii) µA×B(r(x, y)) ≥ µA×B(x, y) and νA×B(r(x, y)) ≤ νA×B(x, y), ∀(x, y) ∈ M ×
N, r ∈ R.

Consider
µA×B(θ1, θ2) = µA(θ1) ∨ µB(θ2) = 1

and
νA×B(θ1, θ2) = νA(θ1) ∨ νB(θ2) = 0

Now ∀(x1, y1), (x2, y2) ∈M ×N

µA×B(
∑

(xi, yi) +
∑

(x
′

i, y
′

i)) = µA×B(
∑

(xi + x
′

i, yi + y
′

i))

= (µA × µB)(
∑

(xi + x
′

i, yi + y
′

i))

= ∧{∨{µA(xi + x
′

i), µB(yi + y
′

i)|i ∈ I}}
≥ [∧{∨{µA(xi, x

′

i)} ∧ {µB(yi, y
′

i)}}| ∈ I]

= [∧{∨{µA×B(xi, yi)} ∧ {µA×B(x
′

i, y
′

i)}}| ∈ I}]
= [µA×B(

∑
(xi, yi))] ∧ [µA×B(

∑
(x

′

i, y
′

i))].

This implies that µA×B(
∑

(xi, yi)+
∑

(x
′
i, y

′
i)) ≥ [µA×B(

∑
(xi, yi))]∧[µA×B(

∑
(x

′
i, y

′
i))].

Similarly, we can prove
νA×B(

∑
(xi, yi) +

∑
(x

′
i, y

′
i)) ≤ [νA×B(

∑
(xi, yi))] ∨ [νA×B(

∑
(x

′
i, y

′
i))]. Now,

µA×B(r(
∑

(xi, yi))) = µA×B(
∑

(rxi, ryi)) = (µA × µB)(
∑

(rxi, ryi))

= ∧{∨{µA(rxi), µB(ryi)|i ∈ I}}
≥ ∧{∨{µA(xi), µB(yi)|i ∈ I}}
= µA×B(

∑
(xi, yi))

= µA×B(
∑

(xi, yi)).
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This implies that µA×B(r(
∑

(xi, yi))) ≥ µA×B(
∑

(xi, yi)). Similarly, we can prove
that
νA×B(r(

∑
(xi, yi))) ≤ νA×B(

∑
(xi, yi)). Hence A×B is an IFSM on L(M ×N).

Definition 3.3. Let A = (µA, νA), B = (µB, νB) and C = (µC , νC) be IFSMs
of R-modules M , N and P respectively. A mapping ϕ̄ : A × B → C is said to
be an intuitionistic fuzzy bi-additive (IF-biadditive) if the following conditions are
satisfied ∀

∑
(xi, yi) ∈ L(M ×N)

(i) R-homomorphism ϕ :M → N is R-biadditive and

(ii) µC(ϕ̄(
∑

(xi, yi))) ≥ (µA × µB)(
∑

(xi, yi)) and νC(ϕ̄(
∑

(xi, yi))) ≤ (νA ×
νB)(

∑
(xi, yi)).

Definition 3.4. Let A be an IFSM of an R-module M and N be a submodule of
M . Define an IFS AN = (µAN

, νAN
) on the R-module M/N by

µAN
([x]) = ∨{µA(z)|z ∈ [x]}

and
νAN

([x]) = ∧{νA(z)|z ∈ [x]}
where [x] = x+N ∈M/N . Then AN is an IFSM of M/N .

Definition 3.5. Let A be an IFSM of an R-module L(M×N) and P be a submodule
of L(M × N). Then the IF-tensor product of R-modules M and N , M ⊗ N , is
an IFS T of L(M × N)/P defined as T = {⟨[(m,n)], µT ([(m,n)]), νT ([(m,n)]⟩ :
(m,n) ∈M ⊗N,m ∈M,n ∈ N} such that

µT ([(m,n)]) = ∨{µA(x, y)|(x, y) ∈ [(m,n)]}

and
νT ([(m,n)]) = ∧{νA(x, y)|(x, y) ∈ [(m,n)]}

where [(m,n)] = (x, y) + P ∈ L(M ×N)/P , m,x ∈M and n, y ∈ N .

Theorem 3.6. Let T be an IF-tensor product of R-module M ⊗N . Then T is an
IFSM of R-module L(M ×N)/P .
Proof. Let A be an IFSM of an R-module L(M × N) and P be a submodule of
L(M × N). Then the IF-tensor product of R-modules M and N , M ⊗ N is an
IFS T of L(M × N)/P defined as T = {⟨[m,n], µT ([m,n]), νT ([m,n]⟩ : (m,n) ∈
M ⊗N,m ∈M,n ∈ N} such that

µT ([(m,n)]) = ∨{µA(x, y)|(x, y) ∈ [(m,n)]}
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and

νT ([(m,n)]) = ∧{νA(x, y)|(x, y) ∈ [(m,n)]}

where [(m,n)] = (x, y) + P ∈ L(M ×N)/P , m,x ∈M and n, y ∈ N .
(i) Consider µT ([(0, 0)]) = ∨{µA(x, y)|(x, y) ∈ [(0, 0)]} = µA((0, 0)) = 1 and
νT ([(0, 0)]) = ∧{νA(x, y)|(x, y) ∈ [(0, 0)]} = νA((0, 0)) = 0.
(ii) For [(m1, n1)], [(m2, n2)] ∈M ⊗N , Consider

µT ([(m1, n1)] + [(m2, n2)]) = ∨{µA(x, y)|(x, y) ∈ ([(m1, n1)] + [(m2, n2)])}
= ∨{µA((x1, y1) + (x2, y2))|((x1, y1) + (x2, y2)) ∈ ([(m1, n1)] + [(m2, n2)])}
≥ ∨{µA((x1, y1) + (x2, y2))|(x1, y1) ∈ [(m1, n1)], (x2, y2) ∈ [(m2, n2)]}
≥ ∨{µA(x1, y1) ∧ µA(x2, y2)|(x1, y1) ∈ [(m1, n1)], (x2, y2) ∈ [(m2, n2)]}
= (∨{µA(x1, y1)|(x1, y1) ∈ [(m1, n1)]}) ∧ (∨{µA(x2, y2)|(x2, y2) ∈ [(m2, n2)]})
= µA([(m1, n1)]) ∧ µA([(m2, n2)])

Similarly, we can prove that
νT ([(m1, n1)] + [(m2, n2)]) ≤ νT ([(m1, n1)]) ∨ νT ([(m2, n2)]).
(iii) For r ∈ R, [(m,n)] ∈M ⊗N , Consider

µT (r[(m,n)]) = ∨µT ([r(m,n)])
= ∨{µA(x, y)|(x, y) ∈ [r(m,n)]}
= ∨{µA(r(x, y) + p)|p ∈ P}
≥ ∨{µA(r(x, y) + rp1)|p1 ∈ P}[ where p = rp1]

= ∨{µA(r((x, y) + p1)|p1 ∈ P}
≥ ∨{µA((x, y) + p1)|p1 ∈ P}
= ∨{µA(x1, y1)|(x1, y1) ∈ [(m,n)]}
= µT ([(m,n)])

Similarly , we can prove that νT (r[(m,n)]) ≤ νT ([(m,n)]).
Hence, T is an IFSM of R-module L(M ×N)/P .

Definition 3.7. Let A and B are IFSMs of R-modules M and N . A tensor
product of A and B is an IFSM A ⊗ B which is equipped with an IF-biadditive
map τ̄ : A × B → A ⊗ B such that for each IFSM C of an R-module P and for
every IF-biadditive map ψ̄ : A×B → C there exists a unique IF R-homomorphism
ϕ̄ : A⊗B → C such that the following diagram commutes,
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A×B A⊗B

C

ψ̄

τ̄

ϕ̄

that is ϕ̄ ◦ τ̄ = ψ̄ and µC(ϕ̄(x ⊗ y)) ≥ (µA × µB)(x, y) and νC(ϕ̄(x ⊗ y)) ≤ (νA ×
νB)(x, y).

Theorem 3.8. The tensor product of two intuitionistic fuzzy modules exists and
it is unique upto isomorphism.
Proof. Let A = (µA, νA), B = (µB, νB) and C = (µC , νC) be IFSM’s of R-modules
M , N and P respectively. Let τ̄ : A×B → A⊗B be the tensor product of A and
B.
Define the map : A⊗B :M ⊗N → I × I as

(µA ⊗ µB)(
∑

(xi ⊗ yi)) = ∨{(µA × µB)(
∑

(x
′

i, y
′

i))|
∑

(x
′

i ⊗ y
′

i) =
∑

(xi ⊗ yi)}

and

(νA ⊗ νB)(
∑

(xi ⊗ yi)) = ∧{(νA × νB)(
∑

(x
′

i, y
′

i))|
∑

(x
′

i ⊗ y
′

i) =
∑

(xi ⊗ yi)}

From this, it is easy to see that τ̄ is an IF-biadditive. Let ψ̄ : A × B → C be
IF-biadditive. Since the tensor product of two R-modules exists and unique upto
isomorphism in CR−M . Then by Definition (2.18), for every R-biadditive map
ψ : M ×N → P , there exists an R-module homomorphism ϕ : M ⊗N → P such
that ϕ ◦ τ = ψ.

M ×N M ⊗N

P

ψ

τ

ϕ

We only need to show that ϕ̄ : A ⊗ B → C is an IF R-homomorphism, i.e., we
want to claim that, ∀

∑
(xi ⊗ yi) ∈M ×N

µC(ϕ̄(
∑

(xi ⊗ yi))) ≥ (µA ⊗ µB)(
∑

(xi ⊗ yi))
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νC(ϕ̄(
∑

(xi ⊗ yi))) ≤ (νA ⊗ νB)(
∑

(xi ⊗ yi))

Let
∑

(x
′
i ⊗ y

′
i) =

∑
(xi ⊗ yi). Consider

µC(ϕ(
∑

(x
′

i ⊗ y
′

i))) = µC(
∑

ϕ(x
′

i ⊗ y
′

i))

≥ ∧{µC(ϕ(x
′

i ⊗ y
′

i))}
= ∧{µC(ϕ ◦ τ)(x′

, y
′
))}

= ∧{µC(ψ)(x
′
, y

′
))}

≥ ∧{(µA × µB)(x
′
, y

′
)}

= (µA × µB)(
∑

(x
′

i ⊗ y
′

i))

⇒ µC(ϕ̄(
∑

(xi ⊗ yi))) ≥ (µA ⊗ µB)(
∑

(xi ⊗ yi)).

Similarly, we can prove that νC(ϕ̄(
∑

(xi ⊗ yi))) ≤ (νA ⊗ νB)(
∑

(xi ⊗ yi)).
Hence (A⊗B, τ̄) is the tensor product of A and B.

IfM ∈ Ob(CR−M), we have R⊗M ∼= M . Using this fact, we have the following
result:

Proposition 3.9. Let A ∈ Ob(CR−IFM). Then, we have 0̄⊗ A ∼= 0̄.
For M ∈ Ob(CR−M), M ⊗− is right exact. In CR−IFM , we have the following

result:

Proposition 3.10. Let A ∈ Ob(CR−IFM). Then A ⊗ − preserves epimorphisms
in CR−IFM .

Proof. Let B C 0̄.
ḡ

be an IFSE sequence in CR−IFM and so ḡ is an
IF-epimorphism. Since M ⊗− is right exact, we have

A⊗B A⊗ C 0̄.
IA⊗ḡ

Now, we only need to show that IA ⊗ ḡ is an IF R-homomorphism.
For every

∑
(xi ⊗ yi) ∈M ×N , we have

(µA ⊗ µC)((IA ⊗ ḡ)(
∑

(xi ⊗ yi)))
= (µA ⊗ µC)(

∑
(xi ⊗ ḡ(yi)))

= ∨{(µA × µC)(
∑

(x
′
i, z

′
i))|

∑
(x

′
i ⊗ z

′
i) =

∑
(xi ⊗ ḡ(yi))}

≥ ∨{(µA × µB)(
∑

(x
′
i, y

′
i))|ḡ(yi) = zi and

∑
(x

′
i ⊗ z

′
i) =

∑
(xi ⊗ ḡ(yi))}

≥ ∨{(µA × µB)(
∑

(x
′′
i , y

′′
i ))|

∑
(x

′′
i ⊗ y

′′
i ) =

∑
(xi ⊗ yi)}

= (µA ⊗ µB)(
∑

(xi ⊗ yi)).
Thus (µA ⊗ µC)((IA ⊗ ḡ)(

∑
(xi ⊗ yi))) ≥ (µA ⊗ µB)(

∑
(xi ⊗ yi)).

Similarly, we can show that (νA⊗νC)((IA⊗ḡ)(
∑

(xi⊗yi))) ≤ (νA⊗νB)(
∑

(xi⊗yi)).
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Hence, we get the desired results.

Proposition 3.11. Let A ∈ Ob(CR−IFM). Then − ⊗ A preserves epimorphisms
in CR−IFM .

We now investigate the relationship between the tensor product and the Hom
functor. Linking the two concepts is a natural isomorphism called the Hom-Tensor
adjunction, which connects tensor products and hom-functors in some algebraic
structures like modules. It establishes a relationship betweenHomCR-IFM

(B⊗A,C)
and HomCR-IFM

(A,HomCR-IFM
(B,C)).

Theorem 3.12. (Adjoint Isomorphism) In CR−IFM , there exists an IF quasi-
isomorphisms

τ : HomCR-IFM
(B ⊗ A,C) ∼=Q HomCR-IFM

(A,HomCR-IFM
(B,C));

τ
′
: HomCR-IFM

(A⊗B,C) ∼=Q HomCR-IFM
(A,HomCR-IFM

(B,C)).

Proof. Wemerely show the first quasi-isomorphism. ForA,B,C ∈ Ob(HomCR-IFM
)

and by existence of tensor product in HomCR-IFM
, there exists an unique IF R-

homomorphism
ϕ ∈ HomCR-IFM

(B ⊗ A,C) such that

µC(ϕ(y ⊗ x)) ≥ (µB ⊗ µA)(y ⊗ x)

νC(ϕ(y ⊗ x)) ≤ (µB ⊗ µA)(y ⊗ x).

With due reference to Theorem 2.75 [20], we will define the following IF R- homo-
morphisms:
For x ∈M and y ∈ N , define ϕx : B → C as ϕx(y) = ϕ(y ⊗ x),
ϕ̄ : A→ HomCR-IFM

(B,C) as ϕ̄(y) = ϕx and
τ : HomCR-IFM

(B ⊗ A,C) → HomCR-IFM
(A,HomCR-IFM

(B,C)) as τ(ϕ) = ϕ̄.
It is therefore necessary to prove that ϕx, ϕ̄ are IF R-homomorphisms and τ are
IF R-isomorphism.
(i) To begin with, we will show that ϕx is an IF R-homomorphism. For y ∈ N , we
have

µC(ϕx(y)) = µC(ϕ(y ⊗ x)) ≥ (µB ⊗ µA)(y ⊗ x) ≥ (µB × µA)(y, x)

= ∨{µB(y), µA(x)} ≥ µB(y).
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Likewise, we can exhibit that νC(ϕx(y)) ≤ νB(y). Thus, ϕx is an IFR-homomorphism.
(ii) Secondly, we will show that ϕ̄ is an IF R-homomorphism. For x ∈M , we have

µHomCR-IFM
(B,C)(ϕ̄(x)) = µHomCR-IFM

(B,C)(ϕx)

= ∧{µC(ϕx(y))|y ∈ N}
= ∧{µC(ϕ(y ⊗ x))|y ∈ N}
≥ ∧{(µB ⊗ µA)(y ⊗ x)|x ∈M, y ∈ N}
≥ ∧{∨{µB(y), µA(x)}|x ∈M, y ∈ N}
≥ µA(x).

Likewise, we can exhibit that νHomCR-IFM
(B,C)(ϕ̄(x)) ≤ νA(x).

(iii) Finally, we will show that τ is an IF R-isomorphism. For ϕ ∈ HomCR-IFM
(B⊗

A,C), we have

µHomCR-IFM
(A,HomCR-IFM

(B,C))(τ(ϕ)) = µHomCR-IFM
(A,HomCR-IFM

(B,C))(ϕ̄)

= ∧{µHomCR-IFM
(B,C)(ϕ̄(x))|x ∈M}

= ∧{µHomCR-IFM
(B,C)(fx)|x ∈M}

= ∧{∧{µC(ϕx(y))|y ∈ N}|x ∈M}
= ∧{∧{µC(ϕ(y ⊗ x))|y ∈ N}|x ∈M}
= ∧{µC(ϕ(y ⊗ x))|y ∈ N, x ∈M}
= µHomCR-IFM

(B⊗A,C)(ϕ).

Similarly, we can prove
νHomCR-IFM

(A,HomCR-IFM
(B,C))(τ(ϕ)) = νHomCR-IFM

(B⊗A,C)(ϕ).
This is called adjoint isomorphism.

Remark 3.13. The adjoint isomorphism theorem (3.12) gives natural isomorphism

HomCR-IFM
(B ⊗ A,C) ∼=Q HomCR-IFM

(A,HomCR-IFM
(B,C))

Thus, B ⊗□ is the right adjoint of Hom(□, B).
Fixing any two IF-modules A, B, C, each τ = τA,B,C is a natural isomorphism:

HomCR-IFM
(B ⊗□, C) ∼=Q HomCR-IFM

(□,HomCR-IFM
(B,C));

HomCR-IFM
(B ⊗ A,□) ∼=Q HomCR-IFM

(A,HomCR-IFM
(B,□));

HomCR-IFM
(□⊗ A,C) ∼=Q HomCR-IFM

(A,HomCR-IFM
(□, C))

If f : A→ A
′
, the following diagram is commutative
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HomCR-IFM
(B ⊗ A

′
, C) HomCR-IFM

(A
′
,HomCR-IFM

(B,C))

HomCR-IFM
(B ⊗ A,C) HomCR-IFM

(A,HomCR-IFM
(B,C))

τ
A
′
,B,C

(IB⊗f)∗ f∗

τA,B,C

4. Application of tensor product of intuitionistic fuzzy modules in deci-
sion making

The tensor product of intuitionistic fuzzy modules finds application in deci-
sion making by providing a framework to handle uncertainty and vagueness in the
decision-making process. It allows for the representation of complex relationships
and dependencies among decision criteria. This approach is particularly useful
when dealing with incomplete or imprecise information in decision-making scenar-
ios.

By employing the tensor product of intuitionistic fuzzy modules, decision-
makers can model and analyze various factors simultaneously, considering both
degree of membership and degree of non-membership. This helps in capturing
the nuances of decision criteria and their interdependencies, leading to more com-
prehensive and robust decision models. Let’s consider a decision-making scenario
where a company needs to evaluate potential suppliers based on multiple crite-
ria such as cost, reliability, and quality. Each criterion can be represented as an
intuitionistic fuzzy module.

(i) Cost Module = (µCost, νCost), where µCost = 0.8 and νCost = 0.2.

(ii) Reliability Module = (µReliability, νReliability), where

µReliability = 0.6 and νReliability = 0.2.

(iii) Quality Module = (µQuality, νQuality), where

µQuality = 0.9 and νQuality = 0.4.

To make an overall decision, we can use the tensor product of these intuitionistic
fuzzy modules. The resulting module would represent the combined intuitionistic
fuzzy information considering all criteria. After the tensor product operation, we
might find that a particular supplier has a higher overall degree of membership,
indicating a better fit for the company’s needs. This approach allows decision-
makers to integrate and analyze fuzzy information from multiple sources, making
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the decision-making process more robust and reflective of real-world uncertainties.
Now, let’s calculate the tensor product using the following formulas:

Integrated degree of membership is given by :
µintegrated = µCost⊗µReliability⊗µQuality = µCost×µReliability×µQuality = 0.8×0.6×0.9 =
0.432
and integrated degree of non-membership is given by :
νintegrated = νCost⊗νReliability⊗νQuality = νCost×νReliability×νQuality = 0.2×0.2×0.4 =
0.016.

So, the integrated intuitionistic fuzzy module = (µintegrated, νintegrated) = (0.432, 0.016)

These values represent the combined information considering cost, reliability,
and quality. The high integrated degree of membership suggests a strong overall
alignment with the company’s needs, while the degree of non-membership reflect
the uncertainty and potential areas of disagreement in the decision-making process.

5. Conclusion

The tensor product of intuitionistic fuzzy modules provides a mathematical
framework to handle uncertainty and imprecision in module theory, offering a more
flexible and realistic approach to modeling and solving problems in various do-
mains. We established the existence of the tensor product of two intuitionistic
fuzzy R-modules. We then investigated the relation between Hom functor and
tensor functor in the category of intuitionistic fuzzy modules. The application of
the tensor product of intuitionistic fuzzy modules enhances decision-making pro-
cesses by accommodating uncertainty and vagueness, making it a valuable tool in
situations where precise information is lacking.

Further research in this area is possible and our findings in this study already
provide a framework for future discussions regarding the tensor product.
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