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Abstract: The purpose of this article is to extend Banach’s contraction principle
through a new rational expression in the contractive condition to establish the
existence and uniqueness of fixed point of a closed subset of Hilbert space to a self
mapping. The result is extended to a pair of self mappings and positive integers
powers of a pair mapping and further extended to a sequence of mappings in the
space. The presented results extend and generalized various known comparable
results from the current literature.
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1. Introduction
The most celebrated contraction mapping principle, formulated and proved in

the Ph.D. dissertation of Banach [1] in 1920, which was published in 1922, is one
of the most important theorems in classical functional analysis. This contraction
mapping principle has been generalized in various directions. One of the most
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interesting of them is the generalization obtained by Kannan [4] who investigated
the extension of Banach fixed point theorem by removing the completeness of the
space with different sufficient conditions. Later, Reich [15] also discussed some gen-
eralization of Banach’s fixed point theorem and some remarks on it. Zamfirescu
[22] obtained various results similar to the well-known contraction theorem of Ba-
nach and some of these results were sufficient enough to include the theorem of
Kannan. Also, a generalization of Banach fixed point theorem was given by Jaggi
[3] which involved a continuous map satisfying certain inequality involving rational
expression. Fisher [2] developed the approach of Kannan and proved analogous re-
sults involving two mappings on a complete metric space. In this direction several
authors obtained further results [6, 7, 8, 12, 13, 14, 16, 19, 22].

Koparde and Waghmode [5] extended the Banach fixed point theorem to obtain
the existence and uniqueness of a fixed point for a sequence of mappings on a
Hilbert space satisfying Kannan’s type conditions. Pandhare and Waghmode [10]
developed this approach of Koparde and Waghmode [5] and proved the fixed point
theorem for a self mapping on a closed subset of a Hilbert space satisfying certain
condition. The same is extended to a family of self mappings in [9, 11, 17, 21] by
taken a sequence of mappings, which converges point wise to a limit mapping and
show that if this limit mapping has a fixed point then this fixed point is also the
limit of fixed points of the mappings of the sequence.

Sharma et al. [20] considered a pair of self mappings of a closed subset of a
Hilbert space, satisfying certain rational inequalities and proved a common fixed
point theorem for self mappings.

Recently, Seshagiri and Kalyani [18] proved the existence and uniqueness of a
common fixed point for a pair of self mappings, positive integer’s powers of a pair
of self mapping and a sequence of self mappings over a closed subset of a Hilbert
space satisfying various conditions involving rational expressions.

In view of the above considerations, we proved that a self mapping T satisfying
certain rational contraction condition has a unique fixed point on a closed subset X
of Hilbert space and again the same result is then extended to a pair of mappings
T1, T2, some positive integers powers r, s of a pair mappings T r

1 , T
s
2 and then further

generalized to a sequence of mappings in the space.

2. Preliminary Theorems
Here are the lists of some of the results that motivated our results.

Theorem 2.1. [5] Let C be a non empty closed subset of Hilbert space H. Let
T : C → C be a self mapping satisfying the Kannan type condition

∥Tx− Ty∥2 ≤ α
{
∥x− Tx∥2 + ∥y − Ty∥2

}
(2.1)
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for all x, y ∈ S, x ̸= y , α ∈ [0, 1
2
). Then, T has a fixed point in X.

Theorem 2.2. [5] Let C be a non empty closed sunset of a Hilbert space H . Let
T : T → C be a family of self-mappings satisfying the Kannan type condition

∥Tix− Tiy∥2 ≤ α
{
∥x− Tix∥2 + ∥y − Tiy∥2

}
(2.2)

for all x, y ∈ S, x ̸= y , α ∈ [0, 1
2
). Then, T has a fixed point in X.

Theorem 2.3. [20] Let S be a non empty closed subset of Hilbert space H. Let
T : S → S be self-mappings satisfying the following conditions.

∥Tx− Ty∥ ≤ α
∥x− Tx∥2 + ∥y − Ty∥2

∥x− Tx∥+ ∥y − Ty∥
+ β∥x− y∥ (2.3)

for all x, y ∈ S, x ̸= y ,0 ≤ α < 1
2
, 0 ≤ β, 2α + β < 1. Then, T has a fixed point

in X.

Theorem 2.4. [18] Let X be a closed subset of a Hilbert space and T1, T2 be two
continuous self-mappings on X satisfying contraction condition, then T1 and T2
have unique common fixed point in X:

∥T1x− T2y∥2 ≤ α
∥x− T2y∥2[1 + ∥y − T1x∥2

1 + ∥x− y∥2

+ β
∥x− y∥2[1 + ∥x− T2y∥2

1 + ∥x− y∥2

+ γ
∥x− T1x∥2 + ∥y − T2y∥2 + ∥y − T1x∥2

1 + ∥x− T1x∥2∥x− T2y∥2∥y − T1x∥2

+ δ[∥y − T1x∥2 + ∥x− T2y∥2] + ϵ∥x− y∥2

(2.4)

for all x, y ∈ X , x ̸= y, where α, β, γ, δ, ϵ are positive real’s with 2α + β + 4γ +
2δ + ϵ < 1.

3. Main Theorems
In this section, we state and prove our main result as follows:

Theorem 3.1. Let T be a closed subset of a Hilbert space and a self mapping
T : X → X satisfying the following.

d(Tx, Ty) ≤α∥x− Tx∥∥x− Ty∥+ ∥y − Tx∥∥y − Ty∥
∥y − Tx∥+ ∥x− Ty∥

+ β
∥x− Tx∥∥y − Ty∥

∥x− y∥+ ∥x− Ty∥+ ∥y − Tx∥

+ γ
∥x− Tx∥∥y − Ty∥

∥x− y∥
+ δ∥x− y∥,

(3.1)
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for all distinct x, y ∈ X and α, β, γ, δ are non negative real numbers with 0 ≤
α + β + γ + δ < 1. Then T has a unique fixed point in X.
Proof. Let x0 ∈ X be an arbitrary point and define a sequence {xn} in X as

x1 = Tx0, x2 = Tx1, ..., Xn+1 = Txn,∀ n = 0, 1, 2, ... (3.2)

Next, we show that the sequence {xn} is Cauchy in X. with (3.1) and (3.2), we
have

∥xn+1 − xn∥ = ∥Txn − Txn−1∥

≤ α
∥xn − Txn∥∥xn − Txn−1∥+ ∥xn−1 − Txn∥∥xn−1 − Txn−1∥

∥xn−1 − Txn∥+ ∥xn − Txn−1∥

+ β
∥xn − Txn∥∥xn−1 − Txn−1∥

∥xn − xn−1∥+ ∥xn − Txn−1∥+ ∥xn−1 − Txn∥

+ γ
∥xn − Txn∥∥xn−1 − Txn−1∥

∥xn − xn−1∥
+ δ∥xn − xn−1∥

(3.3)

∥xn+1 − xn∥ ≤ (
α + β + δ

1− γ
)∥xn − xn−1∥, (3.4)

implies
∥xn+1 − xn∥ ≤ r(n)∥xn − xn−1∥, (3.5)

where

r(n) =
α + β + δ

1− γ
,

for all n = 0, 1, 2, ... . Clearly, r(n) < 1, for all 0 ≤ α + β + γ + δ < 1.
Repeating the above process in the same manner as in (3.5), we find some r < 1,
such that

∥xn+1 − xn∥ ≤ rn∥x1 − x0∥. (3.6)

On taking n → ∞ in (3.6), we get ∥xn+1 − xn∥ → 0. Hence, the sequence {xn} is
Cauchy in X. But X is a closed subset of Hilbert space and so by completeness
of X, there exist a point u ∈ X such that xn → u as n → ∞. Consequently,
{xn+1} = {Txn} is a subsequence of {xn} and hence has the same limit as u.
Since T is continuous, we get

T (u) = T ( lim
n→∞

xn)

= lim
n→∞

Txn

= lim
n→∞

xn+1

= u.

(3.7)
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Thus, u is the fixed point of T in X.
Finally, to prove the uniqueness of a fixed point u, we let v(u ̸= v) be another fixed
point of T . Then, from (3.1), we get

∥u− v∥ = ∥Tu− Tv∥

≤ α
∥u− Tu∥∥u− Tv∥+ ∥v − Tu∥∥v − Tv∥

∥v − Tu∥+ ∥u− Tv∥

+ β
∥u− Tu∥∥v − Tv∥

∥u− v∥+ ∥u− Tv∥+ ∥v − Tu∥

+ γ
∥u− Tu∥∥v − Tv∥

∥u− v∥
+ δ∥u− v∥

(3.8)

∥u− v∥ ≤ δ∥u− v∥, (3.9)

a contradiction, for δ < 1. Implies u = v. Hence, u is a unique fixed point of T in
X.

Example 3.2. Let T : [0, 1] → [0, 1] be defined by Tx = x3

3
for all x ∈ [0, 1].

Clearly 0 is the fixed point of T with the usual norm ∥x− y∥ = |x− y|.
Now, we consider a pair of self mappings of a closed subset of a Hilbert space.

Theorem 3.3. Let X be a closed subset of a Hilbert space and T1T2 : X → X be
self mappings satisfying the following

d(T1x, T2y)

≤ α
∥x− T1x∥∥x− T2y∥+ ∥y − T1x∥∥y − T2y∥

∥v − T1x∥+ ∥x− T2y∥

+ β
∥x− T1x∥∥y − T2y∥

∥x− y∥+ ∥x− T2y∥+ ∥y − T1x∥

+ γ
∥x− T1x∥∥y − T2y∥

∥x− y∥
+ δ∥x− y∥,

(3.10)

for all distinct x, y ∈ X and α, β, γ, δ are non negative real numbers with
0 ≤ α + β + γ + δ < 1. Then T1, T2 have a common fixed point in X.
Proof. Let us construct a sequence {xn} in X for an arbitrary point x0 ∈ X as

x2n+1 = T1x2n, x2n+2 = T2x2n+1, ∀n = 0, 1, 2, ... (3.11)
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We show that the sequence {xn} is Cauchy in X. With (3.10) and (3.11), we have

∥x2n+1−x2n∥ = ∥T1x2n − T2x2n−1∥

≤ α
∥x2n − T1x2n∥∥x2n − T2x2n−1∥+ ∥x2n−1 − T1x2n∥∥x2n−1 − T2x2n−1∥

∥x2n−1 − T1x2n∥+ ∥x2n − T2x2n−1∥

+ β
∥x2n − T1x2n∥∥x2n−1 − T2x2n−1∥

∥x2n − x2n−1∥+ ∥x2n + T2x2n−1∥+ ∥x2n−1 − T1x2n∥

+ γ
∥x2n − T1x2n∥∥x2n−1 − T2x2n−1∥

∥x2n − x2n−1∥
+ δ∥x2n − x2n−1∥

(3.12)

∥x2n+1 − x2n∥ ≤ (
α + β + δ

1− γ
)∥x2n − x2n−1∥, (3.13)

implies
∥x2n+1 − x2n∥ ≤ λ(n)∥x2n − x2n−1∥, (3.14)

where

λ(n) =
α + β + δ

1− γ
,

for all n = 0, 1, 2, .... Clearly, t = λ(n) < 1, for all 0 ≤ α + β + γ + δ < 1.
In general, we have

∥xn+1 − xn∥ ≤ t∥xn − xn−1∥. (3.15)

Continuing the process in (3.15), we get

∥xn+1 − xn∥ ≤ tn∥x1 − x0∥, n ≥ 1. (3.16)

On taking n→ ∞ in (3.16), we get ∥xn+1 − xn∥ → 0. Hence, the sequence {xn} is
Cauchy in X and has a limit u in X.

Since the sequences {x2n+1} = {T1x2n} and {x2n+2} = {T2x2n+1} are subse-
quences of {xn} and hence the subsequences have the same limit u in X.
Now, we show that u is the common fixed point of T1 and T2 in X. Then, from
(3.10), we get

∥u− T1u∥ = ∥(u− x2n+2) + (x2n+2 − T1u)∥
≤ ∥u− x2n+2∥+ ∥T1u− T2x2n+1∥

≤ α
∥u− T1u∥∥u− T2x2n+1∥+ ∥x2n+1 − T1u∥∥x2n+1 − T2x2n+1∥

∥x2n+1 − T1u∥+ ∥u− T2x2n+1∥

+ β
∥u− T1u∥∥x2n+1 − T2x2n+1∥

∥u− x2n+1∥+ ∥u− T2x2n+1∥+ ∥x2n+1 − T1u∥

+ γ
∥u− T1u∥∥x2n+1 − T2x2n+1∥

∥u− x2n+1∥
+ δ∥u− x2n+1∥+ ∥u− x2n+2∥.

(3.17)
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Letting n → ∞ in (3.17), we get ∥u− T1u∥ ≤ (α + δ)∥u− T1u∥. Since α + δ < 1,
it follows that T1u = u.
Similarly, from, from (3.10), we get T2u = u by using the following

∥u− T2u∥ = ∥(u− x2n+1) + (x2n+1 − T2u).∥

Thus, u is a common fixed point of T1 and T2 in X.
To complete the proof, we show that u is a unique fixed point of T1T2. Now, let us
suppose that v(u ̸= v) be another common fixed point of T1 and T2. Then, from
(3.10), we get

∥u− v∥ = ∥T1u− T2v∥

≤ α
∥u− T1u∥∥u− T2v∥+ ∥v − T1u∥∥v − T2v∥

∥v − T1u∥+ ∥u− T2v∥

+ β
∥u− T1u∥∥v − T2v∥

∥u− v∥+ ∥u− T2v∥+ ∥v − T1u∥

+ γ
∥u− T1u∥∥v − T2v∥

∥u− v∥
+ δ∥u− v∥

(3.18)

implies
∥u− v∥ ≤ δ∥u− v∥, (3.19)

a contradiction, for δ < 1. Implies u = v. Hence, u is a unique common fixed point
of T1 and T2 in X.

Example 3.4. Let T1T2 : [0, 1] → [0, 1] defined by T1x = x
3
and T2x = x

4
, for

all x ∈ [0, 1]. Clearly 0 is the common fixed point of T1 and T2 and usual norm
∥x− y∥ = |x− y|.
In this theorem, we consider a pair taking positive integers power of the self map-
pings in the contraction inequality.

Theorem 3.5. Let X be a closed subset of a Hilbert space and T1T2 : X → X be
self mappings satisfying the following.

d(T r
1x, T

s
2 y)

≤ α
∥x− T r

1x∥∥x− T s
2 y∥+ ∥y − T r

1x∥∥y − T s
2 y∥

∥y − T r
1x∥+ ∥x− T s

2 y∥

+ β
∥x− T r

1x∥∥y − T s
2 y∥

∥x− y∥+ ∥x− T s
2 y∥+ ∥y − T r

1x∥

+ γ
∥x− T r

1x∥∥y − T s
2 y∥

∥x− y∥
+ δ∥x− y∥,

(3.20)



122 J. of Ramanujan Society of Mathematics and Mathematical Sciences

for all distinct x, y ∈ X and α, β, γ, δ are non negative real numbers with 0 ≤
α + β + γ + δ < 1. Then T1, T2 have a unique common fixed point in X.
Proof. In view of Theorem 3.3, T r

1 and T s
2 have a unique common fixed point

u ∈ X, so that T r
1u = u and T s

2u = u.
By considering T r

1 (T1u) = T1(T
r
1u) = T1u

We have that T1u is a fixed point of T r
1 .

But u is a unique fixed point of T r
1 .

Therefore, T1u = u.
Similarly, we get T2u = u.
Hence, u is a common fixed point of T1 and T2.
To show uniqueness, we let v be another fixed point of T1 and T2, so that T1v =
T2v = v. With (3.20), we have

∥u− v∥ = ∥T r
1u− T s

2 v∥

≤ α
∥u− T r

1u∥∥u− T s
2 v∥+ ∥v − T r

1u∥∥v − T s
2 v∥

∥v − T r
1u∥+ ∥u− T s

2 v∥

+ β
∥u− T r

1u∥∥v − T s
2 v∥

∥u− v∥+ ∥u− T s
2 v∥+ ∥v − T r

1u∥

+ γ
∥u− T r

1u∥∥v − T s
2 v∥

∥u− v∥
+ δ∥u− v∥,

(3.21)

∥u− v∥ ≤ δ∥u− v∥. (3.22)

Implies u = v, since δ < 1. Hence, u is a unique common fixed point of T1 and T2
in X.
In the following Theorem, we consider a sequence of mappings on a closed subset
of a Hilbert space which converges point wise to a limit mapping and show that if
this limit mapping has a fixed point then this fixed point is also the limit of fixed
points of the mappings of the sequence.

Theorem 3.6. Let X be a closed subset of a Hilbert space and {Ti} be a sequence
of self mappings on X converging point wise to T and satisfying the following

d(Tix, Tiy)

≤ α
∥x− Tix∥∥x− Tiy∥+ ∥y − Tix∥∥y − Tiy∥

∥y − Tix∥+ ∥x− Tiy∥

+ β
∥x− Tix∥∥y − Tiy∥

∥x− y∥+ ∥x− Tiy∥+ ∥y − Tix∥

+ γ
∥x− Tix∥∥y − Tiy∥

∥x− y∥
+ δ∥x− y∥,

(3.23)
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for all distinct x, y ∈ X and α, β, γ, δ are non negative real numbers with 0 ≤
α + β + γ + δ < 1, if each Ti has a fixed point ui and T has a fixed point u, then
the sequence {ui} converges to u.
Proof. In light of Theorem 3.3, ui is a fixed point of Ti. Then, from (3.23), we
have

∥u− un∥ = ∥Tu− Tnun∥ = ∥(Tu− Tnu) + (Tnu− Tnun)∥
≤ ∥Tu− Tnu∥+ ∥Tnu− Tnun∥

≤ α
∥u− Tnu∥∥u− Tnun∥+ ∥un − Tnu∥∥un − Tnun∥

∥un − Tnu∥+ ∥u− Tnun∥

+ β
∥u− Tnu∥∥un − Tnun∥

∥u− un∥+ ∥u− Tnun∥+ ∥un − Tnu∥

+ γ
∥u− Tnu∥∥un − Tnun∥

∥u− un∥
+ δ∥u− un∥+ ∥Tu− Tnu∥.

(3.24)

On taking n→ ∞ in (3.24), Tnu→ Tu, Tnun → un and Tu = u, we get

lim
n→∞

∥u− un∥ ≤ δ lim
n→∞

∥u− un∥.

Implies
lim
n→∞

∥u− un∥ = 0,

since δ < 1.
Hence, un → u as n→ ∞.
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operator, Mathematical Methods in the Applied Sciences, (2023).

[13] Raji M. and Ibrahim M. A. Fixed point theorems for modified F-weak con-
tractions via α-admissible mapping with application to periodic points, An-
nals of Mathematics and Computer Science, 20 (2024), 82-97.

[14] Raji M., Generalized α-ψ Contractive Type Mappings and Related Coin-
cidence Fixed Point Theorems with Applications, The Journal of Analysis,
31(2) (2023), 1241-1256.



An approach to the study of fixed point theory in Hilbert space 125

[15] Reich S., Some remarks concerning contraction mappings, Canad. Math.
Bull., 14 (1971), 121-124.

[16] Sanatee A. G., Rathour L., Mishra V. N. and Dewangan V., Some fixed point
theorems in regular modular metric spaces and application to Caratheodory’s
type anti-periodic boundary value problem, The Journal of Analysis, Vol. 31
(2023), 619-632.

[17] Seshagiri Rao N., Kalyani K., Acharyulu K. V. L. N., A unique fixed point
theorem in Hilbert space, Acta Ciencia Indica, XLI, 1 (2015), 39-46.

[18] Seshagiri Rao N., Kalyani K., On some common fixed point theorems with
rational expressions over closed subset of a Hilbert space, The Journal of
Analysis, (2019), 1-14.

[19] Shahi L., Rathour, V. N. Mishra, Expansive Fixed Point Theorems for tri-
simulation functions, The Journal of Engineering and Exact Sciences, Vol.
08, N. 03 (2022), 14303–01e.

[20] Sharma, A. K., Babshah V. H. and Gupta, V. K., Common fixed point the-
orems of a sequence of mappings in Hilbert spaces, Ultra scientist Phyl. Sci.
(2012).

[21] Veerapandi T., Anil Kumar S., Common fixed point theorems of a sequence
of mappings on Hilbert space, Bull. Cal. Math. Soc., 91 (4), (1999) 299-308.

[22] Zamfirescu T., Fixed point theorems in metric spaces, Arch. Math., 23
(1972), 292-298.



126 J. of Ramanujan Society of Mathematics and Mathematical Sciences

Th
is
pa
ge
in
te
nt
io
na
lly
lef
t b
la
nk
.


