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Abstract: The main object of this paper is to establish seven elliptical integrals
associated with hypergeometric functions and suggest new way to compute their
numerical values. The results presented in this article are presumably new and not
present in the scientific literature.
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1. Introduction and Definitions
A generalized hypergeometric function αFβ(a1, ..., aα; b1, ..., bβ; z) is a function

which can be defined in the form of a hypergeometric series, i.e., a series for which
the ratio of successive terms can be written as:

cζ+1

cζ
=

P (ζ)

Q(ζ)
=

(ζ + a1)(ζ + a2)...(ζ + aα)

(ζ + b1)(ζ + b2)...(ζ + bβ)(ζ + 1)
z. (1.1)

Where ζ+1 in the denominator is present for historical reasons of notation (see [1];
[6], p. 12 (2.9)), and the resulting generalized hypergeometric function is written
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as [4]:

αFβ

 a1, a2, · · · , aα ;
z

b1, b2, · · · , bβ ;

 =
∞∑
k=0

(a1)k(a2)k · · · (aα)kzk

(b1)k(b2)k · · · (bβ)kk!
(1.2)

where the parameters b1, b2, · · · , bβ are positive integers.
The complete elliptic integral of the first kind K is defined as [4]:

K(η) =

∫ π
2

0

dθ√
1− η2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− η2t2)

, (1.3)

In power series

K(η) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2
η2n =

π

2

∞∑
n=0

[
P2n(0)

]2
η2n, (1.4)

where Pn is the Legendre polynomial.
In terms of the Gauss hypergeometric function, the complete elliptic integral of the
first kind can be expressed as

K(η) =
π

2
2F1

(1
2
,
1

2
; 1; η2

)
(1.5)

The complete elliptic integral of the second kind E is defined as [4]:

E(η) =

∫ π
2

0

√
1− η2 sin2 θ dθ =

∫ 1

0

√
1− η2t2√
1− t2

dt. (1.6)

It can be expressed as a power series

E(η) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2
η2n

1− 2n
. (1.7)

In terms of the Gauss hypergeometric function, the complete elliptic integral of
second kind is defined as

E(η) =
π

2
2F1

(1
2
,−1

2
; 1; η2

)
. (1.8)
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2. Main formulae of the elliptical integrals associated with hypergeo-
metric functions

In this section, we establish set of seven elliptical integrals associated with
hypergeometric functions, as follows:

Theorem 2.1. Each of the following assertion holds true:∫ 1

0

x E(c x)√
1− x2

dx = − 1

32
π
[
π c 4F3

(1
4
,
3

4
,
3

4
,
5

4
; 1,

3

2
, 2; c2

)
−

−16 4F3

(
− 1

4
,
1

4
,
1

4
,
3

4
;
1

2
,
1

2
,
3

2
; c2

)]
for Im(c) ̸= 0 ∨Re(c) < 0. (2.1)∫ 1

0

x E(x
c
)

√
1− x2

dx =
1

32
π

[
16 4F3

(
− 1

4
,
1

4
,
1

4
,
3

4
;
1

2
,
1

2
,
3

2
;
1

c2

)
−

−1

c

(
π 4F3

(1
4
,
3

4
,
3

4
,
5

4
; 1,

3

2
, 2;

1

c2

))]
for Im(c) ̸= 0 ∨Re(c) < 0. (2.2)

∫ 1

0

x E(c x2)√
1− x2

dx =
π[
√

−(c− 1)c+ sin−1√c]

4
√
c

for Im(c) ̸= 0 ∨Re(c) < 0. (2.3)∫ 1

0

x E(c x4)√
1− x2

dx =
1

2
π 3F2

(
− 1

2
,
1

2
,
1

2
;
3

4
,
5

4
; c
)

for Im(c) ̸= 0 ∨Re(c) < 0. (2.4)∫ 1

0

x E(c x6)√
1− x2

dx =
1

2
π 3F2

(
− 1

2
,
1

3
,
2

3
;
5

6
,
7

6
; c
)

for Im(c) ̸= 0 ∨Re(c) < 0. (2.5)∫ 1

0

x E(c x8)√
1− x2

dx =
1

2
π 5F4

(
−1

2
,
1

4
,
1

2
,
1

2
,
3

4
;
3

8
,
5

8
,
7

8
,
9

8
; c
)
for Im(c) ̸= 0∨Re(c) < 0.

(2.6)∫ 1

0

x E(c x10)√
1− x2

dx =
1

2
π 5F4

(
− 1

2
,
1

5
,
2

5
,
3

5
,
4

5
;
3

10
,
7

10
,
9

10
,
11

10
; c
)

(2.7)

for Im(c) ̸= 0 ∨ Re(c) < 0, provided that each member of the assertions (2.1) to
(2.7) exists.

3. Some results derived from main formulae
In this section, we suggest corresponding results for the assertions (2.1) to (2.7),

and also compute numerical values, as given below:
Putting c = 1 in (2.1), we get∫ 1

0

x E(x)√
1− x2

dx = − 1

32
π
[
π 4F3

(1
4
,
3

4
,
3

4
,
5

4
; 1,

3

2
, 2; 1

)
−
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−16 4F3

(
− 1

4
,
1

4
,
1

4
,
3

4
;
1

2
,
1

2
,
3

2
; 1
)]

≈ 1.16569. (3.1)

Putting c = 1 in (2.2), we get∫ 1

0

x E(x)√
1− x2

dx =
1

32
π

[
16 4F3

(
− 1

4
,
1

4
,
1

4
,
3

4
;
1

2
,
1

2
,
3

2
;
1

1

)
−

−1

1

(
π 4F3

(1
4
,
3

4
,
3

4
,
5

4
; 1,

3

2
, 2;

1

1

))]
≈ 1.16569. (3.2)

Putting c = 1 in (2.3), we get∫ 1

0

x E(x2)√
1− x2

dx =
π2

8
≈ 1.2337. (3.3)

Putting c = 1 in (2.4), we get∫ 1

0

x E(x4)√
1− x2

dx =
1

2
π 3F2

(
− 1

2
,
1

2
,
1

2
;
3

4
,
5

4
; 1
)
. ≈ 1.30498 (3.4)

Putting c = 1 in (2.5), we get∫ 1

0

x E(x6)√
1− x2

dx =
1

2
π 3F2

(
− 1

2
,
1

3
,
2

3
;
5

6
,
7

6
; 1
)
. ≈ 1.34428 (3.5)

Putting c = 1 in (2.6), we get∫ 1

0

x E(x8)√
1− x2

dx =
1

2
π 5F4

(
− 1

2
,
1

4
,
1

2
,
1

2
,
3

4
;
3

8
,
5

8
,
7

8
,
9

8
; 1
)
≈ 1.37007 (3.6)

Putting c = 1 in (2.7), we get∫ 1

0

x E(x10)√
1− x2

dx =
1

2
π 5F4

(
− 1

2
,
1

5
,
2

5
,
3

5
,
4

5
;
3

10
,
7

10
,
9

10
,
11

10
; 1
)
. ≈ 1.38868 (3.7)

4. Derivation of the Main Formulae
We first prove our first assertion (2.1). Consider its left hand side, and by

substituting x = sin θ, such that dx = cos θ dθ, and also apply suitable limits, we
have:∫ 1

0

x E(c x)√
1− x2

dx
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=

∫ π/2

0

sin θ E(c sin θ)√
1− sin2 θ

cos θ dθ

=

∫ π/2

0

sin θ E(c sin θ) dθ

=
1

2
π

∫ π/2

0

sin θ

∞∑
k=0

(−1
2
)k(

1
2
)k(c sin θ)k

(k!)2
dθ

=
1

2
π sin

∞∑
k=0

(−1
2
)k(

1
2
)k ck

(k!)2

∫ π/2

0

sink+1θ dθ =
1

4
π

3
2

∞∑
k=0

(−1
2
)k(

1
2
)k ck

(k!)2
Γ(k

2
+ 1)

Γ(k+3
2
)

Now after simplification, we arrived∫ 1

0

x E(c x)√
1− x2

dx = − 1

32
π
[
π c 4F3

(1
4
,
3

4
,
3

4
,
5

4
; 1,

3

2
, 2; c2

)
−16 4F3

(
− 1

4
,
1

4
,
1

4
,
3

4
;
1

2
,
1

2
,
3

2
; c2

)]
.

This completes our demonstration of the first assertion (2.1).
Assertion (2.2) is easily, and can be proved similarly as (2.1), hence we left for the
readers.
Next, we prove our third assertion (2.3). Consider its left hand side, and by sub-
stituting x = sin θ, such that dx = cos θ dθ, and also apply suitable limits, we
have:∫ 1

0

x E(c x2)√
1− x2

dx

=

∫ π/2

0

sin θ E(c sin2 θ)√
1− sin2 θ

cos θ dθ

=

∫ π/2

0

sin θ E(c sin2 θ) dθ

=
1

2
π

∫ π/2

0

sin θ
∞∑
k=0

(−1
2
)k(

1
2
)k(c sin2 θ)k

(k!)2
dθ

=
1

2
π sin

∞∑
k=0

(−1
2
)k(

1
2
)k ck

(k!)2

∫ π/2

0

sin2k+1θ dθ =
1

4
π

3
2

∞∑
k=0

(−1
2
)k(

1
2
)k ck

(k!)2
Γ(k + 1)

Γ
(

2k+3
2

) .
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Now after simplification, we got:∫ 1

0

x E(c x2)√
1− x2

dx =
π[
√
−(c− 1)c+ sin−1√c]

4
√
c

.

This completes our demonstration of the first assertion (2.3).
Assertion (2.4) is easily, and can be proved similarly as (2.3), hence we left for the
readers.
Next, we prove our fifth assertion (2.5). Consider its left hand side, and by sub-
stituting x = sin θ,such that dx = cos θ dθ, and also apply suitable limits, we
have:∫ 1

0

x E(c x6)√
1− x2

dx

=

∫ π/2

0

sin θ E(c sin6 θ)√
1− sin2 θ

cos θ dθ

=

∫ π/2

0

sin θ E(c sin6 θ) dθ

=
1

2
π

∫ π/2

0

sin θ
∞∑
k=0

(−1
2
)k(

1
2
)k(c sin6 θ)k

(k!)2
dθ

=
1

2
π

∞∑
k=0

(−1
2
)k(

1
2
)k ck

(k!)2

∫ π/2

0

sin6k+1θ dθ

=
1

4
π

3
2

∞∑
k=0

(−1
2
)k(

1
2
)k ck

(k!)2
Γ(3k + 1)

Γ
(

6k+3
2

) .

Now after simplification, we obtained:∫ 1

0

x E(c x6)√
1− x2

dx =
1

2
π 3F2

(
− 1

2
,
1

3
,
2

3
;
5

6
,
7

6
; c
)
.

This completes our demonstration of the first assertion (2.5).
Assertion (2.6) is easily, and can be proved similarly as (2.5), hence we left for the
readers.
Next, we prove our seventh assertion (2.7). Consider its left hand side, and by
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substituting x = sin θ,such that dx = cos θ dθ, and also apply suitable limits, we
have:∫ 1

0

x E(c x10)√
1− x2

dx

=

∫ π/2

0

sin θ E(c sin10 θ)√
1− sin2 θ

cos θ dθ

=

∫ π/2

0

sin θ E(c sin10 θ) dθ

=
1

2
π

∫ π/2

0

sin θ
∞∑
k=0

(−1
2
)k(

1
2
)k(c sin10 θ)k

(k!)2
dθ

=
1

2
π

∞∑
k=0

(−1
2
)k(

1
2
)k ck

(k!)2

∫ π/2

0

sin10k+1θ dθ

=
1

4
π

3
2

∞∑
k=0

(−1
2
)k(

1
2
)k ck

(k!)2
Γ(5k + 1)

Γ
(

10k+3
2

) .
Now after simplification, we arrived:∫ 1

0

x E(c x10)√
1− x2

dx =
1

2
π 5F4

(
− 1

2
,
1

5
,
2

5
,
3

5
,
4

5
;
3

10
,
7

10
,
9

10
,
11

10
; c
)
.

This completes our demonstration of the first assertion (2.7).
This obviously completes our proof of Theorem 1.
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