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1. Introduction
Denote by A(p) the class of multivalent analytic functions of the form

f(z) = zp +
∞∑

k=p+1

akz
k, z ∈ D := {z ∈ C : |z| < 1}, p ∈ N := {1, 2, . . . }, (1.1)

and let A(1) =: A.
If f and g are analytic functions in D, we say that f is subordinate to g, denoted

by f(z) ≺ g(z), or g is superordinate to f , if there exists a Schwarz function w,
that is w is analytic in D, with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)),
z ∈ D. Furthermore, if g is univalent in D, then the next equivalence holds (see
[11] and [21]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(D) ⊂ g(D).
Differentiating the relation (1.1) q-times, we have

f (q)(z) = δ(p, q)zp−q +
∞∑

k=p+1

δ(k, q)akz
k−q, z ∈ D, q ∈ N0 := N ∪ {0},

where

δ(p, q) :=
p!

(p− q)!
, p > q.

Definition 1.1. For f ∈ A(p), p ∈ N, q ∈ N0, with p > q, and 0 ≤ β < p− q, we
say that f ∈ S∗

p,q(β) if it satisfies the inequality

Re
zf (1+q)(z)

f (q)(z)
> β, z ∈ D,

and it is in the class Kp,q(β) if it satisfies

Re

(
1 +

zf (2+q)(z)

f (1+q)(z)

)
> β, z ∈ D.

The classes S∗
p,q(β) and Kp,q(β) were introduced and studied by Aouf in [4, 6,

7]. Also, the classes S∗
p,0(β) =: S∗

p(β) and Kp,0(β) =: Kp(β) have been extensively
studied by Aouf [1, 2, 10] and Owa [28].

Definition 1.2. For 0 < β ≤ p − q, with p ∈ N, q ∈ N0, and p > q, we
say that the function f ∈ A(p) is in the class Cp,q(β), if there exists a function
g ∈ S∗

p,q(0) =: S∗
p,q such that

Re
zf (1+q)(z)

g(q)(z)
> β, z ∈ D.
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We note that Cp,0(β) =: Cp(β) represents the class of p-valently close-to-convex
functions of order β (see Aouf [3, 8]).

Definition 1.3. A function f ∈ A(p), with f (q)(z) ̸= 0 for all z ∈ D \ {0}, is
said to be p-valently Bazilevič of type µ and order β with higher order derivatives,
if there exists a function g ∈ S∗

p,q such that

Re

[
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ]
> β, z ∈ D (1.2)

for some µ, with µ ≥ 0, and β, with 0 ≤ β < p − q, and we denote by Bp,q(µ, β)
the class of these functions.

We remark that Bp,0(µ, β) =: Bp(µ, β) (see Patel and Cho [31]) and Bp,0(1, β) =:
Cp(β), while for arbitrary real numbers A and B, with −1 ≤ B < A ≤ 1, let

S∗
p(A,B) :=

{
f ∈ A(p) :

zf ′(z)

f(z)
≺ p

1 + Az

1 +Bz

}
,

One can see that S∗
p

(
1− 2α

p
,−1

)
=: S∗

p(α), where 0 ≤ α < p, and the class

S∗
p(A,B) was introduced by Goel and Sohi [15], and Aouf [2].
Now, for µ ≥ 0, λ > 0, −1 ≤ B < A ≤ 1, and g ∈ S∗

p,q, we define the class
Mp,q(λ, µ,A,B) as follows:

Definition 1.4. A function f ∈ A(p), with f (q)(z) ̸= 0 for all z ∈ D \ {0}, is said
to be in the class Mp,q(λ, µ,A,B) if

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]
≺ (p− q)

1 + Az

1 +Bz
,

for some g ∈ S∗
p,q, where the powers are the principal ones.

For convenience, if 0 ≤ β < p− q, we write

Mp,q(λ, µ, β) := Mp,q

(
λ, µ, 1− 2β

p− q
,−1

)
=

{
f ∈ A(p) : Re

{
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ

[
1+

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)

− µ
zg(1+q)(z)

g(q)(z)

]}
> β

}
.
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We note that the class Mp,0(λ, µ,A,B) =: Mp(λ, µ,A,B) was introduced by Patel
and Cho [31] (see also Guo and Liu [16], and Wang and Jiang [34]), the class
Mp,0(λ, µ, β) =: Mp(λ, µ, β) (0 ≤ β < p) was defined by Patel and Cho [31] (see
also [34]), while the class M1(λ, µ, β) =: M(λ, µ, β) (0 ≤ β < 1) was introduced
and studied by Guo and Liu [16].

To prove our main results we shall require the following lemmas. The first one
deals with the Briot-Bouquet differential equations and differential subordinations:

Lemma 1.1. [20, Corollary 3.2] If −1 ≤ B < A ≤ 1, β > 0, and the complex

number γ satisfies Re γ ≥ −β(1− A)

1−B
, then the differential equation

q(z) +
zq′(z)

βq(z) + γ
=

1 + Az

1 +Bz
,

has a univalent solution in D given by

q(z) =



zβ+γ(1 +Bz)
β(A−B)

B

β

z∫
0

tβ+γ−1(1 +Bt)
β(A−B)

B dt

− γ

β
, if B ̸= 0,

zβ+γ exp(βAz)

β

z∫
0

tβ+γ−1 exp(βAt)dt

− γ

β
, if B = 0.

If ϕ(z) = 1 + c1z + c2z
2 + . . . is analytic in D and satisfies

ϕ(z) +
zϕ′(z)

βϕ(z) + γ
≺ 1 + Az

1 +Bz
, (1.3)

then

ϕ(z) ≺ q(z) ≺ 1 + Az

1 +Bz

and q is the best dominant of (1.3).

Lemma 1.2. [36, Lemma 2] Let ν be a positive measure on the interval [0, 1]. Let
h(z, t) be a complex valued function defined on D× [0, 1] such that h(·, t) is analytic
in D for each t ∈ [0, 1], and such that h(z, ·) is ν-integrable on [0, 1] for all z ∈ D.
In addition, suppose that Reh(z, t) > 0, h(−r, t) is real and

Re
1

h(z, t)
≥ 1

h(−r, t)
, |z| ≤ r < 1, t ∈ [0, 1].
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If G is defined by

G(z) =

∫ 1

0

h(z, t)dν(t),

then Re
1

G(z)
≥ 1

G(−r)
, |z| ≤ r < 1.

Lemma 1.3. [18] Let F be an analytic convex function in D. If f, g ∈ A and
f(z), g(z) ≺ F (z), then

λf(z) + (1− λ)g(z) ≺ F (z), 0 ≤ λ ≤ 1.

Lemma 1.4. [17] If −1 ≤ B1 ≤ B2 < A2 ≤ A1 ≤ 1, then

1 + A2z

1 +B2z
≺ 1 + A1z

1 +B1z
.

Lemma 1.5. [23, 24] Let p(z) = 1+p1z+p2z
2+ . . . be analytic in D and p(z) ̸= 0

for all z ∈ D. If there exists a point z0 ∈ D such that

|arg p(z)| < π

2
η, for |z| < |z0| ,

and
|arg p(z0)| =

π

2
η, 0 < η ≤ 1.

Then, we have
z0p

′(z0)

p(z0)
= ikη,

where

k ≥ 1

2

(
a+

1

a

)
, if arg p(z0) =

π

2
η,

k ≤ −1

2

(
a+

1

a

)
, if arg p(z0) = −π

2
η,

(1.4)

and
(p(z0))

1
η = ±ia, (a > 0).

Lemma 1.6. [35] For real or complex numbers a, b and c (c ̸= 0,−1,−2, . . . ), the
Gauss hypergeometric function 2F1(a, b; c; z) satisfies the identities:∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt =
Γ(b)Γ(c− b)

Γ(c)
2F1(a, b; c; z), (1.5)

z ∈ C \ (1,+∞), Re c > Re b > 0,

2F1(a, b; c; z) =2 F1(b, a; c; z),
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and

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z

z − 1

)
, z ∈ C \ (1,+∞).

Lemma 1.7. [21, Theorem 3.4h.] Let g be univalent in D and let Θ and ϕ be
analytic in a domain D containing g(D), with ϕ(w) ̸= 0 when w ∈ g(D). Set

Q(z) = zg′(z)ϕ(g(z)), h(z) = Θ(g(z)) +Q(z),

and suppose that:

(i) Q is starlike in D;

(ii) Re
zh′(z)

Q(z)
= Re

[
Θ′(g(z))

ϕ(g(z))
+
zQ′(z)

Q(z)

]
> 0, z ∈ D.

If P is analytic in D, P (0) = g(0), P (D) ⊂ D, and

Θ(P (z)) + zP ′(z)ϕ(P (z)) ≺ Θ(g(z)) + zg′(z)ϕ(g(z)), (1.6)

then
P (z) ≺ g(z),

and g is the best dominant of (1.6).

2. Main Results
Unless otherwise stated we assume that f ∈ A(p), p ∈ N, q ∈ N0 with p > q,

λ > 0, µ ≥ 0, −1 ≤ B < A ≤ 1, and all the powers are considered the principal
ones. Our first result gives the best dominant for the LHS of (1.2) for functions of
Mp,q(λ, µ,A,B) and the inclusion of these classes in Bp,q(µ, ρ) where the value of
ρ is the best possible (i.e. it is sharp).

Theorem 2.1. Let f ∈ Mp,q(λ, µ,A,B).
(i) Then,

zf (1+q)(z)

(p− q)f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

≺ λ

(p− q)Q(z)
=: q(z), (2.1)

where

Q(z) =



λ

p− q
2F1

(
1,

(p− q)(B − A)

λB
;
p− q

λ
+ 1;

Bz

Bz + 1

)
, if B ̸= 0,

1∫
0

s
p−q
λ

−1 exp
(p− q)Az(s− 1)

λ
ds, if B = 0,

(2.2)
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and q is the best dominant of (2.1).

(ii) Furthermore, if A ≤ −λB
p− q

with −1 ≤ B < 0, then

Mp,q(λ, µ,A,B) ⊂ Bp,q(µ, ρ), (2.3)

where

ρ := ρ(λ, µ,A,B) = (p− q)

[
2F1

(
1,

(p− q)(B − A)

λB
;
p− q

λ
+ 1;

B

B − 1

)]−1

.

The result is the best possible.
Proof. Let f ∈ Mp,q(λ, µ,A,B) and define the function

ϕ(z) :=
zf (1+q)(z)

(p− q)f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

, z ∈ D. (2.4)

Then, ϕ is analytic in D with ϕ(0) = 1, and differentiating (2.4) we have

(p− q)ϕ(z) + λ
zϕ′(z)

ϕ(z)
=
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]
≺ (p− q)

1 + Az

1 +Bz
. (2.5)

Thus, ϕ satisfies the differential subordination (1.3), and by applying Lemma 1.1

for β =
p− q

λ
and γ = 0 we get

ϕ(z) ≺ q(z) ≺ 1 + Az

1 +Bz
,

where q is given by (2.1) and (2.2), and is the best dominant of (2.5), which proves
the assertion (2.1).

Next we will show that

inf {Re q(z) : |z| < 1} = q(−1). (2.6)

If we set a =
(p− q)(B − A)

λB
, b =

p− q

λ
, c =

p− q

λ
+ 1, then c > b > 0. From

(2.2), and using Lemma 1.6 we see that for B ̸= 0 we get

Q(z) = (1 +Bz)
(p−q)(B−A)

λB

∫ 1

0

s
p−q
λ

−1(1 +Bzs)−
(p−q)(B−A)

λB ds

=
λ

p− q
2F1

(
1,

(p− q)(B − A)

λB
;
p− q

λ
+ 1;

Bz

Bz + 1

)
. (2.7)
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To prove (2.6) we need to show that Re
1

Q(z)
≥ 1

Q(−1)
, z ∈ D. Since A < − λB

p− q
implies c > a > 0, by using (1.5) and (2.7) we have

Q(z) =

∫ 1

0

h(z, s)dν(s),

where

h(z, s) =
1 +Bz

1 + (1− s)Bz
(0 ≤ s ≤ 1) and dν(s) =

λ

p− q
s

(p−q)(B−A)
λB (1−s)

(p−q)A
λB ds,

which is a positive measure on [0, 1]. For −1 ≤ B < 0, it may be noted that
Reh(z, s) > 0, h(−r, s) is is real for |z| ≤ r, 0 ≤ r < 1 and 0 ≤ s ≤ 1, and

Re
1

h(z, s)
= Re

1 + (1− s)Bz

1 +Bz
≥ 1− (1− s)Br

1−Br
=

1

h(−r, s)
.

Therefore, by Lemma 1.2 we get

Re
1

Q(z)
≥ 1

Q(−r)
, |z| ≤ r < 1,

and by letting r → 1− we obtain Re
1

Q(z)
≥ 1

Q(−1)
.

Further, taking A→ − λB

p− q
for the case A = − λB

p− q
and by (2.1), we get that

(2.3) holds. The result is the best possible since q is the best dominant of (2.1),
which completes the proof.

The following three corollaries represent particular cases of the above theorem
obtained for different choices of the parameter. We emphasize that these results
represent generalizations and extensions of some previous ones obtained by different
authors.

Thus, putting µ = 1, A = 1− 2β

p− q
, with

p− q − λ

2
≤ β < p− q, and B = −1

in the second part of Theorem 2.1 we have:

Corollary 2.1. If f ∈ A(p) satisfies

Re

{
zf (1+q)(z)

g(q)(z)
+ λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− zg(1+q)(z)

g(q)(z)

]}
> β, z ∈ D, (λ > 0),
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for some g ∈ S∗
p,q, then f ∈ Bp,q (Ψ(p, q, λ, β)), where

Ψ(p, q, λ, β) := (p− q)

[
2F1

(
1,

2(p− q − β)

λ
;
p− q

λ
+ 1;

1

2

)]−1

. (2.8)

The result is the best possible.

Taking µ = 0, A = 1 − 2β

p− q
, with

p− q − λ

2
≤ β < p − q, and B = −1 in

Theorem 2.1 we obtain:

Corollary 2.2. If f ∈ A(p) satisfies

Re

[
(1− λ)

zf (1+q)(z)

f (q)(z)
+ λ

(
1 +

zf (2+q)(z)

f (1+q)(z)

)]
> β, z ∈ D, (λ > 0),

then f ∈ S∗
p,q (Ψ(p, q, λ, β)), where Ψ(p, q, λ, β) is given by (2.8). The result is the

best possible.

Remark 2.1. Our results of Theorem 2.1 and Corollary 2.1 and Corollary 2.2 but
for q = 0 were also obtained by Patel [30, Theorem 3.1 and Corollaries 3.2 and 3.3,
respectively].

Putting λ = 1 in Corollary 2.2 we get the next special case:

Corollary 2.3. If
p− q − 1

2
≤ β < p, then

Kp,q(β) ⊂ S∗
p,q(ρ(p, q, β)),

where ρ(p, q, β) := (p − q)

{
2F1

(
1, 2(p− q − β); p− q + 1;

1

2

)}−1

. The result is

the best possible.

Remark 2.2. (i) Putting q = 0 in Corollary 2.3 we obtain the result of Srivastava
et al. [33, Corollary 7], and Patel [30, Corollary 3.4];

(ii) Putting p = 1 and q = 0 in Corollary 2.3 we obtain the results obtained by
MacGreogor [19], and Wilken and Feng [36].

In the next result we found the best radius where the reverse inclusion of Theo-
rem 2.1 (ii) holds, and we underline that result is the best possible under the given
assumptions.

Theorem 2.2. If f ∈ Bp,q(µ, β) for some µ, with µ ≥ 0, and β, with 0 ≤ β < p−q,
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then f ∈Mp,q(λ, µ, β) for |z| < R(p, q, λ, β), where λ > 0, and

R(p, q, λ, β) :=



(p− q + λ− β)−
√

(p− q + λ− β)2 − (p− q)(p− q − 2β)

p− q − 2β
,

if β ̸= p− q

2
,

p− q

p− q + 2λ
, if β =

p− q

2
,

(2.9)
and the bound R(p, q, λ, β) is the best possible.
Proof. For f ∈ Bp,q(µ, β), according to (1.2) let define the function h by

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

= β + (p− q − β)h(z), z ∈ D, (2.10)

where h(z) = 1 + h1z + h2z
2 + . . . is analytic and have positive real part in D.

Differentiating (2.10), we obtain

Re

{
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)

− µ
zg(1+q)(z)

g(q)(z)

]}
− β

= (p− q − β) Re

[
h(z) + λ

zh′(z)

β + (p− q − β)h(z)

]
≥ (p− q − β) Re

[
h(z)− λ

|zh′(z)|
|β + (p− q − β)h(z)|

]
, z ∈ D. (2.11)

Using in (2.11) the well-known estimates [19]

|zh′(z)| ≤ 2r

1− r2
Reh(z), and Reh(z) ≥ 1− r

1 + r
, |z| = r < 1,

we get

Re

{
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)

− µ
zg(1+q)(z)

g(q)(z)

]}
− β

≥ (p− q − β) Reh(z)

[
1− 2λr

β(1− r2) + (p− q − β)(1− r)2

]
, |z| = r < 1.

(2.12)
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Since 0 ≤ β < p− q and 0 ≤ r < 1, the inequality

1− 2λr

β(1− r2) + (p− q − β)(1− r)2
≥ 0 (2.13)

is equivalent to

φ(r) := (p− q − 2β)r2 − 2(p− q + λ− β)r + p− q ≥ 0.

Using the fact that φ(0) = p − q > 0 and φ(1) = −λ < 0, the inequality (2.13)
holds for r ∈ [0, r∗], where r∗ = R(p, q, λ, β) is the smallest positive root of φ.
Therefore, the right-hand side of (2.12) is positive whenever r < R(p, q, λ, β),
where R(p, q, λ, β) is given by (2.9).

To show that the bound R(p, q, λ, β) is the best possible, consider the function
f ∈ A(p) defined by

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

= β + (p− q − β)
1− z

1 + z
, 0 ≤ β < p− q,

for some g ∈ S∗
p,q. Noting that

Re

{
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)

− µ
zg(1+q)(z)

g(q)(z)

]}
− β

= (p− q − β)

[
1− z

1 + z
+

2λz

β(1 + z)2 + (p− q − β)(1− z2)

]
= 0

for z = R(p, q, λ, β), we conclude that the bound R(p, q, λ, β) is the best possible,
which completes our proof.

The next two corollaries are special cases of the above theorem, that on their
turn generalise some previous results of obtained in different articles.

Thus, putting µ = 0 and λ = 1 in Theorem 2.2 we get the next special case:

Corollary 2.4. If f ∈ S∗
p,q(β), with 0 ≤ β < p − q, then f ∈ Kp,q(β) in |z| <

R∗(p, q, β), where

R∗(p, q, β) :=


(p− q + 1− β)−

√
β2 + 2(p− q − β) + 1

p− q − 2β
, if β ̸= p− q

2
p− q

p− q + 2
, if β =

p− q

2
,
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and the bound R∗(p, q, β) is the best possible.
For q = 0, Corollary 2.4 reduces to the next result:

Corollary 2.5. If f ∈ S∗
p(β), with 0 ≤ β < p, then f ∈ Kp(β) in |z| < R1(p, β),

where

R1(p, β) :=


(p− β + 1)−

√
β2 + 2(p− β) + 1

p− 2β
, if β ̸= p

2
,

p

p+ 2
, if β =

p

2
,

and the bound R1(p, β) is the best possible.

Remark 2.3. The result of Corollary 2.5 was previously obtained by Patel [30,
Corollary 3.7], Patel and Cho [31, Corollary 3.3], and Aouf et al. [9, Corollary 3.8].

In the next theorem we give sufficient conditions for a function f that belongs
to a subclass of Bp,q(µ, β) to be in Kp,q := K∗

p,q(0) for a sufficient small disc included
in D.

Theorem 2.3. If f ∈ A(p) and satisfies the following conditions

Re
f (q)(z)

δ(p, q)zp−q
> 0, z ∈ D, (2.14)

∣∣∣∣zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

− (p− q)

∣∣∣∣ < ν(p− q), z ∈ D, (2.15)

with 0 ≤ µ ≤ 1 and 0 < ν ≤ 1, for some g ∈ S∗
p,q, then f ∈ Kp,q := K∗

p,q(0) in
|z| < R∗(p, q, µ, ν), where

R∗(p, q, µ, ν) := min {r∗; 1} ,

and r∗ is the smallest positive root of

[(p− q)(2µ− 1)− ν]r2 − [2(p− q − 1)µ+ ν + 2]r + p− q = 0.

Proof. Letting

h(z) =
zf (1+q)(z)

(p− q)f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

− 1, z ∈ D, (2.16)

from (2.15) it follows that h is analytic in D, with h(0) = 0 and |h(z)| < ν, z ∈ D.
Therefore, the function h has the form h(z) = νΦ(z), where Φ ia analytic in D,
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with Φ(0) = 0 and |Φ(z)| < 1 for all z ∈ D, Thus, from the definition relation
(2.16) we have

zf (1+q)(z) = (p− q)
(
f (q)(z)

)1−µ (
g(q)(z)

)µ
(1 + νΦ(z)), z ∈ D, (2.17)

and differentiating (2.17) with respect to z, we get

1 +
zf (2+q)(z)

f (1+q)(z)
= (1− µ)

zf (1+q)(z)

f (q)(z)
+ µ

zg(1+q)(z)

g(q)(z)
+

νzΦ′(z)

1 + νΦ(z)
, z ∈ D. (2.18)

Putting K(z) :=
f (q)(z)

δ(p, q)zp−q
, z ∈ D, then K(0) = 1, and from (2.14) we have

ReK(z) > 0 for all z ∈ D. Also,

zf (1+q)(z)

f (q)(z)
= p− q +

zK ′(z)

K(z)
, z ∈ D, (2.19)

and from (2.19) and (2.18) we obtain

1 +
zf (2+q)(z)

f (1+q)(z)
=(1− µ)(p− q) + (1− µ)

zK ′(z)

K(z)

+ µ
zg(1+q)(z)

g(q)(z)
+

νzΦ′(z)

1 + νΦ(z)
, z ∈ D. (2.20)

Using the well-known estimates [19], since K(0) = 1 and ReK(z) > 0 for all z ∈ D,
we have ∣∣∣∣zK ′(z)

K(z)

∣∣∣∣ ≤ 2r

1− r2
, |z| = r < 1,

hence

Re
zK ′(z)

K(z)
≥ − 2r

1− r2
, |z| = r < 1. (2.21)

Denoting H(z) :=
zg(1+q)(z)

(p− q)g(q)(z)
, then H(0) = 1, and from g ∈ S∗

p,q it follows that

ReH(z) > 0 for all z ∈ D. According to the well-known estimates [19], we get

ReH(z) ≥ 1− r

1 + r
, |z| = r < 1,

that is

Re
zg(1+q)(z)

g(q)(z)
≥ (p− q)(1− r)

1 + r
, |z| = r < 1. (2.22)
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Since Φ is analytic in D, with Φ(0) = 0 and |Φ(z)| < 1 for all z ∈ D, from [12] we
have

|Φ′(z)| ≤ 1− |Φ(z)|2

1− |z|2
, z ∈ D,

and since 0 < ν ≤ 1, this implies∣∣∣∣ νzΦ′(z)

1 + νΦ(z)

∣∣∣∣ ≤ ν|z|
1− |z|2

1− |ϕ(z)|2

|1 + νΦ(z)|
≤ ν|z|

1− |z|2
1− |Φ(z)|2

1− ν|Φ(z)|

≤ ν|z|
1− |z|2

1− |Φ(z)|2

1− |Φ(z)|
=

ν|z|
1− |z|2

(1 + |Φ(z)|) , z ∈ D.

Moreover, from the Schwarz’s lemma we have |Φ(z)| ≤ |z| for all z ∈ D, then from
the above inequality we obtain∣∣∣∣ νzΦ′(z)

1 + νΦ(z)

∣∣∣∣ ≤ ν|z| (1 + |z|)
1− |z|2

=
νr

1− r
, |z| = r < 1,

hence

Re
νzΦ′(z)

1 + νΦ(z)
≥ − νr

1− r
, |z| = r < 1. (2.23)

Using the inequalities (2.21), (2.22), and (2.23) in (2.20), we obtain

Re

[
1 +

zf (2+q)(z)

f (1+q)(z)

]
≥ 1

1− r2

{
[(p− q)(2µ− 1)− ν]r2

− [2(p− q − 1)µ+ ν + 2]r + p− q

}
, |z| = r < 1.

To solve the inequality

ψ(r) := [(p− q)(2µ− 1)− ν]r2 − [2(p− q − 1)µ+ ν + 2]r + p− q ≥ 0, (2.24)

we see that ψ(0) = p− q ≥ 0, hence the inequality (2.24) holds whenever 0 ≤ r ≤
R∗(p, q, µ, ν) := min{r∗; 1}, where r∗ is the smallest positive root of ψ.

Putting ν = 1 in Theorem 2.3 we get the next corollary, that also generalise
and extends some previous results as could we see in the following remark:

Corollary 2.6. If f ∈ A(p) and satisfies the following conditions

Re
f (q)(z)

δ(p, q)zp−q
> 0, z ∈ D,

∣∣∣∣zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

− (p− q)

∣∣∣∣ < p− q, z ∈ D,
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with 0 ≤ µ ≤ 1, for some g ∈ S∗
p,q, then f ∈ Kp,q in |z| < R∗

1(p, q, µ) :=
R∗(p, q, µ, 1), where

R∗
1(p, q, µ) := min {r∗; 1} ,

and r∗ is the smallest positive root of

[(p− q)(2µ− 1)− 1]r2 − [2(p− q − 1)µ+ 3]r + p− q = 0. (2.25)

The result is the best possible.
It is easy to see that the bound R∗

1(p, q, µ) is sharp for f, g ∈ A(p) defined by

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

=
1

1− z
, 0 ≤ µ ≤ 1,

and

g(q)(z) =
δ(p, q)zp−q

(1− z)2(p−q)
.

Remark 2.4. Putting q = 0 in Corollary 2.6 our result improve those obtained by
Wang and Jiang [34, Corollary 3.4], and corrects the result obtained by Patel [30,
Theorem 3.8].

Putting µ = 0 in Corollary 2.6 we may easily see that the equation (2.25) has
a root in [0, 1], hence we get the next result:

Corollary 2.7. If f ∈ A(p) and satisfies the following conditions

Re
f (q)(z)

δ(p, q)zp−q
> 0, z ∈ D,

∣∣∣∣zf (1+q)(z)

f (q)(z)
− (p− q)

∣∣∣∣ < p− q, z ∈ D,

then f ∈ Kp,q in |z| < R∗
2(p, q) := R∗(p, q, 0, 1), where

R∗
2(p, q) :=

√
9 + 4(p− q + 1)(p− q)− 3

p− q + 1
.

The result is the best possible.
Using Theorem 2.1, the following theorem represents an inclusion result be-

tween the classesMp,q(λ, µ,A,B) if the parameters λ, A and B satisfy some simple
ordering relations.
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Theorem 2.4. If µ ≥ 0, λ2 ≥ λ1 ≥ 0, and −1 ≤ B1 ≤ B2 < A2 ≤ A1 ≤ 1, then

Mp,q(λ2, µ, A2, B2) ⊂Mp,q(λ1, µ, A1, B1). (2.26)

Proof. Supposing that f ∈Mp,q(λ2, µ, A2, B2), then

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ2

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]
≺ (p− q)

1 + A2z

1 +B2z
.

Since −1 ≤ B1 ≤ B2 < A2 ≤ A1 ≤ 1, it follows from Lemma 1.4 that

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ2

[
1+

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]
≺ (p− q)

1 + A2z

1 +B2z
≺ (p− q)

1 + A1z

1 +B1z
, (2.27)

that is that f ∈Mp,q(λ2, µ, A1, B1). Thus, the assertion (2.26) holds for λ2 = λ1 =
0.

If λ2 > λ1 ≥ 0, by Theorem 2.1 and (2.27) we have f ∈Mp,q(0, µ, A1, B1), that
is

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

≺ (p− q)
1 + A1z

1 +B1z
. (2.28)

At the same time, we have

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ1

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]
=

(
1− λ1

λ2

)
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+
λ1
λ2

{
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ2

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]}
. (2.29)

Moreover, since 0 ≤ λ1
λ2

< 1, and
1 + A1z

1 +B1z
, with −1 ≤ B1 < A1 ≤ 1, is an analytic

convex function in D, combining (2.29), (2.28), (2.27) and Lemma 1.3 we conclude
that

zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ1

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]
≺ (p− q)

1 + A1z

1 +B1z
,
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that is that f ∈Mp,q(λ1, µ, A1, B1), henceMp,q(λ2, µ, A2, B2) ⊂Mp,q(λ1, µ, A1, B1),
and the proof is complete.

The importance Theorem 2.4 is shown in the next two remarks and corollary,
that represent particular cases of this theorem but for q = 0 these results were
earlier obtained in a few articles.

Remark 2.5. (i) Putting q = 0, A1 = A2 = A, and B1 = B2 = B in Theorem 2.4
we obtain the result of Guo and Liu [16, Theorem 3.5];

(ii) Putting q = 0 in Theorem 2.4 we get the result obtained by Wang and Jiang
[34, Theorem 3.1].

Putting B1 = B2 = −1, A1 = 1 − 2β1
p

, with 0 ≤ β1 < p, A2 = 1 − 2β2
p

, with

0 ≤ β2 < p, p > β2 ≥ β1 ≥ 0, and q = 0 in Theorem 2.4 we get the next special
case:

Corollary 2.8. If µ ≥ 0, λ2 ≥ λ1 ≥ 0 and p > β2 ≥ β1 ≥ 0, then

Mp(µ, λ2, β2) ⊂Mp(µ, λ1, β1).

Remark 2.6. For the special case p = 1, Corollary 2.8 reduces to the result of
Guo and Liu [16, Theorem 3.3], and of Wang and Jiang [34, Corollary 3.2].

The next theorem gives a simple sufficient condition for a function f ∈ A(p) to
be in the class Bp,q(µ, 0).

Theorem 2.5. Let γ > 0, and λ > 0 or λ ≤ −2(p− q)γ. If f ∈ A(p) satisfies

γ
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)

−µzg
(1+q)(z)

g(q)(z)

]
̸= ib, z ∈ D (2.30)

for some µ ≥ 0, and g ∈ S∗
p,q, where b is a real number with

|b| ≥
√
λ[λ+ 2(p− q)γ], (2.31)

then

Re

[
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ]
> 0, z ∈ D.

Proof. Letting

P (z) =
zf (1+q)(z)

(p− q)f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

, z ∈ D,
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then P (0) = 1. Assuming that there exists z∗ ∈ D \ {0} such that f (q)(z∗) = 0 or
f (1+q)(z∗) = 0, then z∗ will be a pole for the function

γ
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]
,

which contradicts the assumption (2.30), hence P is analytic in D.
We will prove that under our assumptions P (z) ̸= 0 for all z ∈ D. If P has a

zero of order m ∈ N at z1 ∈ D \ {0}, then P can be written as

P (z) = (z − z1)
mη(z), z ∈ D,

where η is an analytic function in D, and η(z1) ̸= 0. Hence, we have

γ
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)µ

+ λ

[
1 +

zf (2+q)(z)

f (1+q)(z)
− (1− µ)

zf (1+q)(z)

f (q)(z)
− µ

zg(1+q)(z)

g(q)(z)

]
= (p− q)γP (z) + λ

zP ′(z)

P (z)
= (p− q)γ(z − z1)

mη(z) + λ
mz

z − z1
+ λ

zη′(z)

η(z)
, (2.32)

in a neighborhood of z1 that doesn’t contains any zero of η. From (2.32) it follows
that the point z1 ∈ D will be a pole for the function of the left-hand side of (2.30),
which contradicts (2.30).

Thus, if there exists a point z0 ∈ D \ {0} such that ReP (z) > 0 for |z| < |z0|,
with ReP (z0) > 0 and P (z0) = i(±a), a > 0, then we have P (z0) ̸= 0.

From Lemma 1.5 and the first equality of (2.32) we have

F (z0) := (p− q)γP (z0) + λ
z0P

′(z0)

P (z0)
= i[(p− q)γ(±a) + λk],

where k satisfies the inequalities (1.4) with η = 1, therefore F (z0) has a pure
imaginary value.

Assuming that λ > 0, according to Lemma 1.5 for P (z0) = ia it follows that

ImF (z0) = (p− q)γa+ λk ≥ (p− q)γa+
λ

2
(a+ a−1)

=
1

2

{
λ

a
+ [λ+ 2(p− q)γ]a

}
≥

√
λ[λ+ 2(p− q)γ],

while for P (z0) = −ia we have

ImF (z0) = −(p− q)γa+ λk ≤ −(p− q)γa− λ

2

(
a+ a−1

)
= −1

2

{
λ

a
+ [λ+ 2(p− q)γ]a

}
≤ −

√
λ[λ+ 2(p− q)γ],
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which contradicts the assumptions (2.30) and (2.31). Therefore, we have ReP (z) >
0.

The next corollaries and remarks emphasize the high level of generality of this
theorem, since for some particular choices of the parameters we get may known
particular cases as follows.

Assuming that λ ≤ −2(p− q)γ, using the same method we similarly obtain the
same conclusion as above, which completes our proof.

Putting γ = 1 and µ = 0 in Theorem 2.5 we obtain:

Corollary 2.9. Let λ > 0 or λ ≤ −2(p− q). If f ∈ A(p) satisfies

(1− λ)
zf (1+q)(z)

f (q)(z)
+ λ

(
1 +

zf (2+q)(z)

f (1+q)(z)

)
̸= ib,

where b is a real number with |b| ≥
√
λ[λ+ 2(p− q)], then f ∈ S∗

p,q.

Remark 2.7. (i) Putting q = 0 in Corollary 2.9 we obtain the result of Dinggong
[14, Theorem 1];

(ii) Putting p = 1 and q = 0 in Corollary 2.9 we obtain the results of Cho and
Kim [13, Corollary 1], and Nunokawa [25, Corollary 1].

From Corollary 2.9 we obtain immediately the following results:

Corollary 2.10. Let λ > 0 or λ ≤ −2(p− q). If f ∈ A(p) satisfies∣∣∣∣Im [
(1− λ)

zf (1+q)(z)

f (q)(z)
+ λ

(
1 +

zf (2+q)(z)

f (1+q)(z)

)]∣∣∣∣ <√
λ[λ+ 2(p− q)], z ∈ D,

then f ∈ S∗
p,q.

Corollary 2.11. Let λ > 0 or λ ≤ −2(p− q). If f ∈ A(p) satisfies∣∣∣∣(1− λ)
zf (1+q)(z)

f (q)(z)
+ λ

(
1 +

zf (2+q)(z)

f (1+q)(z)

)
− (p− q)

∣∣∣∣ < p− q + λ, z ∈ D,

then f ∈ S∗
p,q.

Putting λ = 1 in Corollary 2.9 we have:

Corollary 2.12. If f ∈ A(p) satisfies the condition

1 +
zf (2+q)(z)

f (1+q)(z)
̸= ib, z ∈ D,

where b is real with |b| ≥
√

1 + 2(p− q), then f ∈ S∗
p,q.
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Remark 2.8. For the special case q = 0, Corollary 2.9, Corollary 2.10, Corollary
2.11 and Corollary 2.12, reduces to the results obtained by Dinggong [14, Theorem
1, Corollary 1, Corollary 2 and Corollary 3], respectively.

If we take q = 0 in Corollary 2.12 we have (see also Dinggong [14, Corollary
3]):

Corollary 2.13. If f ∈ A(p) satisfies the condition

1 +
zf ′′(z)

f ′(z)
̸= ib, z ∈ D,

where b is real with |b| ≥
√
1 + 2p, then f ∈ S∗

p := S∗
p,0.

Remark 2.9. We note that our results in Corollary 2.13 corrects the result
obtained by Nunokawa [26], because this last one it is not true for p ≥ 2 (see
Dinggong [14]).

If we take λ = 1 in Corollary 2.11 we get:

Corollary 2.14. If f ∈ A(p) satisfies∣∣∣∣1 + zf (2+q)(z)

f (1+q)(z)
− (p− q)

∣∣∣∣ < p− q + 1, z ∈ D,

then f ∈ S∗
p,q.

Remark 2.10. Putting q = 0 in Corollary 2.14 we obtain the result of Dinggong
[14], and our result of Corollary 2.13 for the special case p = 1 and q = 0 is an
improvement of that of Singh and Singh [32, Corollary 3].

Using a particular case of Lemma 1.7, the next theorem gives us an implication
that involves differential inequalities; in particular, these implications give simple
sufficient starlikeness conditions, and some of them were earlier obtained by using
different methods and techniques.

Theorem 2.6. If λ > 0 and f ∈ A(p) satisfies∣∣∣∣(1− λ)
zf (1+q)(z)

f (q)(z)
+ λ

(
1 +

zf (2+q)(z)

f (1+q)(z)

)
− (p− q)

∣∣∣∣ < p− q +
λ

2
, z ∈ D, (2.33)

then ∣∣∣∣zf (1+q)(z)

f (q)(z)
− (p− q)

∣∣∣∣ < p− q, z ∈ D. (2.34)

Proof. If the function f ∈ A(p) and λ > 0, according to Corollary 2.11 the
assumption (2.33) implies f ∈ S∗

p,q. Defining the function P by

P (z) :=
zf (1+q)(z)

f (q)(z)
, z ∈ D,
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by using (2.32), the assumption (2.33) becomes∣∣∣∣P (z) + λ
zP ′(z)

P (z)
− (p− q)

∣∣∣∣ < p− q +
λ

2
, z ∈ D. (2.35)

Setting in Lemma 1.7 the functions g(z) = (p− q)(1+ z), θ(w) = w, ϕ(w) =
λ

w
,

and D = C∗ := C \ {0}, we get

Q(z) =
λzg′(z)

g(z)
=

λz

1 + z
, z ∈ D,

h(z) = g(z) +Q(z) = (p− q)(1 + z) +
λz

1 + z
, z ∈ D,

and because p > q, λ > 0, we have

Re
zh′(z)

Q(z)
= Re

[
p− q

λ
(1 + z) +

1

1 + z

]
>

1

2
, z ∈ D,

|h(z)− (p− q)| ≥ p− q + λRe
1

1 + z
= p− q +

λ

2
, z ∈ D.

Therefore, from the above last inequality and (2.35) it follows

P (z) + λ
zP ′(z)

P (z)
≺ h(z),

and by Lemma 1.7 we conclude that P (z) ≺ (p− q)(1 + z), which gives (2.34).

Remark 2.11. Putting q = 0 in Theorem 2.6 we obtain the result of Dinggong
[14, Theorem 2], and for p = 1 and q = 0 we get that of Mocanu [22, Theorem 3]
who proved it by using a different method.

For λ = 1 and q = 0, Theorem 2.6 reduces to the next special case:

Corollary 2.15. If f ∈ A(p) satisfies∣∣∣∣(1 + zf ′′(z)

f ′(z)

)
− p

∣∣∣∣ < p+
1

2
, z ∈ D,

then f ∈ S∗
p.

Putting p = 1 in Corollary 2.15 we get the following result which was also
obtained by Singh and Singh [32, Corollary 3], and Owa [29, Corollary 1]:
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Corollary 2.16. If f ∈ A satisfies∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 3

2
, z ∈ D,

then f ∈ S∗.
The last main result deals with argument inequalities for the expressions that

appeared in the previous theorem, that could be connected with subordinations
to conic domains with the apex in origin and symmetric to the real axe, and the
main tool used for this result as Lemma 1.4. As we will see in the corresponding
corollary and remark, this theorem generalize a few previous results of different
authors.

Theorem 2.7. If f ∈ A(p) satisfies∣∣∣∣arg [(1− λ)
zf (1+q)(z)

f (q)(z)
+ λ

(
1 +

zf (2+q)(z)

f (1+q)(z)

)]∣∣∣∣ < π

2
δ, z ∈ D, (2.36)

with 0 < δ ≤ 1, then ∣∣∣∣arg zf (1+q)(z)

f (q)(z)

∣∣∣∣ < π

2
β, z ∈ D,

where β, with 0 < β < 1, is the solution of the equation

δ = β +
2

π
tan−1

[
λβ sin π(1−β)

2

(p− q)(1 + β)
1+β
2 (1− β)

1−β
2 + λβ cos π(1−β)

2

]
.

Proof. Letting

p(z) =
zf (1+q)(z)

(p− q)f (q)(z)
, z ∈ D, (2.37)

then p(0) = 1. Assuming that there exists z∗ ∈ D \ {0} such that f (q)(z∗) = 0 or
f (1+q)(z∗) = 0, then z∗ will be a pole for the function

F (z) =
1

p− q

[
(1− λ)

zf (1+q)(z)

f (q)(z)
+ λ

(
1 +

zf (2+q)(z)

f (1+q)(z)

)]
,

which contradicts the assumption (2.36). Therefore, p is analytic in D, and p(z) ̸= 0
for all z ∈ D.

Differentiating (2.37) we have

p(z)

[
1 +

λ

p− q

zp′(z)

p2(z)

]
=

1

p− q

[
(1− λ)

zf (1+q)(z)

f (q)(z)
+ λ

(
1 +

zf (2+q)(z)
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)]
, z ∈ D.
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Suppose that there exists a point z0 ∈ D such that |arg p(z)| < π

2
β for |z| < |z0|,

and |arg p(z0)| =
π

2
β. Then, according to Lemma 1.5 we can write

zp′(z0)

p(z0)
= ikβ,

where (p(z0))
1
β = ±ia, with a > 0, and k satisfies the inequalities (1.4).

If arg p(z0) =
π

2
β, then we have (p(z0))

1
β = ia, with a > 0, and

1
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,

with k ≥ 1

2

(
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1

a

)
. It follows that

kβ

aβ
≥ β

2

(
a1−β + a−1−β

)
, and we can easily

check that the function g : (0,+∞) → R defined by g(a) =
1

2

(
a1−β + a−1−β

)
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the minimum value at a∗ =

(
1 + β

1− β

) 1
2

because
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1

2

(
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aβ
− 1 + β
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)
=
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(
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Therefore, we have

arg

{
1
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[
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(
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λ

p− q

zp′(z0)

p2(z0)
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2
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]
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2
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}
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δ,

which contradicts the assumption (2.36).

If arg p(z0) = −π
2
β, by applying the same method, we have

arg
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which contradicts the assumption (2.36).

Concluding, the above results implies that there is no point z0 ∈ D such that

|arg p(z0)| =
∣∣∣∣arg( z0f

(1+q)(z0)

(p− q)f (q)(z0)

)∣∣∣∣ = π

2
β.

Putting q = 0 in Theorem 2.7 we get:

Corollary 2.17. If f ∈ A(p) satisfies∣∣∣∣arg [(1− λ)
zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]∣∣∣∣ < π

2
δ, z ∈ D,

with 0 < δ ≤ 1, then ∣∣∣∣arg zf ′(z)

f(z)

∣∣∣∣ < π

2
β, z ∈ D,

where β, with 0 < β < 1, is the solution of the equation

δ = β +
2

π
tan−1

{
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2

p(1 + β)
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1−β
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}
.

Remark 2.12. (i) Putting p = 1 in Corollary 2.17 we obtain the result of
Nunokawa et al. [27, Theorem 1 with γ = 1 and Theorem 3];

(ii) Putting p = λ = 1 in Corollary 2.17 we obtain the results of Nunokawa [23],
and of Cho and Kim [13, Corollary 4].

3. Conclusions

This paper mainly focuses on defining a subclass of multivalent functions that is
defined by using higher order derivatives and extends many previously and exten-
sively studied classes of analytic functions, and that extends the Bazilevič functions
of some order. We get sharp inclusion results using the Briot–Bouquet type of sub-
ordination together with the useful Lemma 1.2, and also a reverse inclusion in a
subset of the unit disc. Also, using the previous results, we get an inclusion theorem
between these classes with respect to the values of the parameters.

We gave some implications involving differential inequalities, where the novelties
consist in the proofs that uses Lemma 1.5 and the subordination Lemma 1.7. These
are connected with some differential expressions that belongs to a disc or a conic
domain with the apex in origin, symmetric with respect to the real axe, and in
particular it gives simple sufficient condition for starlikeness.
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All our results extend and generalize some other previous ones, and many of
them are sharp, in the sense that there are the best possible under the given as-
sumptions. The complexity of many proofs could help some further studies to fol-
low similarly methods to obtain convenient results in Geometric Function Theory,
while to obtain the best results for those theorems that are not the best possible
remain a challenge for those that work in this area.
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[12] Carathéodory C., Funktionentheorie, Vol. II., Birkhäuser Verlag, Basel,
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