J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 11, No. 1 (2023), pp. 63-78 DOI: 10.56827/JRSMMS.2023.1101.5 ISSN (Online):

ISSN (Online): 2582-5461 ISSN (Print): 2319-1023

β -b-REGULARITY IN FUZZY SETTING

Anjana Bhattacharyya

Department of Mathematics Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, INDIA E-mail : anjanabhattacharyya@hotmail.com

(Received: Aug. 07, 2023 Accepted: Dec. 02, 2023 Published: Dec. 30, 2023)

Abstract: This paper deals with a new type of fuzzy open-like set, viz., fuzzy β -b-open set, the class of which is strictly larger than that of fuzzy open set as well as fuzzy preopen set [11], fuzzy semiopen set [1], fuzzy α -open set [4] and fuzzy β -open set [6]. However, three different types of fuzzy continuous-like functions are introduced and studied and also the mutual relationships of these functions are established. Afterwards, two new types of separation axioms and a new type of compactness are introduced and studied. It is shown that in a fuzzy β -b-regular space, fuzzy β -b-open set coincides with fuzzy open set. In the last section some applications of the functions defined here are established.

Keywords and Phrases: Fuzzy β -b-open set, fuzzy regular open set, fuzzy β -b-r-continuous function, fuzzy β -b-continuity, fuzzy almost β -b-continuity, fuzzy extremally disconnected space.

2020 Mathematics Subject Classification: 54A40, 03E72.

1. Introduction

Fuzzy β -open set is introduced in [6]. Using this concept as a basic tool, here we introduce fuzzy β -b-open set. Fuzzy continuity is introduced in [5]. Here we introduce fuzzy β -b-r-continuous function, an independent concept of fuzzy continuity. Next two new types of functions are introduced here, viz., fuzzy β -b-continuity, and fuzzy almost β -b-continuity. It is shown that fuzzy continuity implies fuzzy

 β -b-continuity and fuzzy almost β -b-continuity, but not conversely. Here we introduce fuzzy β -b-regular space in which fuzzy open set and fuzzy β -b-open set coincide. Also we introduce fuzzy β -b-compactness and fuzzy β -b- T_2 -space. It is established that fuzzy β -b-compactness implies fuzzy compactness, but not conversely and fuzzy T_2 -space is fuzzy β -b- T_2 -space, but not conversely.

2. Preliminary

Throughout the paper, (X, τ) or simply by X we shall mean a fuzzy topological space (fts, for short) in the sense of Chang [5]. In [15], Zadeh introduced fuzzy set as follows : A fuzzy set A in an fts X is a mapping from a non-empty set X into the closed interval I = [0, 1], i.e., $A \in I^X$. The support [15] of a fuzzy set A, denoted by suppA and is defined by suppA = $\{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t \ (0 < t \leq 1)$ will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [15] of a fuzzy set A in X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$ [15]. For any two fuzzy sets A, B in X, $A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [15] while AqB means A is quasicoincident (q-coincident, for short) [12] with B, i.e., there exists $x \in X$ such that A(x) + B(x) > 1. The negation of these two statements will be denoted by $A \not\leq B$ and A A B respectively. For a fuzzy set A, clA and intA stand for fuzzy closure and fuzzy interior of A in X [5]. $A \in I^X$ is called fuzzy regular open [1] (resp., fuzzy semiopen [1], fuzzy preopen [11], fuzzy α -open [4], fuzzy β -open [6]) if A = int(clA)(resp., A < cl(intA), A < int(clA), A < int(cl(intA)), A < cl(int(clA))). The complement of fuzzy regular open (resp., fuzzy semiopen, fuzzy preopen, fuzzy α open, fuzzy β -open) set is called fuzzy regular closed [1] (resp., fuzzy semiclosed [1], fuzzy preclosed [11], fuzzy α -closed [4], fuzzy β -closed [6]) set. The smallest fuzzy semiclosed (resp., fuzzy preclosed, fuzzy α -closed, fuzzy β -closed) set containing a fuzzy set A in X is called fuzzy semiclosure [1] (resp., fuzzy preclosure [11], fuzzy α -closure [4], fuzzy β -closure [6]) of A, denoted by sclA (resp., pclA, αclA , βclA). $A \in I^X$ is fuzzy semiclosed (resp., fuzzy preclosed, fuzzy α -closed, fuzzy β -closed) if A = sclA (resp., A = pclA, $A = \alpha clA$, $A = \beta clA$). The collection of all fuzzy regular open (resp., fuzzy semiopen, fuzzy preopen, fuzzy α -open, fuzzy β -open) sets in X is denoted by FRO(X) (rssp., FSO(X), FPO(X), $F\alpha O(X)$, $F\beta O(X)$ and the collection of all fuzzy regular closed (resp., fuzzy semiclosed, fuzzy preclosed, fuzzy α -closed, fuzzy β -closed) sets in X is denoted by FRC(X)(rssp., FSC(X), FPC(X), $F\alpha C(X)$, $F\beta C(X)$). For a fuzzy open set A in X, sclA = int(clA) [2].

3. Fuzzy β -b-Open Set : Some Properties

In this section fuzzy β -b-open set is introduced and studied. It is shown that the set of all fuzzy β -b-open sets in an fts X does not form a fuzzy topology.

First we recall some definitions from [3] for ready references.

Definition 3.1. [3] Let (X, τ) be an fts and $A \in I^X$. A fuzzy point x_t in X is said to be fuzzy θ -semicluster point of A if clUqA for all $U \in FSO(X)$ with x_tqU . The union of all fuzzy θ -semicluster points of A is called fuzzy θ -semiclosure of A and is denoted by θ -sclA.

 $A (\in I^X)$ is fuzzy θ -semiclosed if $A = \theta$ -sclA.

Definition 3.2. [3] Let (X, τ) be an fts and $A \in I^X$. Then r-kernel of A, denoted by r-KerA, is defined as follows :

$$r\text{-Ker}A = \bigwedge \{U : U \in FRO(X), A \le U\}.$$

Let us now introduce the following concept.

Definition 3.3. A fuzzy set A in an fts (X, τ) is called fuzzy β -b-open if $A \leq cl(\beta int(clA))$.

The complement of a fuzzy β -b-open set is called fuzzy β -b-closed. The collection of all fuzzy β -b-open (resp., fuzzy β -b-closed) sets in an fts X is denoted by $F\beta bO(X)$ (resp., $F\beta bC(X)$).

Remark 3.4. Union of any two fuzzy β -b-open sets is also so. But intersection of any two fuzzy β -b-open sets may not be so, as it seen from the following example.

Example 3.5. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.6. Then (X, τ) is an fts. Consider two fuzzy sets B, C, defined by B(a) = 0.4, B(b) = 0.6, C(a) = 0.6, C(b) = 0.4. Then clearly $B, C \in F\beta bO(X)$. Let $D = B \bigwedge C$. Then D(a) = D(b) = 0.4. Now $cl(\beta int(clD)) = cl(\beta int(1_X \setminus A)) = cl0_X = 0_X \not\geq D \Rightarrow D \notin F\beta bO(X)$.

So we can conclude that the set of all fuzzy β -b-open sets in an fts X does not form a fuzzy topology.

Remark 3.6. It is clear from definitions that fuzzy open set, fuzzy semiopen set, fuzzy preopen set, fuzzy α -open set, fuzzy β -open set imply fuzzy β -b-open set, but the reverse implications are not necessarily true follow from the following example.

Example 3.7. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.4. Then (X, τ) is an fts. Consider a fuzzy set B defined by B(a) = B(b) = 0.5. Clearly $B \notin \tau, B \notin FPO(X), B \notin F\alpha O(X)$. But clearly $B \in F\beta bO(X)$.

Next consider the fuzzy set C defined by C(a) = C(b) = 0.6. Then clearly $C \notin C(a) = C(b) = 0.6$.

FSO(X), but $C \in F\beta bO(X)$. As $\tau \subseteq F\beta O(X)$, clearly fuzzy β -b-open set may not necessarily fuzzy β -open set. **Theorem 3.8.** Let (X, τ) be an fts. Then the union of any collection of fuzzy β -b-open sets in X is fuzzy β -b-open in X.

Proof. Let $\mathcal{G} = \{G_{\alpha} : \alpha \in \Lambda\}$ be any collection of fuzzy β -b-open sets in X. Then for any $\alpha \in \Lambda$, $G_{\alpha} \leq cl(\beta int(clG_{\alpha}))$. Also, $G_{\alpha} \leq \bigvee_{\alpha \in \Lambda} G_{\alpha}$. Then $clG_{\alpha} \leq cl(\bigvee_{\alpha \in \Lambda} G_{\alpha})$ implies that $G_{\alpha} \leq cl(\beta int(clG_{\alpha})) \leq cl(\beta int(cl(\bigvee_{\alpha \in \Lambda} G_{\alpha})))$, and this is true for all

 $\alpha \in \Lambda$. Taking union on both sides, $\bigvee_{\alpha \in \Lambda} G_{\alpha} \leq cl(\beta int(cl(\bigvee_{\alpha \in \Lambda} G_{\alpha})))$. Hence $\bigvee_{\alpha \in \Lambda} G_{\alpha}$ is a fuzzy β -b-open in X.

Let us now introduce a new type of closure-like operator.

Definition 3.9. Let (X, τ) be an fts and $A \in I^X$. Then fuzzy β -b-closure of A, denoted by $\beta bclA$, is defined by

$$\beta bclA = \bigwedge \{ U \in I^X : A \le U, U \in F\beta bC(X) \}$$

and fuzzy β -b-interior of A, denoted by β bintA, is defined by

$$\beta bintA = \bigvee \{G : G \le A, G \in F\beta bO(X)\}.$$

Note 3.10. By Remark 3.4, we can conclude that for any fuzzy set A in an fts X, $\beta bclA$ is fuzzy β -b-closed and $\beta bintA$ is fuzzy β -b-open. Again, if $A \in F\beta bC(X)$, then $A = \beta bclA$ and is $A \in F\beta bO(X)$, then $A = \beta bintA$.

Result 3.11. Let (X, τ) be an fts. Then the following statements are true : (i) for any fuzzy point x_t in X and any $U \in I^X$, $x_t \in \beta bclU$ implies that for any $V \in F\beta bO(X)$ with $x_t qV$, V qU,

(ii) for any two fuzzy sets U, V where $V \in F\beta bO(X)$, U $\not dV \Rightarrow \beta bclU \not dV$.

Proof (i). Let $x_t \in \beta bclU$ and $V \in F\beta bO(X)$ with x_tqV . Then $x_t \notin 1_X \setminus V \in$ $F\beta bC(X)$. Then $U \leq 1_X \setminus V$ implies that UqV.

(ii). If possible, let $\beta bclUqV$, but U/qV. Then there exists $x \in X$ such that $(\beta bclU)(x) + V(x) > 1$ and so V(x) + t > 1 where $t = (\beta bclU)(x)$. Then $x_t \in \beta bclU$ where $x_t qV, V \in F\beta bO(X)$. By (i), VqU, a contradiction.

Result 3.12. Let (X, τ) be an fts and $A \in I^X$. Then the following statements are true:

(i) $\beta bcl(1_X \setminus A) = 1_X \setminus \beta bintA$, (ii) $1_X \setminus \beta bclA = \beta bintA(1_X \setminus A).$ **Proof.** (i) Let $x_t \in \beta bcl(1_X \setminus A)$. If possible, let $x_t \notin 1_X \setminus \beta bintA$. Then $x_tq\beta bintA \Rightarrow$ there exists $U \in F\beta bO(X)$ with $U \leq A$ such that x_tqU . Since $x_t \in \beta bcl(1_X \setminus A), Uq(1_X \setminus A)$ (by Result 3.11 (i)) $\Rightarrow Aq(1_X \setminus A)$, a contradiction. Hence

$$\beta bcl(1_X \setminus A) \le 1_X \setminus \beta bintA...(1)$$

Conversely, let $x_t \in 1_X \setminus \beta bintA$. Then $1 - \beta bintA(x) \ge t \Rightarrow x_t \not \beta bintA \Rightarrow x_t \not \beta U$ where $U \in F\beta bO(X)$ with $U \le A$... (2) Let $V \in F\beta bC(X)$ with $1_X \setminus A \le V$. Then $1_X \setminus V \le A$ where $1_X \setminus V \in F\beta bO(X)$.

Let $V \in F \beta bC(X)$ with $1_X \setminus A \leq V$. Then $1_X \setminus V \leq A$ where $1_X \setminus V \in F \beta bC(X)$. By (2), $x_t /q(1_X \setminus V) \Rightarrow x_t \in V \Rightarrow x_t \in \beta bcl(1_X \setminus A)$. Hence $1_X \setminus \beta bintA \leq \beta bcl(1_X \setminus A) \dots$ (3).

Combining (1) and (3), we get the result.

(ii) Writing $1_X \setminus A$ for A in (i), we get the proof.

Let us now recall the following Lemma from [3] for ready references.

Lemma 3.13. [3] Let (X, τ) be an fts and $A \in I^X$. Then the following statements hold.:

(i) for any $A \in FRO(X)$, θ -sclA = A, (ii) for any $A \in F\beta O(X)$, cl $A = \alpha clA$, (iii) for any $A \in FSO(X)$, clA = pclA, (iv) for any $A \in \tau$, scl $A = \theta$ -sclA.

4. Fuzzy β -b-r-Continuous, Fuzzy β -b-Continuous and Fuzzy Almost β b-Continuous Functions

In this section we first introduce fuzzy β -*b*-*r*-continuous function and characterize it in several ways. Afterwards, two new types of functions, viz., fuzzy β -*b*-continuous function and fuzzy almost β -*b*-continuous function are introduced. The mutual relationships of these three functions are established here.

Definition 4.1. Let (X, τ) and (Y, τ_1) be two fts's. Then $f : X \to Y$ is called fuzzy β -b-r-continuous function if $f^{-1}(A) \in F\beta bC(X)$, for all $A \in FRO(Y)$.

Theorem 4.2. Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be a function. Then the following statements are equivalent : (i) f is fuzzy β -b-r-continuous,

(i) $f^{-1}(A) \in F\beta bO(X)$, for all $A \in FRC(Y)$, (ii) $f^{-1}(A) \in F\beta bO(X)$, for all $A \in FRC(Y)$, (iii) $f(\beta bcl_{\tau}U) \leq r \cdot ker(f(U))$, for all $U \in I^X$, (iv) $\beta bcl_{\tau}(f^{-1}(A)) \leq f^{-1}(r \cdot ker(A))$, for all $A \in I^Y$, (v) $\beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(\theta \cdot scl_{\tau_1}R))$, for all $R \in \tau_1$. (vi) $\beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(scl_{\tau_1}R))$, for all $R \in \tau_1$. (vii) $\beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(int_{\tau_1}(cl_{\tau_1}R))$, for all $R \in \tau_1$. (viii) $f^{-1}(int_{\tau_1}(cl_{\tau_1}A)) \in F\beta bC(X)$, for all $A \in \tau_1$, (ix) $f^{-1}(cl_{\tau_1}(int_{\tau_1}F)) \in F\beta bO(X)$, for all $F \in \tau_1^c$, (x) $f^{-1}(cl_{\tau_1}U) \in F\beta bO(X)$, for all $U \in F\beta O(Y)$, (xi) $f^{-1}(cl_{\tau_1}U) \in F\beta bO(X)$, for all $U \in FSO(Y)$, (xii) $f^{-1}(int_{\tau_1}(cl_{\tau_1}U)) \in F\beta bC(X)$, for all $U \in FPO(Y)$, (xiii) $f^{-1}(\alpha cl_{\tau_1}U) \in F\beta bO(X)$, for all $U \in F\beta O(Y)$, (xiv) $f^{-1}(\alpha cl_{\tau_1}U) \in F\beta bO(X)$, for all $U \in F\beta O(Y)$, (xiv) $f^{-1}(pcl_{\tau_1}U) \in F\beta bO(X)$, for all $U \in FSO(Y)$. **Proof (i)** \Leftrightarrow (**ii)**. Obvious.

(ii) \Rightarrow (iii). Let $U \in I^X$ and suppose that y_t be a fuzzy point in Y with $y_t \notin r$ ker(f(U)). Then there exists $V \in FRO(Y)$ such that $f(U) \leq V$ and $y_t \notin V \Rightarrow V(y) < t$ and so $y_tq(1_Y \setminus V) \in FRC(Y)$ and $1_Y \setminus f(U) \geq 1_Y \setminus V$. So $f(U) \not q(1_Y \setminus V)$ implies that $U \not q f^{-1}(1_Y \setminus V)$. By (ii), $f^{-1}(1_Y \setminus V) = 1_X \setminus f^{-1}(V) \in F\beta bO(X)$. By Result 3.11(ii), $\beta bcl_\tau U \not q(1_X \setminus f^{-1}(V))$. Then $\beta bcl_\tau U \leq f^{-1}(V)$. So $f(\beta bcl_\tau U) \leq V$ implies that $1_Y \setminus f(\beta bcl_\tau U) \geq 1_Y \setminus V$. So $1 - f(\beta bcl_\tau U)(y) \geq 1 - V(y) > 1 - t$. Then $t > f(\beta bcl_\tau U)(y)$. Then $y_t \notin f(\beta bcl_\tau U)$. Therefore, $f(\beta bcl_\tau U) \leq r$ -ker(f(U)). (iii) \Rightarrow (iv). Let $A \in I^Y$. Then $f^{-1}(A) \in I^X$. By (iii), $f(\beta bcl_\tau f^{-1}(A)) \leq r$ ker $(f(f^{-1}(A))) \leq r$ -ker(A) implies that $\beta bcl_\tau(f^{-1}(A)) \leq f^{-1}(r$ -ker $(A)) = f^{-1}(A)$. But $f^{-1}(A) \leq \beta bcl_\tau(f^{-1}(A))$ and so $f^{-1}(A) = \beta bcl_\tau(f^{-1}(A))$ and so $f^{-1}(A) \in F\beta bC(X)$. Hence f is fuzzy β -b-r-continuous function. (v) \Leftrightarrow (vi). Follows from Lemma 3.13 (iv).

 $(vi) \Leftrightarrow (vii)$. Obvious.

(vii) \Rightarrow (i). Let $A \in FRO(Y)$. By (vii), $\beta bcl_{\tau}(f^{-1}(A)) \leq f^{-1}(int_{\tau_1}(cl_{\tau_1}A)) = f^{-1}(A)$ implies that $f^{-1}(A) \in F\beta bC(X)$. Hence f is fuzzy β -b-r-continuous function.

(i) \Rightarrow (vii). Let $A \in \tau_1$. Then $int_{\tau_1}(cl_{\tau_1}A) \in FRO(Y)$. By (i), $f^{-1}(int_{\tau_1}(cl_{\tau_1}A)) \in F\beta bC(X)$ and so $\beta bcl_{\tau}(f^{-1}(A)) \leq \beta bcl_{\tau}(f^{-1}(int_{\tau_1}(cl_{\tau_1}A))) = f^{-1}(int_{\tau_1}(cl_{\tau_1}A))$. (i) \Rightarrow (viii). Let $A \in \tau_1$. Then $int_{\tau_1}(cl_{\tau_1}A) \in FRO(Y)$ and so by (i), $f^{-1}(int_{\tau_1}(cl_{\tau_1}A)) \in F\beta bC(X)$. (viii) \Rightarrow (i). Let $A \in FRO(Y)$. Then $A \in \tau_1$. By (viii), $f^{-1}(A) = f^{-1}(int_{\tau_1}(cl_{\tau_1}A)) \in F\beta bC(X)$. (ii) \Rightarrow (ix). Let $F \in \tau_1^c$. Then $cl_{\tau_1}int_{\tau_1}F \in FRC(Y)$. By (ii), $f^{-1}(cl_{\tau_1}(int_{\tau_1}F)) \in F\beta bO(X)$. (ix) \Rightarrow (ii). Let $F \in FRC(Y)$. By (ix), $f^{-1}(F) = f^{-1}(cl_{\tau_1}(int_{\tau_1}F)) \in F\beta bO(X)$. (ii) \Rightarrow (x). Let $U \in F\beta O(Y)$. Then $U \leq cl_{\tau_1}(int_{\tau_1}(cl_{\tau_1}U)) \leq cl_{\tau_1}U$ implies that $cl_{\tau_1}U \leq cl_{\tau_1}(cl_{\tau_1}(int_{\tau_1}(cl_{\tau_1}U))) = cl_{\tau_1}(int_{\tau_1}(cl_{\tau_1}U)) \leq cl_{\tau_1}U$. So $cl_{\tau_1}U = cl_{\tau_1}(int_{\tau_1}(cl_{\tau_1}U))$. Then $cl_{\tau_1}U \in FRC(Y)$ and so by (ii), $f^{-1}(cl_{\tau_1}U) \in F\beta bO(X)$. (**x**) \Rightarrow (**xi**). Since $FSO(Y) \subseteq F\beta O(Y)$, by (**x**), $f^{-1}(cl_{\tau_1}U) \in F\beta bO(X)$, for all $U \in FSO(Y)$.

 $\begin{aligned} &(\mathbf{xi}) \Rightarrow (\mathbf{xii}). \text{ Let } U \in FPO(Y). \text{ Then } U \leq int_{\tau_1}(cl_{\tau_1}U). \text{ We claim that}\\ &int_{\tau_1}(cl_{\tau_1}U) \in FRO(Y). \text{ Indeed, } int_{\tau_1}(cl_{\tau_1}U) \leq int_{\tau_1}(cl_{\tau_1}(int_{\tau_1}(cl_{\tau_1}U))) \leq int_{\tau_1}(cl_{\tau_1}U)\\ &(cl_{\tau_1}U) \text{ implies that } int_{\tau_1}(cl_{\tau_1}U) = int_{\tau_1}(cl_{\tau_1}(int_{\tau_1}(cl_{\tau_1}U))). \text{ So } 1_Y \setminus int_{\tau_1}(cl_{\tau_1}U) \in FRC(Y). \text{ So } 1_Y \setminus int_{\tau_1}(cl_{\tau_1}U) \in FSO(Y). \text{ By } (\mathbf{xi}), \ f^{-1}(cl_{\tau_1}(1_Y \setminus int_{\tau_1}(cl_{\tau_1}U))) \in F\beta bO(X). \text{ Then } 1_X \setminus f^{-1}(int_{\tau_1}(cl_{\tau_1}U))) = 1_X \setminus f^{-1}(int_{\tau_1}(cl_{\tau_1}U)) \in F\beta bO(X). \text{ Hence } f^{-1}(int_{\tau_1}(cl_{\tau_1}U)) \in F\beta bC(X). \end{aligned}$

(xii) \Rightarrow (i). Let $U \in FRO(Y)$. Then $U \in FPO(Y)$. By (xii), $f^{-1}(int_{\tau_1}(cl_{\tau_1}U)) \in F\beta bC(X)$. Hence $f^{-1}(U) = f^{-1}(int_{\tau_1}(cl_{\tau_1}U)) \in F\beta bC(X)$. Then (i) follows.

 $(\mathbf{x}) \Leftrightarrow (\mathbf{xiii})$. The proof follows from Lemma 3.13(ii).

(xi) \Leftrightarrow (xiv). The proof follow from Lemma 3.13(iii).

Theorem 4.3. Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be a function. Then the following statements hold :

(i) for each fuzzy point x_t in X and each $A \in FSO(Y)$ with $f(x_t)qA$, there exists $U \in F\beta bO(X)$ with x_tqU , $f(U) \leq cl_{\tau_1}A$,

 \Leftrightarrow (ii) $f(\beta bcl_{\tau}P) \leq \theta - scl_{\tau_1}(f(P))$, for all $P \in I^X$,

 \Leftrightarrow (iii) for each fuzzy point x_t in X and each $A \in FSO(Y)$ with $f(x_t) \in A$, there exists $U \in F\beta bO(X)$ such that $x_t \in U$ and $f(U) \leq cl_{\tau_1}A$,

 $\Leftrightarrow (iv) \ f^{-1}(A) \leq \beta bint_{\tau}(f^{-1}(cl_{\tau_1}A)), \ for \ all \ A \in FSO(Y),$

 $\Leftrightarrow (v) \ \beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(\theta \operatorname{-scl}_{\tau_1} R)), \ for \ all \ R \in I^Y,$

 \Rightarrow (vi) f is fuzzy β -b-r-continuous function.

Proof (i) \Rightarrow (ii). Let $P \in I^X$ and x_t be any fuzzy point in X such that $x_t \in \beta bcl_\tau P$ and let $G \in FSO(Y)$ with $f(x_t)qG$. By (i), there exists $U \in F\beta bO(X)$ with x_tqU , $f(U) \leq cl_{\tau_1}G$. As $x_t \in \beta bcl_\tau P$, by Result 3.11(i), UqP and so f(U)qf(P). Then $f(P)qcl_{\tau_1}G$. Then $f(x_t) \in \theta$ - $scl_{\tau_1}(f(P))$. Hence $f(\beta bcl_\tau P) \leq \theta$ - $scl_{\tau_1}(f(P))$.

(ii) \Rightarrow (v). Let $R \in I^Y$. Then $f^{-1}(R) \in I^X$. By (ii), $f(\beta bcl_{\tau}(f^{-1}(R))) \leq \theta$ $scl_{\tau_1}(f(f^{-1}(R))) \leq \theta$ - $scl_{\tau_1}R$ and so $\beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(\theta$ - $scl_{\tau_1}R)$.

(v) \Rightarrow (i). Let x_t be any fuzzy point in X and $A \in FSO(Y)$ with $f(x_t)qA$. Since, $cl_{\tau_1}A \not q (1_Y \setminus cl_{\tau_1}A)$, by definition $f(x_t) \notin \theta \operatorname{-scl}_{\tau_1}(1_Y \setminus cl_{\tau_1}A)$ and so $x_t \notin f^{-1}(\theta \operatorname{-scl}_{\tau_1}(1_Y \setminus cl_{\tau_1}A))$. By (v), $x_\alpha \notin \beta \operatorname{bcl}_{\tau}(f^{-1}(1_Y \setminus cl_{\tau_1}A))$. So there exists $U \in F\beta \operatorname{bO}(X)$ with $x_t qU, U \not df^{-1}(1_Y \setminus cl_{\tau_1}A)$ implies that $f(U) \not d(1_Y \setminus cl_{\tau_1}A)$. Hence $f(U) \leq cl_{\tau_1}A$. (i) \Rightarrow (iv). Let $A \in FSO(Y)$ and x_t be any fuzzy point in X such that $x_t qf^{-1}(A)$. Then $f(x_t)qA$. By (i), there exists $U \in F\beta \operatorname{bO}(X)$ such that $x_t qU, f(U) \leq cl_{\tau_1}A \Rightarrow x_t qU \leq f^{-1}(cl_{\tau_1}A)$ and so $x_t qU = \beta \operatorname{bint}_{\tau}U \leq \beta \operatorname{bint}_{\tau}(f^{-1}(cl_{\tau_1}A))$ implies that $x_t q\beta \operatorname{bint}_{\tau}(f^{-1}(cl_{\tau_1}A))$ as $\beta \operatorname{bint}_{\tau}(f^{-1}(cl_{\tau_1}A))$ is the union of all fuzzy β -b-open sets in X contained in $f^{-1}(cl_{\tau_1}A)$ and hence $f^{-1}(A) \leq \beta \operatorname{bint}_{\tau}(f^{-1}(cl_{\tau_1}A))$.

(iv) \Rightarrow (i). Let x_t be any fuzzy point in X and $A \in FSO(Y)$ with $f(x_t)qA$. Then

 $x_t q f^{-1}(A) \leq \beta bint_\tau(f^{-1}(cl_{\tau_1}A))$ (by (iv)) implies that there exists $U \in F\beta bO(X)$ with $x_t q U, U \leq f^{-1}(cl_{\tau_1}A)$. Hence $f(U) \leq cl_{\tau_1}A$.

(iii) \Rightarrow (iv). Let $A \in FSO(Y)$ and x_t be any fuzzy point in X such that $x_t \in f^{-1}(A)$. Then $f(x_t) \in A$. By (iii), there exists $U \in F\beta bO(X)$ with $x_t \in U$ and $f(U) \leq cl_{\tau_1}A$ implies that $U \leq f^{-1}(cl_{\tau_1}A)$ and so $x_t \in U = \beta bint_{\tau}U \leq \beta bint_{\tau}(f^{-1}(cl_{\tau_1}A))$. Hence $f^{-1}(A) \leq \beta bint_{\tau}(f^{-1}(cl_{\tau_1}A))$.

(iv) \Rightarrow (iii). Let x_t be any fuzzy point in X and $A \in FSO(Y)$ with $f(x_t) \in A$. Then $x_t \in f^{-1}(A) \leq \beta bint_{\tau}(f^{-1}(cl_{\tau_1}A))$ (by (iv)) implies that there exists $U \in F\beta bO(X)$ with $x_t \in U$ and $U \leq f^{-1}(cl_{\tau_1}A)$. Hence $f(U) \leq cl_{\tau_1}A$.

(v) \Rightarrow (vi). Let $A \in FRO(Y)$. By (v), $\beta bcl_{\tau}(f^{-1}(A)) \leq f^{-1}(\theta \cdot scl_{\tau_1}A) = f^{-1}(A)$ (by Lemma 3.13 (i)) $\Rightarrow f^{-1}(A) \in F\beta bC(X) \Rightarrow f$ is fuzzy $\beta \cdot b \cdot r$ -continuous function.

Theorem 4.4. Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be a function satisfying $\beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(\theta \cdot scl_{\tau_1}R)$, for all $R \in I^Y$. Then the following statements hold :

(i) $\beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(\theta \cdot scl_{\tau_1}R)$, for all $R \in FSO(Y)$, (ii) $\beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(\theta \cdot scl_{\tau_1}R)$, for all $R \in FPO(Y)$, (iii) $\beta bcl_{\tau}(f^{-1}(R)) \leq f^{-1}(\theta \cdot scl_{\tau_1}R)$, for all $R \in F\beta O(Y)$. **Proof.** Obvious.

Definition 4.5. Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be a function. Then f is said to be fuzzy (i) β -b-continuous if $f^{-1}(A) \in F\beta bO(X)$, for all $A \in \tau_1$,

(ii) almost β -b-continuous if $f^{-1}(A) \in F\beta bO(X)$, for all $A \in FRO(Y)$.

Let us now recall the following definition from [5] for ready references.

Definition 4.6. [5] Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be a function. Then f is said to be fuzzy continuous function if $f^{-1}(U) \in \tau$, for all $U \in \tau_1$.

Remark 4.7. It is clear from definitions that

(i) fuzzy continuity \Rightarrow fuzzy β -b-continuity \Rightarrow fuzzy almost β -b-continuity, but reverse implications are not necessarily true, in general, follow from the next examples,

(ii) fuzzy β -b-r-continuity is an independent concept of fuzzy continuity, fuzzy β -b-continuity and fuzzy almost β -b-continuity, follow from the next examples.

Example 4.8. Fuzzy continuity, fuzzy β -*b*-continuity and fuzzy almost β -*b*-continuity \neq fuzzy β -*b*-*r*-continuity

Let $X = \{a, b\}, \tau_1 = \{0_X, 1_X, A, B\}, \tau_2 = \{0_X, 1_X, B\}$ where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4. Then (X, τ_1) and (X, τ_2) are fts's. Consider the iden-

tity function $i : (X, \tau_1) \to (X, \tau_2)$. Clearly *i* is fuzzy continuous and hence fuzzy β -*b*-continuous as well as fuzzy almost β -*b*-continuous function. Now $1_X \setminus B \in FRC(X, \tau_2)$. $i^{-1}(1_X \setminus B) = 1_X \setminus B$. Then $cl_{\tau_1}(\beta int_{\tau_1}(cl_{\tau_1}(1_X \setminus B))) = A \not\geq 1_X \setminus B \Rightarrow 1_X \setminus B \notin F\beta bO(X, \tau_1) \Rightarrow i$ is not fuzzy β -*b*-*r*-continuous function.

Example 4.9. Fuzzy β -*b*-*r*-continuity, fuzzy β -*b*-continuity and fuzzy almost β -*b*-continuity \Rightarrow fuzzy continuity

Let $X = \{a, b\}, \tau_1 = \{0_X, 1_X\}, \tau_2 = \{0_X, 1_X, A\}$ where A(a) = A(b) = 0.5. Then (X, τ_1) and (X, τ_2) are fts's. Consider the identity function $i : (X, \tau_1) \to (X, \tau_2)$. Since every fuzzy set in (X, τ_1) is fuzzy β -b-open in (X, τ_1) , clearly i is fuzzy β -b-r-continuous, fuzzy β -b-continuous and fuzzy almost β -b-continuous function. Since $A \in \tau_2$, but $i^{-1}(A) = A \notin \tau_1, i$ is not fuzzy continuous function.

Example 4.10. Fuzzy β -*b*-*r*-continuity, fuzzy almost β -*b*-continuity \Rightarrow fuzzy β -*b*-continuity

Lt $X = \{a, b\}, \tau_1 = \{0_X, 1_X, A, B\}, \tau_2 = \{0_X, 1_X, C\}$ where A(a) = A(b) = 0.4, B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.6. Then (X, τ_1) and (X, τ_2) are fts's. Consider the identity function $i : (X, \tau_1) \to (X, \tau_2)$. Here $C \in \tau_2$ and $i^{-1}(C) = C$. Then $cl_{\tau_1}(\beta int_{\tau_1}(cl_{\tau_1}C)) = B \not\geq C \Rightarrow C \notin F\beta bO(X, \tau_1) \Rightarrow i$ is not fuzzy β -b-continuous function. Since $0_X, 1_X \in FRO(X, \tau_2)$ only, so clearly i is fuzzy β -b-r-continuous and fuzzy almost β -b-continuous function.

Example 4.11. Fuzzy β -b-r-continuity \Rightarrow fuzzy almost β -b-continuity Let $X = \{a, b\}, \tau_1 = \{0_X, 1_X, A\}, \tau_2 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.3. Then (X, τ_1) and (X, τ_2) are fts's. Consider the iden-

tity function $i : (X, \tau_1) \to (X, \tau_2)$. Now $B \in FRO(X, \tau_2)$, $i^{-1}(B) = B$. Then $int_{\tau_1}(\beta cl_{\tau_1}(int_{\tau_1}B)) = 0_X \leq B \Rightarrow B \in F\beta bC(X, \tau_1) \Rightarrow i$ is fuzzy β -b-r-continuous function. But $cl_{\tau_1}(\beta int_{\tau_1}(cl_{\tau_1}B)) = 0_X \not\geq B \Rightarrow B \notin F\beta bO(X, \tau_1) \Rightarrow i$ is not fuzzy almost β -b-continuous function.

Definition 4.12. [10] An fts (X, τ) is said to be fuzzy extremally disconnected if the closure of every fuzzy open set in X is fuzzy open in X.

Theorem 4.13. Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be a function. If (Y, τ_1) is fuzzy extremally disconnected space, then f is fuzzy β -b-r-continuous function if and only if f is fuzzy almost β -b-continuous function.

Proof. First suppose that f is fuzzy β -b-r-continuous function and let $U \in FRO(Y)$. Then $U = int_{\tau_1}(cl_{\tau_1}U)$. As Y is fuzzy extremely disconnected, $cl_{\tau_1}U \in \tau_1$ and so $U = int_{\tau_1}cl_{\tau_1}U = cl_{\tau_1}U = cl_{\tau_1}int_{\tau_1}U$ implies that $U \in FRC(Y)$. By hypothesis, $f^{-1}(U) \in F\beta bO(X)$ and so f is fuzzy almost β -b-continuous function.

Conversely, let $U \in FRC(Y)$. As Y is fuzzy extremely disconnected, $U \in$

FRO(Y). By hypothesis, $f^{-1}(U) \in F\beta bO(X)$. Hence f is fuzzy β -b-r-continuous function.

Remark 4.14. Composition of two fuzzy β -b-r-continuous (resp., fuzzy β -b-continuous and fuzzy almost β -b-continuous) functions need not be so, as it seen from the following examples.

Example 4.15. Let $X = \{a, b\}$, $\tau_1 = \{0_X, 1_X, A, B\}$, $\tau_2 = \{0_X, 1_X\}$, $\tau_3 = \{0_X, 1_X, B\}$ where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4. Then (X, τ_1) , (X, τ_2) and (X, τ_3) are fts's. Consider two identity functions $i_1 : (X, \tau_1) \to (X, \tau_2)$, $i_2 : (X, \tau_2) \to (X, \tau_3)$. Clearly i_1 and i_2 are fuzzy β -b-r-continuous functions. Let $i_3 = i_2 \circ i_1$. Now $1_X \setminus B \in FRC(X, \tau_3), i_3^{-1}(1_X \setminus B) = 1_X \setminus B$. Now $cl_{\tau_1}(\beta int_{\tau_1}(cl_{\tau_1}(1_X \setminus B))) = A \not\geq 1_X \setminus B \Rightarrow 1_X \setminus B \notin F\beta bO(X, \tau_1) \Rightarrow i_3$ is not fuzzy β -b-r-continuous function.

Example 4.16. Let $X = \{a, b\}, \tau_1 = \{0_X, 1_X, A\}, \tau_2 = \{0_X, 1_X\}, \tau_3 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.3. Then $(X, \tau_1), (X, \tau_2)$ and (X, τ_3) are fts's. Consider two identity functions $i_1 : (X, \tau_1) \to (X, \tau_2)$ and $i_2 : (X, \tau_2) \to (X, \tau_3)$. Clearly i_1 and i_2 are fuzzy β -b-continuous and hence fuzzy almost β -b-continuous functions. Let $i_3 = i_2 \circ i_1$. Bow $B \in \tau_3$ as well as $B \in FRO(X, \tau_3)$. $i_3^{-1}(B) = B$. Now $cl_{\tau_1}(\beta int_{\tau_1}(cl_{\tau_1}B)) = 0_X \not\geq B \Rightarrow B \notin F\beta bO(X, \tau_1) \Rightarrow i_3$ is not fuzzy β -b-continuous functions.

5. Fuzzy β -b-Regular, Fuzzy β -b-compact and Fuzzy β -b-T₂-Spaces

In this section new types of separation axioms and compactness are introduced and studied. Then the mutual relationships of these spaces with the spaces defined in [5, 8] are established.

Definition 5.1. An fts (X, τ) is called β -b-regular space if for each fuzzy point x_t in X and each fuzzy β -b-closed set F with $x_t \notin F$, there exist a fuzzy open set U and a fuzzy β -b-open set V in X such that $x_t qU$, $F \leq V$ and U $\not qV$.

Theorem 5.2. For an fts (X, τ) , the following statements are equivalent: (a) X is fuzzy β -b-regular space,

(b) for each fuzzy point x_t in X and each fuzzy β -b-open set U in X with $x_t qU$, there exists a fuzzy open set V in X such that $x_t qV \leq \beta bclV \leq U$,

(c) for each fuzzy β -b-closed set F in X, $\bigwedge \{ clV : F \leq V, V \in F\beta bO(X) \} = F$,

(d) for each fuzzy set G in X and each fuzzy β -b-open set U in X such that GqU, there exists a fuzzy open set V in X such that GqV and $\beta bclV \leq U$.

Proof (a) \Rightarrow **(b).** Let x_t be a fuzzy point in X and U, a fuzzy β -b-open set in X with $x_t q U$. Then $x_t \notin 1_X \setminus U \in F\beta bC(X)$. By (a), there exist a fuzzy open set V and a fuzzy β -b-open set W in X such that $x_t q V$, $1_X \setminus U \leq W$, $V \not q W$. Then

 $x_t q V \le 1_X \setminus W \le U \Rightarrow x_t q V \le \beta b c l V \le \beta b c l (1_X \setminus W) = 1_X \setminus W \le U.$

(b) \Rightarrow (a). Let F be a fuzzy β -b-closed set in X and x_t be a fuzzy point in X with $x_t \notin F$. Then $x_t q(1_X \setminus F) \in F\beta bO(X)$. By (b), there exists a fuzzy open set V in X such that $x_t qV \leq \beta bclV \leq 1_X \setminus F$. Put $U = 1_X \setminus \beta bclV$. Then $U \in F\beta bO(X)$ and $x_t qV$, $F \leq U$ and $U \not qV$.

(b) \Rightarrow (c). Let *F* be fuzzy β -b-closed set in *X*. Then $F \leq \bigwedge \{ clV : F \leq V, V \in F\beta bO(X) \}$.

Conversely, let $x_t \notin F \in F\beta bC(X)$. Then $F(x) < t \Rightarrow x_tq(1_X \setminus F)$ where $1_X \setminus F \in F\beta bO(X)$. By (b), there exists a fuzzy open set U in X such that $x_tqU \leq \beta bclU \leq 1_X \setminus F$. Put $V = 1_X \setminus \beta bclU$. Then $F \leq V$ and $U \not qV \Rightarrow x_t \notin clV \Rightarrow \bigwedge \{clV : F \leq V, V \in F\beta bO(X)\} \leq F$.

(c) \Rightarrow (b). Let V be any fuzzy β -b-open set in X and x_t be any fuzzy point in X with x_tqV . Then $V(x) + t > 1 \Rightarrow x_t \notin (1_X \setminus V)$ where $1_X \setminus V \in F\beta bC(X)$. By (c), there exists $G \in F\beta bO(X)$ such that $1_X \setminus V \leq G$ and $x_t \notin clG$. Then there exists a fuzzy open set U in X with x_tqU , $U / qG \Rightarrow U \leq 1_X \setminus G \leq V$ $\Rightarrow x_tqU \leq \beta bclU \leq \beta bcl(1_X \setminus G) = 1_X \setminus G \leq V$.

(c) \Rightarrow (d). Let *G* be any fuzzy set in *X* and *U* be any fuzzy β -b-open set in *X* with GqU. Then there exists $x \in X$ such that G(x) + U(x) > 1. Let G(x) = t. Then $x_tqU \Rightarrow x_t \notin 1_X \setminus U$ where $1_X \setminus U \in F\beta bC(X)$. By (c), there exists $W \in F\beta bO(X)$ such that $1_X \setminus U \leq W$ and $x_t \notin clW \Rightarrow (clW)(x) < t \Rightarrow x_tq(1_X \setminus clW)$. Let $V = 1_X \setminus clW$. Then *V* is fuzzy open set in *X* and $V(x) + t > 1 \Rightarrow V(x) + G(x) > 1 \Rightarrow VqG$ and $\beta bclV = \beta bcl(1_X \setminus clW) \leq \beta bcl(1_X \setminus W) = 1_X \setminus W \leq U$. (d) \Rightarrow (b). Obvious.

Note 5.3. It is clear from Theorem 5.2 that in a fuzzy β -*b*-regular space, every fuzzy β -*b*-closed set is fuzzy closed and hence every fuzzy β -*b*-open set is fuzzy open. As a result, in a fuzzy β -*b*-regular space, the collection of all fuzzy closed (resp., fuzzy open) sets and fuzzy β -*b*-closed (resp., fuzzy β -*b*-open) sets coincide.

Definition 5.4. Let A be a fuzzy set in X. A collection \mathcal{U} of fuzzy sets in X is called a fuzzy cover of A if $\sup\{U(x) : U \in \mathcal{U}\} = 1$, for each $x \in \operatorname{supp} A$ [7]. In particular, if $A = 1_X$, we get the definition of fuzzy cover of X [5].

Definition 5.5. A fuzzy cover \mathcal{U} of a fuzzy set A in X is said to have a finite subcover \mathcal{U}_0 if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such that $\bigcup \mathcal{U}_0 \ge A$, i.e., \mathcal{U}_0 is also a fuzzy cover of A [7]. In particular, if $A = 1_X$, we get $\bigcup \mathcal{U}_0 = 1_X$ [5].

Definition 5.6. A fuzzy set A in an fts (X, τ) is said to be fuzzy compact [7] if every fuzzy covering \mathcal{U} of A by fuzzy open sets in X has a finite subcovering \mathcal{U}_0 of \mathcal{U} . In particular, if $A = 1_X$, we get the definition of fuzzy compact space [5]. **Definition 5.7.** An fts (X, τ) is said to be fuzzy s-closed [13] (resp. fuzzy nearly compact [10]) if every fuzzy covering of X by fuzzy regular closed (resp., fuzzy regular open) sets of X contains a finite subcovering.

Let us now introduce the following concept.

Definition 5.8. A fuzzy set A in an fts (X, τ) is called fuzzy β -b-compact set if every fuzzy covering of A by fuzzy β -b-open sets of X has a finite subcovering. In particular, if $A = 1_X$, we get the definition of fuzzy β -b-compact space.

Remark 5.9. It is clear from above discussion that fuzzy β -b-compact space is fuzzy compact. But the converse is not necessarily true follows from the next example.

Example 5.10. Let $X = \{a\}, \tau = \{0_X, 1_X\}$. The clearly (X, τ) is a fuzzy compact space. Here every fuzzy set is fuzzy β -b-open set in X. Consider the fuzzy cover $\mathcal{U} = \{U_n(a) : n \in \mathbf{N}\}$ where $U_n(a) = \{\frac{n}{n+1} : n \in \mathbf{N}\}$. Then \mathcal{U} is a fuzzy β -b-open cover of X. But it does not have any subcovering of X. Hence X is not fuzzy β -b-compact space.

Theorem 5.11. Every fuzzy β -b-closed set A in a fuzzy β -b-compact space X is fuzzy β -b-compact.

Proof. Let A be a fuzzy β -*b*-closed set in a fuzzy β -*b*-compact space X. Let \mathcal{U} be a fuzzy covering of A by fuzzy β -*b*-open sets in X. Then $\mathcal{V} = \mathcal{U} \bigcup (1_X \setminus A)$ is a fuzzy β -*b*-open covering of X. By hypothesis, there exists a finite subcollection \mathcal{V}_0 of \mathcal{V} which also covers X. If \mathcal{V}_0 contains $1_X \setminus A$, we omit it and get a finite subcovering of A. Consequently, A is fuzzy β -*b*-compact set.

Let us now recall the following definition from [8] for ready references.

Definition 5.12. [8] Let (X, τ) be an fts. Then X is said to be fuzzy T_2 -space if for each pair of distinct fuzzy points x_{α} , y_{β} : when $x \neq y$, there exist fuzzy open sets U_1, U_2, V_1, V_2 such that $x_{\alpha} \in U_1, y_{\beta}qV_1$ and U_1 / qV_1 and $x_{\alpha}qU_2, y_{\beta} \in V_2$ and U_2 / qV_2 ; when x = y, $\alpha < \beta$ (say), there exist fuzzy open sets U, V in X such that $x_{\alpha} \in U, y_{\beta}qV$ and U / qV.

Now we introduce the following concept.

Definition 5.13. Let (X, τ) be an fts. Then X is said to be fuzzy β -b-T₂-space if for each pair of distinct fuzzy points x_{α} , y_{β} : when $x \neq y$, there exist fuzzy β -b-open sets U_1, U_2, V_1, V_2 such that $x_{\alpha} \in U_1, y_{\beta}qV_1$ and U_1 / qV_1 and $x_{\alpha}qU_2, y_{\beta} \in V_2$ and U_2 / qV_2 ; when $x = y, \alpha < \beta$ (say), there exist fuzzy β -b-open sets U, V in X such that $x_{\alpha} \in U, y_{\beta}qV$ and U / qV.

Let us now recall the following definition from [8] for ready references.

Definition 5.14. [8] An fts (X, τ) is said to be fuzzy regular space if for any fuzzy

point x_t in X and any fuzzy closed set F in X with $x_t \notin F$, there exist fuzzy open sets U, V in X such that $x_t qU, F \leq V$ and U $\not qV$.

Remark 5.15. It is clear from Note 5.3 that fuzzy β -b-regular space is fuzzy regular and fuzzy T_2 -space is fuzzy β -b- T_2 -space. But the reverse implications are not necessarily true, follow from the next example.

Example 5.16. Consider Example 5.10. It is clear that (X, τ) is fuzzy regular and fuzzy β -b- T_2 -space (as every fuzzy set is fuzzy β -b-open set as well as fuzzy β -b-closed set). Now consider the fuzzy point $a_{0.4}$ and a fuzzy set A defined by A(a) = 0.3. Then $a_{0.4} \notin A \in F\beta bC(X)$. But there do not exist any fuzzy open set U and a fuzzy β -b-open set V in X such that $a_{0.4}qU, A \leq V$ and $U \not AV$ (because 1_X is the only fuzzy open set in X with $a_{0.4}q1_X$ and 1_XqV for all fuzzy set $V(\neq 0_X)$ in X). Hence X is not fuzzy β -b-regular space.

Consider two fuzzy points $a_{0.4}$ and $a_{0.5}$ in X. But there do not exist fuzzy open sets U, V in X such that $a_{0.4} \in U, a_{0.5}qV$ and $U \not qV$. So X is not fuzzy T_2 -space.

6. Applications of Fuzzy β -b-r-Continuous, Fuzzy β -b-continuous and Fuzzy almost β -b-Continuous Functions

In this section the applications of the functions introduced in this paper are established.

First we recall the following definition from [14] for ready references.

Definition 6.1. [14] A function $f : X \to Y$ is said to be fuzzy open function if f(U) is a fuzzy open set in Y for every fuzzy open set U in X.

Theorem 6.2. Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be surjective, fuzzy β -b-r-continuous function. If X is fuzzy β -b-compact space, then Y is fuzzy s-closed space.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy covering of Y by fuzzy regular closed sets of Y. As f is fuzzy β -b-r-continuous, $\mathcal{V} = \{f^{-1}(U_{\alpha}) : \alpha \in \Lambda\}$ covers X by fuzzy β -b-open sets of X. As X is fuzzy β -b-compact space, there exists a finite subset Λ_0 of Λ such that $1_X = \bigvee_{\alpha \in \Lambda_0} f^{-1}(U_{\alpha})$ implies that $1_Y = f(\bigvee_{\alpha \in \Lambda_0} f^{-1}(U_{\alpha})) =$

 $\bigvee_{\alpha \in \Lambda_0} f(f^{-1}(U_\alpha)) \leq \bigvee_{\alpha \in \Lambda_0} U_\alpha.$ Hence Y is fuzzy s-closed space.

Theorem 6.3. Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be fuzzy β -bcontinuous function. If A is fuzzy β -b-compact set relative to X, then the image f(A) is fuzzy compact relative to Y.

Proof. Let A be fuzzy β -b-compact relative to X and $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a

fuzzy covering of f(A) by fuzzy open sets of Y, i.e., $f(A) \leq \bigvee_{\alpha \in \Lambda} U_{\alpha}$ implies that

 $A \leq f^{-1}(\bigvee_{\alpha \in \Lambda} U_{\alpha}) = \bigvee_{\alpha \in \Lambda} f^{-1}(U_{\alpha}).$ So $\mathcal{V} = \{f^{-1}(U_{\alpha}) : \alpha \in \Lambda\}$ is a fuzzy covering

of A by fuzzy β -b-open sets in X. As A is fuzzy β -b-compact set relative to X, there exists a finite subcollection $\mathcal{V}_0 = \{f^{-1}(U_{\alpha_i}) : 1 \leq i \leq n\}$ of \mathcal{V} such that $A \leq \bigvee_n f^{-1}(U_{\alpha_i})$. Then $f(A) \leq f(\bigvee_n f^{-1}(U_{\alpha_i})) = \bigvee_n f(f^{-1}(U_{\alpha_i})) \leq \bigvee_n U_{\alpha_i}$ implies

$$\underbrace{ \bigvee_{i=1}^{i=1} }_{i=1} \left\{ U_{\alpha_i} : 1 \le i \le n \right\}$$
 is a finite subcovering of $f(A)$. Hence the proof.

Theorem 6.4. Let (X, τ) and (Y, τ_1) be two fts's and $f : X \to Y$ be fuzzy almost β -b-continuous function. If A is fuzzy β -b-compact relative to X, then the image f(A) is fuzzy nearly compact relative to Y.

Proof. The proof is similar to that of Theorem 6.3.

Theorem 6.5. Let (X, τ) and (Y, τ_1) be two fts's and $f: X \to Y$ be injective, fuzzy β -b-continuous function and Y is fuzzy T_2 -space. Then X is fuzzy β -b- T_2 -space. **Proof.** Let x_{α} and y_{β} be two distinct fuzzy points in X where $x \neq y$. Then as f is injective, $f(x_{\alpha}) \neq f(y_{\beta})$. As Y is fuzzy T_2 -space, there exist fuzzy open sets U_1, U_2, V_1, V_2 in Y such that $f(x_{\alpha}) \in U_1, f(y_{\beta})qV_1$ and $U_1 \not qV_1$ and $f(x_{\alpha})qU_2$, $f(y_{\beta}) \in V_2$ and $U_2 \not qV_2$. Then $x_{\alpha} \in f^{-1}(U_1), y_{\beta}qf^{-1}(V_1)$ and $f^{-1}(U_1) \not qf^{-1}(V_1)$. Indeed, $f^{-1}(U_1)qf^{-1}(V_1) \Rightarrow$ there exists $z \in X$ such that $[f^{-1}(U_1)](z)+[f^{-1}(V_1)](z) > 1 \Rightarrow U_1(f(z)) + V_1(f(z)) > 1 \Rightarrow U_1qV_1$, a contradiction. Also $x_{\alpha}qf^{-1}(U_2), y_{\beta} \in f^{-1}(V_2)$ and $f^{-1}(U_2) \not qf^{-1}(V_2)$ where $f^{-1}(U_1), f^{-1}(V_1), f^{-1}(U_2), f^{-1}(V_2) \in F\beta$ bO (X, τ_1) . Similarly, when $x = y, \alpha < \beta$ (say), there exist $U_1, U_2 \in \tau_1$ such that $f(x_{\alpha}) \in U_1, f(y_{\beta})qU_2$ and $U_1 \not qU_2$. Then $x_{\alpha} \in f^{-1}(U_1), y_{\beta}qf^{-1}(U_2)$ and $f^{-1}(U_1) \not qf^{-1}(U_2)$ where $f^{-1}(U_1), f^{-1}(U_2)$ and $f^{-1}(U_1) \not qf^{-1}(U_2)$

Theorem 6.6. If a bijective function $h : X \to Y$ is fuzzy β -b-continuous, fuzzy open function from a fuzzy β -b-regular space X onto an fts Y, then Y is fuzzy regular space.

Proof. Let y_t be a fuzzy point in Y and F, a fuzzy closed set in Y with $y_t \notin F$. As h is bijective, there exists unique $x \in X$ such that h(x) = y. So $h(x_t) \notin F \Rightarrow x_t \notin h^{-1}(F) \in F\beta bC(X)$ as h is fuzzy β -b-continuous function. As X is fuzzy β -b-regular space, there exist a fuzzy open set U and a fuzzy β -b-open set V in X such that $x_t q U, h^{-1}(F) \leq V$ and U/qV. Since X is fuzzy β -b-regular space, by Note 5.3, V is also fuzzy open set in X. As h is fuzzy open function, we have $h(x_\alpha)qh(U), F \leq h(V)$ and h(U)/qh(V) where h(U), h(V) are fuzzy open sets in $Y \Rightarrow Y$ is fuzzy regular space.

References

- Azad, K. K., On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.
- [2] Bhattacharyya, Anjana, Concerning almost quasi continuous fuzzy multifunctions, Universitatea Din Bacău Studii Și Cercetări, Știintifice Seria : Matematică, 11 (2001), 35-48.
- [3] Bhattacharyya, Anjana, Several concepts of continuity in fuzzy setting, The 10th International Conference MSAST 2016, December 21-23 (2016), Kolkata, 282-293.
- [4] Bin Shahna, A. S., On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44 (1991), 303-308.
- [5] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [6] Fath Alla, M. A., On fuzzy topological spaces, Ph.D. Thesis, Assiut univ., Sohag, Egypt, 1984.
- [7] Ganguly, S. and Saha, S., A note on compactness in fuzzy setting, Fuzzy Sets and Systems, 34 (1990), 117-124.
- [8] Hutton, B. and Reilly, I., Separation axioms in fuzzy topological spaces, Fuzzy sets and Systems, 31 (1980), 93-104.
- [9] Mukherjee, M. N. and Ghosh, B., On fuzzy S-closed spaces and FSC-sets, Bull. Malaysian Math. Soc., 12 (1989), 1-14.
- [10] Mukherjee, M. N. and Ghosh, B., On nearly compact and θ -rigid fuzzy sets in fuzzy topological spaces, Fuzzy Sets and Systems, 43 (1991), 57-68.
- [11] Nanda, S. Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems, 42 (1991), 259-262.
- [12] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl., 76 (1980), 571-599.
- [13] Sinha, S. P. and Malakar, S., On s-closed fuzzy topological spaces, J. Fuzzy Math., 2 (1) (1994), 95-103.

- [14] Wong, C. K., Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., 46 (1974), 316-328.
- [15] Zadeh, L. A., Fuzzy Sets, Inform. Control., 8 (1965), 338-353.