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Abstract: In this work I demonstrate that a possible origin of the Frey elliptic
curve derives from an appropriate use of the double equations of Diophantus-Fermat
and from an isomorphism: a birational application between the double equations
and an elliptic curve.
From this origin I deduce a Fundamental Theorem which allows an exact reformu-
lation of Fermat’s Last Theorem.
A complete proof of this Theorem, consisting of a system of homogeneous ternary
quadratic Diophantine equations, is certainly possible also through methods known
and discovered by Fermat,in order to solve his extraordinary equation.
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1. The double equations of Diophantus-Fermat and the Frey elliptic
curve

A careful reading of the existing documentation about the Diophantine prob-
lems, reveals that Fermat, and especially Euler, often used the so-called ”double
equations” of Diophantus, that is ax2 + bx+ c = z2; a′x2 + b′x+ c′ = t2 with the
conditions that a and a′, or c and c′ are squares.
These conditions ensure the existence of rational solutions of the double equations.
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These equations can be written in a more general form as:

ax2 + 2bxy + cy2 = z2 a′x2 + 2b′xy + c′y2 = t2. (1)

Indeed usually both Fermat and Euler considered only the curves of those forms
which have, in the projective space, at least one ”visible” rational point.
Fermat and Euler derive from few evident solutions an infinite number of solutions.
Under this last hypothesis ([5], Chap. II, Appendix III, pp. 135–139) the curve
determined by the equations (1) results isomorphic to the one given by

Y 2 = X
[
(b′X − b)

2 − (a′X − a) (c′X − c)
]

(2)

i.e. an elliptic curve (see also Appendix A).
In fact, an elliptic curve, which has at least one rational point, can be written as a
cubic y2 = f (x) , where f is a polynomial of degree 3.
Given this, we consider the following system, consisting of a pair of ≪double equa-
tions ≫ {

(3)1 Xn
1 V

2 + Y n
1 T

2 = U ′2 V 2 − T 2 = W 2

(3)2 Xn
1W

2 + Zn
1 T

2 = U ′2 W 2 + T 2 = V 2 (3)

where X1 , Y1 , Z1 are integer numbers (positive or negative), pairwise relatively
primes, n > 2 is a natural number and U ′, V,W, T are integer variables.
Applying the isomorphism described by Eq. (2) we obtain, from the first two
equations of the system (3), i.e. the (3)1, the elliptic curve

Y 2 = X (X −Xn
1 ) (X + Y n

1 ) , (4)

and from the other two equations, the (3)2, the further elliptic curve

Y 2 = −X (X −Xn
1 ) (X − Zn

1 ) . (5)

Combining Eq. (4) and Eq. (5) and using the relation X = Xn
1 /2 one obtains

the following identity:

Xn
1 + Y n

1 = Zn
1 . (6)

Now the elliptic curve (4), together with the identity (6), is nothing but the Frey
elliptic curve ([1], pp.154–156).
In Mathematics, a Frey curve, or Frey–Hellegouarch curve, is the elliptic curve:

Y 2 = X (X −Xn
1 ) (X + Y n

1 ) (7)
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or, equivalently :
Y 2 = X

[
X2 +X (Y n

1 −Xn
1 )−Xn

1 Y
n
1

]
(8)

associated with a (hypothetical) solution of Fermat’s equation : Xn
1 + Y n

1 = Zn
1 .

In fact, the discriminant

∆ =

√
(Y n

1 −Xn
1 )

2 + 4Xn
1 Y

n
1 = Xn

1 + Y n
1 = Zn

1 ,

that determines the existence of the polynomial (X −Xn
1 ) (X + Y n

1 ) = X2 +
X (Y n

1 −Xn
1 )−Xn

1 Y
n
1 is a perfect power of order n.

Frey suggested, in 1985, that the existence of a non-trivial solution toXn+Y n = Zn

would imply the existence of a non-modular elliptic curve,viz.

Y 2 = X(X −Xn)(X + Y n).

This suggestion was proved by Ribet in 1986.
This curve is semi-stable and in 1993 Wiles announced a proof (subsequently found
to need another key ingredient, furnished by Wiles and Taylor) that every semi-
stable elliptic curve is modular, the semi-stable case of the Taniyama-Shimura-Weil
conjecture ([6] and [4]).
Hence no non-trivial Xn + Y n = Zn can exist.
Moreover, as Euler found out, treating similar problems, regarding algebraic curves
of genus 1, the two problems, connected to curves (4) and (5), are completely
equivalent.
In our case it is simple to verify that the elliptic curve (5) can be reduced to (4)
by the transformation X ⇒ −X +Xn

1 and the identity (6).

2. The Diophantine System
One can reduce the system (3) to the following Diophantine system

Xn
1 V

2 + Y n
1 T

2 = U ′2

Xn
1W

2 + Zn
1 T

2 = U ′2

W 2 + T 2 = V 2.
(9)

Our proof of Fermat’s Last Theorem consists in the demonstration that it is
not possible a resolution in whole numbers, all different from zero, of a system
derived from system (9), but analogous, [see section 4 and system (19)], with
integer coefficients and using integer variables U,W ′, T ′, V ′.
From the first two equations of the system (9) one obtains

Xn
1 V

2 + Y n
1 T

2 = Xn
1W

2 + Zn
1 T

2. (10)
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Now from Eq.(10) is

Xn
1

(
V 2 −W 2

)
= (Zn

1 − Y n
1 ) T 2. (11)

Eq. (11) results in identity (6) if the third equation in the systems (9), W 2+T 2 =
V 2, is satisfied.
In fact, since this equation is the Pythagorean triangle, in general, it accepts the
following integer solutions, where p, q are natural numbers and k a proportionality
factor (the values of W and T are interchangeable if necessary):

W = k (2pq) ; T = k
(
p2 − q2

)
; V = k

(
p2 + q2

)
.

We can therefore consider also the primitive integer solutions with p, q ∈ N

W = 2pq ; T = p2 − q2; V = p2 + q2. (12)

Thus Eq. (11), with p and q relatively prime, of opposite parity and p > q > 0
now is reduced to the identity (6).

3. On Homogeneous Ternary Quadratic Diophantine Equations

aX2 + bY 2 − cZ2 = 0.

Theorem 3.1. Let xn + yn = zn, with (x, y) = 1 and n ≥ 3 has a solution,
then there exists an equation ax2 + by2 = cz2, where a, b, c are relatively prime and
reduced to the minimum terms, whose a solution could be reduced to a solution of
Fermat’s equation.
Proof. Let X1, Y1, Z1 be three whole numbers pairwise relatively prime such as to
satisfy the Fermat equation xn + yn = zn.
Then the following homogeneous ternary quadratic Diophantine equation, with
(V, T, P ) = 1 exists:

Xn
1 V

2 + Y n
1 T

2 = Zn
1P

2. (13)

We observe that with the following particular nontrivial solutions:
V = 1, T = 1 and P = 1 or V = T = P in Eq.(13) we obtain the fundamental
Hypothesis (Reductio ad Absurdum) of the F.L.T.:

X1
n + Y1

n = Z1
n.

Now by the evident solutions, indicated above, we can derive an infinite number of
solutions of Eq.(13).
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Let’s remember that for Legendre’s Theorem if a ternary quadratic homogeneous
Diophantine equation (assuming a, b and c are fixed) has an integral solution, then
the number of possible solutions is infinite.
Having said this, it is possible to transform the previous Diophantine equation (13)
into the following equivalent equation,with (V ′, T ′, P ′) = 1 :

X1V
′2 + Y1T

′2 = Z1P
′2. (14)

It is sufficient to assume V ′ = Xk
1V, T

′ = Y k
1 T, P

′ = Zk
1P where k = n−1

2
and n > 1

odd number.
Using the ”fundamental theorem of Arithmetic” we can represent ([3], Theorem
19, p. 31): X1 = X2U

2
1 , Y1 = Y2U

2
2 , Z1 = Z2U

2
3 .

In this case is possible to transform the previous Diophantine equation (14) into
the following equivalent Diophantine equation with the relative coefficients reduced
to the minimum terms:

X2V
′′2 + Y2T

′′2 = Z2P
′′2.

In fact just assume V ′′ = U1V
′, T ′′ = U2T

′, P ′′ = U3P
′.

We observe that X2, Y2, Z2 are pairwise relatively prime and square-free numbers.
The proof ends here by properly verifying also the nature of exponent n.

Theorem 3.2. Let’s suppose that xn + yn = zn, with n ≥ 3 has a solution, in this
case we will have an equation ax2 + by2 = cz2, where c is a square, whose solution
could be reduced to a solution of Fermat’s equation.
Proof. From Theorem 3.1 [see Eq.(13)] we have the following equation Xn

1 V
2 +

Y n
1 T

2 = Zn
1U

2 that could be reduced to a solution of Fermat’s equation with n ≥ 3
odd integer.
Now multiplying the coefficient Xn

1 , Y
n
1 , Z

n
1 by factor Zn

1 we have

Xn
1Z

n
1 V

2 + Y n
1 Z

n
1 T

2 = Zn
1Z

n
1U

2

and with X0 = X1Z1, Y0 = Y1Z1, Z0 = Z2
1 we get

Xn
0 V

2 + Y n
0 T

2 = Zn
0U

2 (15)

and Zn
0 = (Zn

1 )
2, that is a square.

In this case we have also, with g.c.d.(X0, Y0) = Z1, the equation of Fermat

Xn
0 + Y n

0 = Zn
0 . (16)

The proof ends here.
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4. The Lost Proof
At this point, multiplying the Eq.(15) by factoring quadratic Zn

0 we have

Xn
0Z

n
0 V

2 + Y n
0 Z

n
0 T

2 = Zn
0Z

n
0U

2

and finally with V ′ = Z
n
2
0 V , T ′ = Z

n
2
0 T we obtain Xn

0 V
′2 + Y n

0 T
′2 = (Zn

0 )
2 U2.

That said, let’s consider the following double equations of Diophantus-Fermat,
necessary to give rise to the well known Frey’s elliptic curve

Xn
0 V

′2 + Y n
0 T

′2 = (Zn
0 )

2 U2 = U ′′2 ; V ′2 − T ′2 = W ′2 : (17)

Y 2 = X (X −Xn
0 ) (X + Y n

0 ) .

that together with the identity (16) can be rewritten in

Z2n
0 U2 = Xn

0 V
′2 + Y n

0 T
′2 = Xn

0W
′2 + Zn

0 T
′2. (18)

In practice we have rewritten the system (9) in the following Diophantine system:
Xn

0 V
′2 + Y n

0 T
′2 = Z2n

0 U2

Xn
0W

′2 + Zn
0 T

′2 = Z2n
0 U2

W ′2 + T ′2 = V ′2.
(19)

Eqs.(18) give us:
U2 [Zn

0 ]
2 − V ′2 [Zn

0 ] +W ′2Y n
0 = 0 (20)

or equivalently

U2 [Zn
0 ]

2 − T ′2 [Zn
0 ]−W ′2Xn

0 = 0. (21)

Zn
0 is a square, so the product of the two roots in Eq. (20), through the Viete-Girard

formulas, is

[Zn
0 ]1 · [Zn

0 ]2 =
W ′2Y n

0

U2 ⇒ Y n
0 , which is a square,

and in Eq.(21) is

[Zn
0 ]1 · [Zn

0 ]2 =
−W ′2Xn

0

U2 ⇒ −Xn
0 , which is a square.

These latest results are certainly true only with the assumption that W ′2 is non-
zero.
From Theorem 3.1 we have that X1, Y1, Z1 are pairwise relatively prime and with
Y n
0 = □1 = Y n

1 Z
n
1 and Xn

0 = −□ = Xn
1Z

n
1 we obtain:

Zn
1 = □ ; Y n

1 = □ ; Xn
1 = −□ .

1The symbol □ represents an indeterminate square.
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With this last result, obtained also thanks to the use of a Pythagorean equation
[see Eqs.(17)], one finds also:

[Zn
0 ]1 · [Z

n
0 ]2 =

W ′2Y n
0

U2
=

−W ′2Xn
0

U2
.

This gives finally the special solution:

Y n
1 = −Xn

1 ⇒ Zn
1 = 0.

Consequently the Diophantine system (19) does not admit integer solutions.
A further confirmation of these conclusions comes from what is reported below.
Keeping in mind that Eq. (20) and Eq. (21) have arisen from rewriting the original
System (9) into System (19), we have to consider the various substitutions we have

subsequently applied and in particular by V ′ = Z
n
2
0 V , T ′ = Z

n
2
0 T e W ′ = Z

n
2
0 W

(because of the Pythagorean identity V 2 = T 2 +W 2) we can rewrite Eq. (20) and
Eq. (21) as follows:

[Zn
1 ]

3 [Zn
1

(
U2 − V 2

)
+W 2Y n

1

]
= 0 (22)

or equivalently
[Zn

1 ]
3 [Zn

1

(
U2 − T 2

)
−W 2Xn

1

]
= 0. (23)

At this point, canceling the second factors of the two products (22) and (23) we
have:

[Zn
1 (V 2 − U2)] = W 2Y n

1 and [Zn
1 (U2 − T 2)] = W 2Xn

1 .
By dividing them among themselves, with Zn

1 e W 2 different from zero, and sim-
plifying we get back the Diophantine equation original:

Xn
1 V

2 + Y n
1 T

2 = Zn
1U

2. (24)

Therefore this equation can exist only on condition that Zn
1 eW 2 are both non-zero.

In addition, the quantities (V 2 − U2) and (U2 − T 2) cannot be null, because the
Pythagorean identity would imply W 2 = V 2 − T 2 = 0.
Now from Eqs. (20) and (21), considering the sum of the roots, through the Viete-
Girard formulas, we have:

[Zn
0 ]1 + [Zn

0 ]2 =
V ′2

U2

and
[Zn

0 ]1 + [Zn
0 ]2 =

T ′2

U2 .
The two sums must be equal, therefore from V ′2 = Zn

0 V
2 and T ′2 = Zn

0 T
2

we get that if Zn
0 is different from zero:
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V ′2 = T ′2 ⇒ V 2 = T 2 ⇒ W 2 = 0. (25)

In summary, I would like to state that Eqs (20) and (21) through their roots (see
products and relative sums) they only provide the following result:

Zn
1 = 0 or W 2 = 0.

which prove, in an absolute way, on the one hand the non existence of the original
Diophantine equation Eq (24) (as it is not can build) on the other hand the ”power”
of the Diophantus System original (9),which includes among its three homogeneous
ternary equations of second degree also a Pythagorean equation (PT).
The need for such a soluble Pythagorean equation (PT) in integers, it is fully justi-
fied by a proposition stated and proved by A. Weil, who established the existence of
an isomorifism between some appropriate double equations of Diophantus-Fermat
and a certain elliptic curve, or the existence of a birational application between the
double equations and an elliptic curve.

5. Analytical digressions
There is no doubt that the system (19), inspired by system (9), represents a

true ”lockpick” of the Fermat Last Theorem.
Through the former system, keeping in mind always the possibility of exchanging
the role of X0 and Y0 into identity (16), we are able to establish the following
Fundamental Theorem:

The Fermat Last Theorem is true if and only if a solution in integers, all dif-
ferent from zero, of the following Diophantine system, made of three homogeneous
equations of second degree, with integer coefficients Xn

0 ,Y
n
0 ,Z

n
0 , where n is a natural

number > 2 and with U, T ′, V ′,W ′ integer indeterminates is not possible.
Xn

0 V
′2 + Y n

0 T
′2 = Z2n

0 U2

Xn
0W

′2 + Zn
0 T

′2 = Z2n
0 U2

W ′2 + T ′2 = V ′2.
(26)

The presence of a Pythagorean equation in this system has been proved to be
essential, not only to connect the most general Fermat’s equation to the supposed
Frey’s elliptic curve, but to demonstrate the above indicated Fundamental Theorem
(see Section 4) and at the end to provide also a proof of Fermat’s Last Theorem,
using a method of Reductio ad Absurdum.

6. Conclusions
In this paper I demonstrate that a possible origin of Frey’s elliptic curve derives

from an appropriate use of the so-called ”double equations” of Diophantus-Fermat
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and from an isomorphism: a birational application between the double equations
and an elliptic curve.
This Frey elliptic curve does not exist ([1], pp. 154–156) and from this derives
indirectly, as an absurd, the Fermat Last Theorem.
In this work we wanted to emphasize that a proof of the Fermat Last Theorem
can not be separated by the strong links with the supposed Frey elliptic curve,
although this does not mean that Fermat, in another way, was unable to produce
our own proof.

Appendix A. Elliptic Curves from Frey to Diophantus

In Mathematics, a Frey curve or Frey–Hellegouarch curve is the elliptic curve:

Y 2 = X (X −Xn
1 ) (X + Y n

1 ) (27)

or, equivalently:
Y 2 = X

[
X2 +X (Y n

1 −Xn
1 )−Xn

1 Y
n
1

]
(28)

associated with a (hypothetical) solution of Fermat’s equation : Xn
1 + Y n

1 = Zn
1 .

In the language of Diophantus and of Fermat, we consider the following ”double
equation”:

ax2 + 2bxy + cy2 = z2 a′x2 + 2b′xy + c′y2 = t2. (29)

In Weil’s Appendix III ([5], Ch. II, pp.135-139) he established (modulo the exis-
tence of a rational point) an isomorphism between the curve defined by the equa-
tions (29) and a certain elliptic curve defined by:

Y 2 = X
[
(b′X − b)

2 − (a′X − a) (c′X − c)
]
=

X
[(
b′2 − a′c′

)
X2 + (ca′ + ac′ − 2bb′)X − ac+ b2

]
. (30)

Let’s suppose that the first double equation is ax2 + Y n
1 y

2 = z2 .
In this case we have considered the following assumptions in Eq.(30): b = 0 and
c = Y n

1 .
Now the coefficient of X2 in Eq.(28) is equal to coefficient of X2 in Eq.(30):
(b′2 − a′c′) = 1 and the coefficient of X and the known term in Eq.(28) are equal
to the ones in Eq.(30):

(ca′ + ac′ − 2bb′) = Y n
1 −Xn

1 ; −ac+ b2 = −Xn
1 Y

n
1 , (31)

but with b = 0 and c = Y n
1 we have

−ac = −Xn
1 Y

n
1 ⇒ −aY n

1 = −Xn
1 Y

n
1 ⇒ a = Xn

1 .



52 J. of Ramanujan Society of Mathematics and Mathematical Sciences

From the first of Eq.(31) we have Y n
1 a

′ +Xn
1 c

′ = Y n
1 −Xn

1 ⇒ a′ = 1,
c′ = −1 ⇒ b′ = 0.

With these results we have the following double equation of Diophantus:
Xn

1 x
2 + Y n

1 y
2 = z2 and x2 − y2 = t2 equivalently to Xn

1 V
2 + Y n

1 T
2 = U ′2 and

V 2 − T 2 = W 2 [see the equations of the system (3), i.e. the (3)1].

Additional Remarks

Remark 1. Fermat’s idea, in my opinion, to prove his Last Theorem, could take
place through the following logical steps:

1- Define a quadratic and homogeneous ternary equation, in the normal form
of Lagrange, able to accommodate a solution, with n greater than or equal to 3, of
its extraordinary equation (6) [see Theorem 3.2].

2- Connect this appropriate Diophantine equation of 2nd degree to the clas-
sic Pythagorean equation [see Eqs.(17)] to build a complete Diophantine system
capable of determining its possible whole solution [see system (19)] .

3- Establish that this Diophantine system does not admit congruent integer
solutions and therefore as a consequence of this, there are no three integers that
satisfy Fermat’s equation (6).

Remark 2. The truth is that the impossibility to solve single equations can be
proved as deduction from the impossibility of solving a system of equations.
The Fundamental Theorem is a reformulation of the Fermat Last Theorem: his
following statements are equivalent:
(A) Fermat’s Last Theorem is true ⇔ (A’) The Diophantine System does not
allow integer solutions different from zero.
Let n > 2; there is a bijection between the following sets:
(S) the set of solutions (x, y, z) of Fermat’s Equation, where x, y, z are nonzero
natural numbers; and
(S’) the set of solutions (u, t′, v′, w′) of the Diophantine System, where u, t′, v′, w′

are nonzero natural numbers.
The set of solutions of (S) and (S’) are the same, that gives rise to an empty set,
as shown in the Fundamental Theorem.
In the literature there are other Diophantine equations, that were compared to
Fermat’s equation, i.e. a first result, due to Lebesgue in 1840, is the following
Theorem:

If Fermat’s Last Theorem is true for the exponent n ≥ 3 then the equation
X2n + Y 2n = Z2 has only trivial solutions.
The proof of this theorem is extremely simple and is found in [2].
In this case, however, it cannot be said that Lebesgue’s theorem is equivalent to
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Fermat’s Last Theorem, while on the contrary, the Fundamental Theorem is just
equivalent to Fermat’s last theorem.

Remark 3. I conclude this work with the following observation by A. Weil ([5],
Chap. IV, § VI, pp. 335–336): ” Infinite descent a’ la Fermat depends ordinarily
upon no more than the following simple observation: if the product α · β of two
ordinary integers (resp. two integers in an algebraic number-field) is equal to an
m-th power, and if the g.c.d. of α and β can take its values only in a given finite
set of integers (resp. of ideals), then both α and β are m-th powers, up to factors
which can take their values only in some assignable finite set.” (See the section 4:
The Lost Proof.)
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