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Abstract: This research article is dedicated to the exploration of a novel family
of distributions that is based on a tangent transformation. The new class of dis-
tributions, which we have named the new class tan-G (NCT-G) family, has been
developed using the ratio of the cumulative distribution function (CDF) G(x) and
1+G(x) of a baseline distribution. We provide an overview of the general proper-
ties of this family of distributions. To demonstrate the applicability of the NCT-G
family, we have utilized the inverse Weibull distribution as a baseline and intro-
duced a new member of the suggested family. This new distribution exhibits a
reverse-J, increasing, or inverted bathtub-shaped hazard function. We have also
explored some statistical properties of this distribution, as well as its associated
parameters estimated through maximum likelihood estimation (MLE). To evaluate
the accuracy of the estimation procedure, we have conducted a Monte Carlo sim-
ulation. We found that even for small sample sizes, biases and mean square errors
decrease as the sample size increases. Additionally, we have applied the NCT-IW
distribution to two real data sets. By using model selection criteria and goodness
of fit test statistics, we empirically proved that our suggested model outperforms
other existing models, most of which have a greater number of parameters.
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1. Introduction
The study of real-world events often involves the use of statistical distributions,

with both the practical application and theoretical aspects of these distributions
being extensively explored. Over time, a variety of distribution families have been
developed to account for a range of real-world phenomena and this development
of distribution theory is an ongoing process. While many probability distribu-
tions outlined in the literature contain numerous parameters, thereby enhancing
the model’s adaptability, some experts argue that obtaining accurate parameter
estimates using numerical resources can be difficult (Grimmett & Stirzaker, 2020).
To better model actual data, it may be more effective to create models with a
limited number of model parameters that offer a noticeable degree of flexibility. To
this end, a team of scientists has turned to trigonometric functions in the pursuit
of novel distributions. Trigonometric models have become increasingly popular
among scholars in recent years because of their versatility and the ability to be
mathematically understood. Al-Mofleh (2018) introduced a family of distributions
with the tangent function and discussed its four members. Another group of distri-
butions, which also utilize the tangent function, has been defined by (Nanga et al.,
2022). Souza et al. (2021) proposed a novel class of trigonometric distribution with
an increasing failure rate or bathtub-shaped function, known as the Tan-G Class
of distribution. This class of distribution is considered to be one of the various
trigonometric G-families and has base parameters (ω > 0). The PDF and CDF for
the Tan-G Class of distribution are

F (x;ω) =

π
4
K(x;ω)∫
0

sec2(t)dt =tan
[π
4
K(x;ω)

]
;x ∈ ℜ. (1.1)

f(x;ω) =
π

4
k(x;ω)sec2

[π
4
K(x;ω)

]
;x ∈ ℜ. (1.2)

where K(x;ω) is CDF of any base distribution. Souza et al. (2019) employed a
comparable approach to propose the Sin-G family of distributions and identified the
Sin-Inverse Weibull distribution as a member of the Sin-G class. Additionally, they
introduced a novel Cos-G class with an increasing failure rate function or a bathtub-
shaped failure rate function and specifically examined the Cos-W distribution as a
member. Both the Sin-G and Cos-G classes of distributions CDFs are

F (x;ω) =

π
2
K(x;ω)∫
0

cos(t)dt =sin
[π
2
K(x;ω)

]
;x ∈ ℜ.
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F (x;ω) = −

π
2
K(x;ω)∫
0

sin(t)dt =1− cos
[π
2
K(x;ω)

]
;x ∈ ℜ.

Another new sin-G family was created by (Mahmood et al., 2019), who also studied
the sin-inverse Weibull model in specific. The PDF and CDF of the novel sin-G
family of distributions are

F (x;ω) =

π
4
K(x;ω)(K(x;ω)+1)∫

0

cos(t)dt =sin
[π
4
K(x;ω)(K(x;ω) + 1)

]
;x ∈ ℜ.

f(x;ω) =
π

4
k(x;ω)[2K(x;ω) + 1]cos

[π
4
K(x;ω)(K(x;ω) + 1)

]
;x ∈ ℜ.

In addition, the sine Kumaraswamy-G family has been defined by (Chesneau & Ja-
mal, 2020), which introduces two extra parameters to the family. Another family
of distributions related to the trigonometric function is the exponentiated sine-G
family, which has been introduced by (Muhammad et al., 2021). They have also
analyzed a specific model known as the exponentiated sine-Weibull distribution.
Similar works also can be found in (Kyurkchiev et al., 2021a) and (Kyurkchiev et
al., 2021b) Chaudhary et al. (2021) introduced another probability model related
to trigonometric functions, called the Arctan generalized exponential distribution.
Various modifications of this class of distributions have been proposed and studied
by a number of researchers. In Kyurkchiev et al. (2021c), some general classes of
trigonometric CDF and ‘saturation’ in the Hausdorff sense for some special cases
of the families are studied. Isa et al. (2022) have utilized the sine-G family of
distribution to develop a new two-parameter model, known as the sine Burr XII
distribution. Through our observations, we have discovered that simple functions
possess a trigonometric distribution and can be formalized with ease, as detailed
in (see Souza et al., 2019a). Moreover, we found that the sine transformation can
significantly enhance the flexibility of G(x) without requiring additional param-
eters, as emphasized by (Chesneau and Jamal, 2020). These desirable qualities
led us to explore the tangent metamorphosis family. In our study, we introduced
a novel family of trigonometric models utilizing the Tangent function, which we
have dubbed the NCT-G family of distributions. To provide a clear and concise
overview of our research, the remaining parts of this paper are ordered as follows:
Section 2 introduces the methodology of model development and key functions of
the distribution family. In Section 3, we present some general properties of the
NCT-G family and its estimation procedure is presented in Section 4. Moving for-
ward to Section 5, we introduce a specific member of the NCT-G family, providing
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a thorough study and application of this model. Lastly, we conclude our findings
in Section 6.

2. The NCT-G family of Distribution (NCT-G FD)
In this study, the NCT-G FD is proposed using the T-X approach introduced

by (Alzaatreh et al., 2013). To do so, let a baseline CDF G(x; ξ), where ξ > 0 is a
vector of related parameters, then the ratio between G(x; ξ) and 1+G(x; ξ) can be
considered as a distribution function of the new family of distributions, for further
information (see Marshal and Olkin, 2007). Here G(x;ξ)

1+G(x;ξ)
→ 0 as G(x; ξ) → 0

and G(x;ξ)
1+G(x;ξ)

→ 1
2
as G(x; ξ) → 1, hence the CDF F (x; ξ) of the NCT-G family of

distributions can be defined as

F (x, ξ) = tan

[
π

2

G(x, ξ)

1 +G(x, ξ)

]
;x ∈ ℜ, ξ > 0. (2.1)

Differentiating the CDF defined in Equation (2.1), the PDF is f(x; ξ) of NCT-G
FD is presented as

f(x, ξ) =
π

2
sec2

[
π

2

G(x, ξ)

1 +G(x, ξ)

]
g(x, ξ)

(1 +G(x, ξ))2
;x ∈ ℜ. (2.2)

Reliability function
The Reliability function of NCT-G FD is given as

R(x, ξ) = 1− tan

[
π

2

G(x, ξ)

1 +G(x, ξ)

]
;x ∈ ℜ.

Hazard Function
The Hazard function of NCT-G FD is given as

H(x, ξ) =
π

2
sec2

[
π

2

G(x, ξ)

1 +G(x, ξ)

]
g(x, ξ)

(1 +G(x, ξ))2

[
1− tan

(
π

2

G(x, ξ)

1 +G(x, ξ)

)]−1

;x ∈ ℜ

The Quantile Function (QF)
The QF is useful in statistical analysis and modeling, as it provides a way to

estimate percentiles and other summary statistics of a probability distribution.
Suppose Q(p) is the smallest value of X for which the probability that X is less
than or equal to that value is at least p. The QF Q(p; ξ) of CDF F (x; ξ) of NCT-G
FD can be obtained as

Q(p; ξ) = G−1

[
2 tan−1 p

π − 2 tan−1 p

]
; p ∈ (0, 1) . (2.3)
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The random deviate function of NCT-G FD can be generated by

x = G−1

[
2 tan−1 u

π − 2 tan−1 u

]
;u ∈ (0, 1)

Using Equation (2.3) we can calculate the median, upper and lower quartile, quar-
tile deviation (QD), coefficient of QD, skewness, and kurtosis are presented in Table
1.

Table 1: Various measures based on quantiles of NCT-G FD.

Median G−1
[

2 tan−1(0.5)
π−2 tan−1(0.5)

]
Lower Quartile G−1

[
2 tan−1(0.25)

π−2 tan−1(0.25)

]
Upper Quartile G−1

[
2 tan−1(0.75)

π−2 tan−1(0.75)

]
QD 1

2

[
G−1

(
2 tan−1(0.75)

π−2 tan−1(0.75)

)
−G−1

(
2 tan−1(0.25)

π−2 tan−1(0.25)

)]
Coefficient of QD

[
G−1

(
2 tan−1(0.75)

π−2 tan−1(0.75)

)
−G−1

(
2 tan−1(0.25)

π−2 tan−1(0.25)

)]
[
G−1

(
2 tan−1(0.75)

π−2 tan−1(0.75)

)
+G−1

(
2 tan−1(0.25)

π−2 tan−1(0.25)

)]
Skewness (Kenney and Keeping 1962)

Q( 3
4
;ξ)−2Q( 1

2
;ξ)+Q( 1

4
;ξ)

Q( 3
4
;ξ)−Q( 1

4
;ξ)

Kurtosis (Moors, 1988)
Q( 7

8
;ξ)−Q( 5

8
;ξ)−Q( 1

8
;ξ)+Q( 3

8
;ξ)

Q( 3
4
;ξ)−Q( 1

4
;ξ)

3. General Properties of NCT-G FD

3.1. Linear form of NCT-G family of Distribution
One can derive useful linear expansions using exponentiated distributions. Specif-

ically, the exponentiated-G (Exp-G) distribution with power parameter z > 0 has
a CDF and PDF as

Gz(x;φ) = [G(x;φ)]z ;x ∈ ℜ. (3.1)

gz(x;φ) = zg(x;φ) [G(x;φ)](z−1) , x ∈ ℜ. (3.2)

Exponentiated distributions have well-known properties for a wide range of base-
line CDF G(x;φ), for more information (see Nadarajah and Gupta, 2007; Lemonte
et al., 2013). We can express the CDF of the NCT-G family of distributions as a
linear form using the following series expansions

tanx =
∞∑
n=1

B2n(−4)n(1− 4n)

(2n)!
x2n−1 = x+

x3

3
+

2x5

15
+ · · · ;−∞ < x < ∞.
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where B2n is so-called 2kth Bernoulli number.

(1 + x)b =
∞∑
n=0

(
b

n

)
xn = 1 +

b

1!
x+

b(b− 1)

2!
x2 +

b(b− 1)(b− 2)

3!
x3 + · · · ; |x| < 1.

The NCT-G family of distribution is

F (x, ξ) =
∞∑
i=1

(π
2

)2i−1 B2i(−4)i(1− 4i)

(2i)!
(G(x, ξ))2i−1 (1 +G(x, ξ))2i−1 . (3.3)

Further expanding Equation (3.3) using generalized binomial series expansion, the
expression for F (x; ξ) becomes

F (x, ξ) =
∞∑
i=1

∞∑
j=0

(π
2

)2i−1 B2i(−4)i(1− 4i)

(2i)!

(
2i− 1

j

)
(G(x, ξ))2i+j−1 . (3.4)

Using Equation (3.4) the PDF of the NCT-G family of distribution can be pre-
sented in the form of

f(x, ξ) = g(x, ξ)
∞∑
i=1

∞∑
j=0

Ωij (G(x, ξ))2i+j−2 . (3.5)

where Ωij =
(
π
2

)2i−1 B2i(−4)i(1−4i)(2i+j−1)
(2i)!

(
2i−1
j

)
.

3.2. Moments
The rth order moment (µ′

r) for the NCT-G family of distribution is

µ′
r =

∞∫
−∞

xrf(x)dx

=
∞∑
i=1

∞∑
j=0

Ωij

∞∫
−∞

xrg(x, ξ) (G(x, ξ))2i+j−2 dx.

Further moments can also be calculated using quantile function for more detail (see
Balakrishnan and Cohen, 1991) as Let G(x; ξ) = p ⇒ g(x; ξ)dx = dp; 0 ⩽ p ⩽ 1

µ′
r = E(Xr) =

∞∑
i=1

∞∑
j=0

Ωij

1∫
0

p2i+j−2Qr
G(p)dp, 0 < p < 1.
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where G(x; ξ) = p and QG(p) is the QF.

3.3. Moment Generating Function (MGF)
The MGF (MX(t)) for the NCT-G FD is

MX(t) =
∞∑
k=0

tk

k!
µ

′

r

=
∞∑
i=1

∞∑
j=0

∞∑
k=0

Ωij
tk

k!

∞∫
−∞

xkg(x, ξ) (G(x, ξ))2i+j−2 dx.

Also using the QF we can calculate the MGF as, Let G(x; ξ) = p ⇒ g(x; ξ)dx =
dp; 0 ⩽ p ⩽ 1

MX(t) =
∞∑
i=1

∞∑
j=0

∞∑
k=0

Ωij
tk

k!

1∫
0

p2i+j−2Qk
G(p)dp, 0 < p < 1.

where G(x; ξ) = p and QG(p) is the QF of the baseline distribution.

3.4. Incomplete Moments
The Incomplete moment of the random variable X is defined as Mr(y) =

y∫
0

xrf(x)dx. Therefore incomplete moment for NCT-G FD is given by

Mr(y) =
∞∑
i=0

∞∑
j=0

y∫
−∞

Ωijx
rg(x; ξ) (G(x, ξ))2i+j−2 dx.

Alternately, Mr(y) may be presented in terms of QF as

Mr(y) =
∞∑
i=0

∞∑
j=0

Ωij

G(y)∫
0

p2i+j−2Qr
G(p)dp; 0 < p < 1.

3.5. Mean Residual Life
The Mean residual life of the random variable T is defined as

M̄(x) =
1

F (x)

µ−
x∫

−∞

tf(t)dt

− x.
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Therefore Mean residual life for NCT-G FD is given by

M̄(x) =
1

F (x)

µ−
∞∑
i=0

∞∑
j=0

Ωij

x∫
−∞

tg(t; ξ) {G(t; ξ)}2i+j−2 dt

− x.

Alternately, M̄(x) may be expressed in term of quantile function as

M̄(x) =
1

F (x)

µ−
∞∑
i=0

∞∑
j=0

Ωij

G(y)∫
0

p2i+j−2QG(p)dp

− x,

where Ωij =
(
π
2

)2i−1 B2i(−4)i(1−4i)(2i+j−1)
(2i)!

(
2i−1
j

)
.

3.6. Inequality Measure
Lorenz and Bonferroni curves are utilized in the analysis of inequality measures

such as income and poverty across various disciplines, including demography, social
science, etc.

� Lorenz Curve: Lorenz curve is defined as LF (y) =
1
µ

y∫
−∞

xf(x)dx, hence Lorenz

curve for NCT-G family of distribution is given by

LF (y) =
1

µ

∞∑
i=1

∞∑
j=0

Ωij

y∫
−∞

xg(x, ξ) (G(x, ξ))2i+j−2 dx. (3.6)

Alternatively, it can be expressed in terms of QF as

LF (y) =
1

µ

∞∑
i=1

∞∑
j=0

Ωij

G(y)∫
−∞

p2i+j−2QG(p)dp.

� Bonferroni Curve: The Bonferroni curve is another measure of inequality

given by BF (y) =
LF (y)

F (y)
. From Equation (3.6), the Bonferroni curve for the

NCT-G family of distribution is obtained as

BF (y) =
1

µF (y)

∞∑
i=1

∞∑
j=0

Ωij

y∫
−∞

xg(x; ξ) (G(x, ξ))2i+j−2 dx.
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3.7. Entropy
Entropy is a metric used to quantify the level of variation or uncertainty present

in a random variable, and its utility extends across a broad range of fields including
engineering, econometrics, probability theory, and social and medical sciences.

i) Rényi’s Entropy
It was introduced by (Rényi, 1961), and is one such measure of entropy that can

be employed to estimate the extent of variability in uncertainty. This quantity can
be computed using a formula that captures the degree of uncertainty and variation
in the system under consideration. Additionally, entropy has been utilized in other
domains, such as financial mathematics, to assess the degree of uncertainty in
market variables.

Rρ(X) =
1

1− ρ
log

∞∫
−∞

{f(x)}ρ dx,

where ρ > 0 and ρ ̸= 1. Applying Taylor’s series expansion [f(x, ξ)]ρ can be pre-
sented in the form

[f(x, ξ)]ρ =
(π
2

)ρ

(g(x; ξ))ρ sec2ρ
[
π

2

G(x, ξ)

1 +G(x, ξ)

]
(1 +G(x, ξ))−2ρ ;x ∈ ℜ. (3.7)

Let us suppose the function W (s) = sec2ρ
[
π
2
s
]
, s ∈

(
0, 1

2

)
. By applying the Taylor

series to W (s) at a fixed points s0 ∈
(
0, 1

2

)
(say s0 = 0.25), we get

sec2ρ
[π
2
s
]
=

∞∑
k=0

ak(s− s0)
k =

∞∑
k=0

k∑
r=0

(
k
r

)
aks

r (−1)k−r sk−r
0 , (3.8)

where ak =
W (k)(s)|s=s0

k!
. Using Equation (3.8) in Equation (3.7) the expression for

[f(x; ξ)]ρ becomes

[f(x, ξ)]ρ =
(π
2

)ρ
(g(x; ξ))ρ

∞∑
k=0

k∑
r=0

(
k
r

)
ak (−1)k−r sk−r

0 (G(x, ξ))r (1 +G(x, ξ))−(2ρ+r) .

(3.9)
Further expanding Equation (3.9) using generalized binomial series expansion. The
expression for [f(x; ξ)]ρ becomes

[f(x, ξ)]ρ =
(π
2

)ρ
∞∑
k=0

k∑
r=0

∞∑
m=0

ak (−1)m+k−r sk−r
0

(
k
r

)(
(2ρ+r)+m−1

m

)
(G(x, ξ))r+m (g(x; ξ))ρ .

(3.10)
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Substituting Equation (3.10) in Rρ(X), the Rényi’s entropy for NCT-G family of
distribution is given by

Rρ(X) =
1

1− ρ
log

 ∞∑
k=0

k∑
r=0

∞∑
m=0

Ψij

∞∫
−∞

(g(x; ξ))ρ (G(x, ξ))r+m dx

 . (3.11)

where Ψkmr = ak (−1)m+k−r sk−r
0

(
π
2

)ρ(k
r

)(
(2ρ+r)+m−1

m

)
.

ii) q-Entropy
The q-entropy is given by

H(ρ) =
1

1− ρ
log

1− ∞∫
−∞

{f(x)}ρ dx

 ,

where ρ > 0 and ρ ̸= 1. Substituting [f(x, ξ)]ρ from Equation (3.10) into the
expression for H(ρ), the q-Entropy for NCT-G family of distribution is given by

H(ρ) =
1

1− ρ
log

1− ∞∑
k=0

k∑
r=0

∞∑
m=0

Ψkmr

∞∫
−∞

(g(x; ξ))ρ (G(x, ξ))r+m dx


where ρ > 0 and ρ ̸= 1.

iii) Shannon’s Entropy
The Shannon’s entropy with PDF f(x) is a particular case of the Rényi’s entropy

when ρ ↑ 1. Shannon entropies are defined as ηX = E(− log f(x)). For the NCT-G
family of distribution is given by

ηX = E

[
− log

{
∞∑
i=1

∞∑
j=0

Ωijg(x, ξ) (G(x, ξ))2i+j−2

}]
.

4. Estimation Method

4.1. Maximum Likelihood Estimation (MLE)
The parameters of the NCT-G family are estimated in this segment using the

method of MLE. Given random sample x1, ..., xn of size n with parameters vector ξ
from the NCT-G family of distribution and let u = ξT be (p×1) parameter vectors,
then the log density and total log-likelihood function respectively are expressed as

l(x; ξ) = log
(π
2

)
+ 2 log

[
sec

{
π

2

G(x; ξ)

1 +G(x; ξ)

}]
− 2 log (1 +G(x; ξ)) + log g(x; ξ).
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and

l(x, ξ) =n log
(π
2

)
+ 2

n∑
i=1

log

[
sec

{
π

2

G(xi; ξ)

1 +G(xi; ξ)

}]
− 2

n∑
i=1

log (1 +G(xi; ξ))+

n∑
i=1

log g(xi; ξ). (4.1)

Differentiating Equation (4.1), we get

∂l

∂ξ
=

π

2

n∑
i=1

tan

{
π

G(xi; ξ)

1 +G(xi; ξ)

}
G

′

k(xi; ξ)

(1 +G(xi; ξ))
2−2

n∑
i=1

G
′

k(xi; ξ)

(1 +G(xi; ξ))
+

n∑
i=1

g
′

k(xi; ξ)

g(xi; ξ)
,

where g
′

k(xi; ξ) = dg(xi;ξ)
dξ

, g
′′

k (xi; ξ) = d2g(xi;ξ)
d2ξ

, G
′

k(xi; ξ) = dG(xi;ξ)
dξ

and G
′′

k(xi; ξ) =
d2G(xi;ξ)

d2ξ
.

4.2. Method of Least Square Estimation (LSE)
This method was introduced by (Swain et al., 1988). Let x(1), ..., x(n) be the

random sample of size n from F (x, ξ) and the LSEs for the NCT-G FD can be
obtained by minimizing

K(X; ξ) =
n∑

i=1

[
F (x(i); ξ)−

i

n+ 1

]2
. (4.2)

with respect to ξ. The least-square estimates for the NCT-G family of distribution
also become

K(X; ξ) =
n∑

i=1

[
tan

{
π

2

G(x(i), ξ)

1 +G(x(i), ξ)

}
− i

n+ 1

]2
. (4.3)

Differentiating Equation (4.3) with respect to ξ we get

∂K

∂ξ
=π

n∑
i=1

[
tan

{
π

2

G(x(i); ξ)

1 +G(x(i); ξ)

}
− i

n+ 1

]
× sec2

[
π

2

G(x(i); ξ)

1 +G(x(i); ξ)

]
×

G
′

k(x(i); ξ)(
1 +G(x(i); ξ)

)2 ,
whereG

′

k(xi; ξ) =
dG(xi;ξ)

dξ
. By solving dK

dξ
= 0, we will get the LSEs of any particular

distribution.
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4.3. Cramer-von Mises Estimator (CVME)
CVMEs belong to the class of minimum distance estimators and exhibit lower

bias compared to other estimators in this category. They involve calculating the
difference between the estimates of the CDF and the empirical CDF. For the NCT-
G family of distribution parameters, the CVMEs are obtained by minimizing

C(X; ξ) =
1

12n
+

n∑
i=1

[
F (x(i); ξ)−

2i− 1

2n

]2
with respect to ξ. The LSEs for the NCT-G family of distribution also becomes

C(X; ξ) =
n∑

i=1

[
tan

{
π

2

G(x(i), ξ)

1 +G(x(i), ξ)

}
− 2i− 1

2n

]2
. (4.4)

Differentiating Equation (4.4) with respect to ξ we get

∂C

∂ξ
=π

n∑
i=1

[
tan

{
π

2

G(x(i), ξ)

1 +G(x(i), ξ)

}
− 2i− 1

2n

]
× sec2

[
π

2

G(x(i), ξ)

1 +G(x(i), ξ)

]
×

G
′

k(x(i); ξ)(
1 +G(x(i); ξ)

)2 .
where G

′

k(xi; ξ) =
dG(xi;ξ)

dξ
. By solving dC

dξ
= 0, we will get the CVMEs.

5. Special member of NCT-G FD
Generalization of several distributions can be made using the NCT-G FD. The

special distribution, a new class tangent IW distribution is introduced in this sec-
tion.

5.1. A New Class Tan Inverse Weibull (NCT-IW) Distribution
The CDF and PDF of the Inverse Weibull distribution are respectively given

by
G(x;α, δ) = exp(−αx−δ);x > 0, α, δ > 0,

and
g(x;α, δ) = αδx−δ−1exp(−αx−δ);x > 0, α, δ > 0.

The CDF and PDF of the NCT-IW distribution is given by

F (x;α, δ) = tan

[
π

2

exp(−αx−δ)

1 + exp(−αx−δ)

]
;x > 0. (5.1)
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f(x;α, δ) =
π

2
αδx−(δ+1) sec2

[
π

2

exp(−αx−δ)

1 + exp(−αx−δ)

]
exp(−αx−δ)

(1 + exp(−αx−δ))2
;x > 0.

(5.2)

R(x;α, δ) = 1− tan

[
π

2

exp(−αx−δ)

1 + exp(−αx−δ)

]
;x > 0.

and

H(x;α, δ) =
π

2
αδx−(δ+1) exp(−αx−δ)

(1 + exp(−αx−δ))2
sec2

[
π

2

exp(−αx−δ)

1 + exp(−αx−δ)

]
[
1− tan

(
π

2

exp(−αx−δ)

1 + exp(−αx−δ)

)]−1

;x > 0.

The QF and random deviate generation for the NCT-IW distribution respectively
given by

QX(p) =

[
− 1

α
log

(
2 tan−1 p

π − 2 tan−1 p

)]− 1
δ

. (5.3)

and

x =

[
− 1

α
log

(
2 tan−1 p

π − 2 tan−1 p

)]− 1
δ

.
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Figure 1: Shapes of PDF and HRF of NCT-IW distribution.
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5.2. Linear Expansion NCT-IW distribution
Using Equation (3.5), Equation (5.2) can be presented in the linear form as

f(x;α, δ) =
∞∑
i=0

∞∑
j=0

∆ijx
−(β+1) exp

{
−(2i+ j + 2)αx−δ

}
, (5.3)

where ∆ij = αδ
(
π
2

)2i−1 B2i(−4)i(1−4i)(2i+j−1)
(2i)!

(
2i− 1

j

)
.

5.3. Moments
Using the PDF defined in Equation (5.3), the rth order non-central moment

(µ
′
r) for the NCT-IW distribution can be presented as

µ
′

r =
∞∑
i=0

∞∑
j=0

∆∗
ij

Γ
(
δ−r
δ

)
[α{(2i+ j) + 2}]

δ−r
δ

; ∀δ > r.

where ∆∗
ij = α

(
π
2

)2i−1 B2i(−4)i(1−4i)(2i+j−1)
(2i)!

(
2i− 1

j

)
and Γ(.) is the gamma func-

tion.

5.4. Skewness and Kurtosis
Using the formula (5.3) to obtain the first four non-central moments, we can

use the following expressions

Mean = µ
′

1 =
∞∑
i=0

∞∑
j=0

∆∗
ij

Γ
(
δ−1
δ

)
[α{(2i+ j) + 2}]

δ−1
δ

; ∀δ > 1.,

µ
′

2 =
∞∑
i=0

∞∑
j=0

∆∗
ij

Γ
(
δ−2
δ

)
[α{(2i+ j) + 2}]

δ−2
δ

; ∀δ > 2,

µ
′

3 =
∞∑
i=0

∞∑
j=0

∆∗
ij

Γ
(
δ−3
δ

)
[α{(2i+ j) + 2}]

δ−3
δ

; ∀δ > 3,

µ
′

4 =
∞∑
i=0

∞∑
j=0

∆∗
ij

Γ
(
δ−4
δ

)
[α{(2i+ j) + 2}]

δ−4
δ

; ∀δ > 4.

To calculate the central moments one can use the following formulae µ1 = µ
′
1 ;

µ2 = µ
′
2 − µ

′2
1 ; µ3 = µ

′
3 − 3µ

′
1µ

′
2 + 2µ

′3
1 and µ4 = µ

′
4 − 4µ

′
3µ

′
2 + 6µ

′
2µ

′2
1 − 2µ

′4
1 .

Therefore skewness and kurtosis for the NCT-IW distribution can be calculated as



A new class of Tan-G Family of Distributions with Properties ... 407

β1 =
µ2
3

µ3
2
and β2 =

µ4

µ2
2
.

5.5. MGF
The MGF (MX(t)) for the NCT-IW distribution is

MX(t) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

tk∆∗
ij

k!

Γ
(
δ−r
δ

)
[α{(2i+ j) + 2}]

δ−r
δ

; ∀δ > r.

5.6. Incomplete moments
The incomplete moment for NCT-IW distribution is given by

Mr(y) =
∞∑
i=0

∞∑
j=0

∆ij

y∫
0

xr−(δ+1) exp
{
−(2i+ j + 2)αx−δ

}
dx

=
1

δ

∞∑
i=0

∞∑
j=0

∆ij

γ
(
δ−r
δ
, (2i+ j + 2)αy−δ

)
{(2i+ j + 2)α} δ−r

δ

where γ(.) incomplete gamma function.

5.7. Mean residual life function
The Mean residual life for NCT-IW distribution is given by

M̄(y) =
1

F (y)

µ−
∞∑
i=0

∞∑
j=0

∆ij

y∫
0

x−δ exp
{
−(2i+ j + 2)αx−δ

}− y

=
1

F (y)

[
µ− 1

δ

∞∑
i=0

∞∑
j=0

∆ij

γ
(
δ−1
δ
, (2i+ j + 2)αy−δ

)
{(2i+ j + 2)α} δ−1

δ

]
− y.

where γ(.) incomplete gamma function.

5.8. Entropy

i) Rényi’s Entropy
The Rényi’s entropy for NCT-IW distribution is given by

Rρ(X) =
1

1− ρ
log

 ∞∑
k=0

k∑
r=0

∞∑
m=0

Ψkmr (αδ)
ρ

∞∫
0

x−ρ(β+1) exp(−(r +m+ ρ)αx−δ)dx


=

1

1− ρ
log

 ∞∑
k=0

k∑
r=0

∞∑
m=0

Ψkmr
(αδ)ρ

δ

Γ
({

(ρ−1)(δ+1)
δ

+ 1
})

{(r +m+ ρ)α}
(ρ−1)(δ+1)

δ
+1

 .
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where Ψkmr = ak (−1)m+k−r sk−r
0

(
π
2

)ρ(k
r

)(
(2ρ+r)+m−1

m

)
.

ii) q-Entropy
The q-Entropy for NCT-IW distribution is given by

H(ρ) =
1

1− ρ
log

1−Ψkmr (αδ)
ρ

∞∫
0

x−ρ(δ+1) exp(−(r +m+ ρ)αx−δ)dx


=

1

1− ρ
log

1−Ψkmr
(αδ)ρ

δ

Γ
({

(ρ−1)(δ+1)
δ

+ 1
})

{(r +m+ ρ)α}
(ρ−1)(δ+1)

δ
+1


where ρ > 0, ρ ̸= 1 and Ψkmr = ak (−1)m+k−r sk−r

0

(
π
2

)ρ(k
r

)(
(2ρ+r)+m−1

m

)
.

iii) Shannon’s Entropy
The Shannon entropy for the NCT-IW distribution is given by

ηX = E

[
− log

{
∞∑
i=0

∞∑
j=0

∆ijx
−(δ+1) exp

{
−(2i+ j + 2)αx−δ

}}]
.

5.9. Inequality Measure

i) Lorentz Curve
The Lorenz curve for NCT-IW distribution is given by

LF (y) =
αδ

µ

∞∑
i=0

∞∑
j=0

∆ij

y∫
−∞

x−δ exp(−α(2i+ j + 2)x−δ)dx

=
α

µ

∞∑
i=0

∞∑
j=0

∆ij

γ
(
δ−1
δ
, (2i+ j + 2)αy−δ

)
{(2i+ j + 2)α} δ−1

δ

,

where γ(.) incomplete gamma function.

ii) Bonferroni Curve
The Bonferroni curve for the NCT-IW distribution is given by

BF (y) =
1

µF (y)

∞∑
i=0

∞∑
j=0

∆ij

y∫
−∞

x−δ exp(−α(2i+ j + 1)x−δ)dx

=
1

δµF (y)

∞∑
i=0

∞∑
j=0

∆ij

γ
(
δ−1
δ
, (2i+ j + 2)αy−δ

)
{(2i+ j + 2)α} δ−1

δ

,
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where γ(.) incomplete gamma function.

5.10. MLE for NCT-IW distribution
The log-likelihood function is given by

l(x;α, δ) = n log
(π
2
αδ

)
− (δ + 1)

n∑
i=1

log xi + 2
n∑

i=1

logsec

[
π

exp(−αx−δ
i )

1 + exp(−αx−δ
i )

]
− 2

n∑
i=1

log
(
1 + exp(−αx−δ

i )
)
− α

n∑
i=1

x−δ
i . (5.4)

Differentiating the Equation (5.4) we get

∂l

∂α
=

n

α
−π

2

n∑
i=1

x−δ
i exp(−αx−δ

i )(
1 + exp(−αx−δ

i )
)2 tan [π2 exp(−αx−δ

i )

1 + exp(−αx−δ
i )

]
+ 2

n∑
i=1

x−δ
i exp(−αx−δ

i )(
1 + exp(−αx−δ

i )
) −

n∑
i=1

x−δ
i

and

∂l

∂δ
=

n

δ
−

n∑
i=1

log xi +
πα

2

n∑
i=1

x−δ
i log(xi) exp(−αx−δ

i )(
1 + exp(−αx−δ

i )
)2 tan

[
π

2

exp(−αx−δ
i )

1 + exp(−αx−δ
i )

]
+ 2α

n∑
i=1

x−δ
i log(xi) exp(−αx−δ

i )(
1 + exp(−αx−δ

i )
) + α

n∑
i=1

x−δ
i log(xi).

The MLEs of α and δ are obtained by solving simultaneously the equations ∂l
∂α

= 0
and ∂l

∂δ
= 0.

5.11. Simulation study
We created samples from the quantile function for various parameter combi-

nations of the NCT-IW distribution. Using the maxLik R package developed by
(Henningsen & Toomet, 2011) we have calculated the MLEs for each sample using
the maxLik() function with the BFGS algorithm. This enables us to test parameter
estimation problems, such as the flatness or sharpness of the likelihood function
and provides estimates for the direction and size (overestimate or underestimate)
of the MLEs bias. The simulation employs 25 samples of sizes 10 to 250. The
procedure is repeated 1000 times, and the bias and mean square error (MSE) are
calculated. Also, we have provided the lower bound (LB) and upper bound (UB)
for estimated values with a 5% level of significance.
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Figure 2. MSE plots for α and δ.

Table 2: LB, UB for MLEs, Bias, and MSEs with initial values α = 0.5 and δ = 1.25.

n
α = 0.5 δ = 1.25

LB UB Bias MSE LB UB Bias MSE

10 0.1285 1.0131 -0.0163 0.0538 0.8598 2.4879 0.2224 0.2324
20 0.2222 0.8734 -0.0054 0.0274 0.9348 1.9224 0.0934 0.0739
30 0.2725 0.7893 0.0025 0.0171 0.9822 1.7593 0.0565 0.0432
40 0.2959 0.7380 0.0020 0.0129 0.9971 1.6540 0.0417 0.028
50 0.3091 0.7247 -0.0023 0.0110 1.0285 1.6330 0.0367 0.0249
60 0.3268 0.6954 -0.0061 0.0088 1.0360 1.5781 0.0358 0.0198
70 0.3397 0.6761 -0.0037 0.0076 1.0610 1.5251 0.0308 0.0163
80 0.3547 0.6653 -0.0047 0.0064 1.0586 1.5194 0.0229 0.0147
90 0.3505 0.6396 -3.00E-04 0.0053 1.0837 1.4989 0.0211 0.0116
100 0.3700 0.6389 -0.0039 0.0052 1.0870 1.4938 0.0218 0.0113
110 0.3749 0.6419 -4.00E-04 0.0046 1.0985 1.4707 0.0156 0.0091
120 0.3685 0.6300 -0.0012 0.0045 1.0960 1.4766 0.0143 0.0093
130 0.3730 0.6227 -0.0034 0.0039 1.0997 1.4553 0.0144 0.0087
140 0.3758 0.6185 -4.00E-04 0.0038 1.1095 1.4522 0.0143 0.0077
150 0.3885 0.6196 0.0021 0.0034 1.1056 1.4367 0.0084 0.0069
160 0.3923 0.6170 -4.00E-04 0.0032 1.1085 1.4279 0.0083 0.0064
170 0.3989 0.5984 -0.002 0.0027 1.1267 1.4119 0.0112 0.0057
180 0.4001 0.6008 -0.0024 0.0028 1.1177 1.4228 0.0116 0.006
190 0.3972 0.6020 -0.0011 0.0027 1.1273 1.4095 0.0106 0.0054
200 0.4090 0.6071 0.0021 0.0026 1.1222 1.4069 0.0074 0.0053
210 0.4049 0.5995 4.00E-04 0.0025 1.1341 1.4078 0.0086 0.0049
220 0.4077 0.5931 -0.0016 0.0022 1.1404 1.4118 0.0091 0.0046
230 0.4101 0.5955 -5.00E-04 0.0022 1.1443 1.3860 0.0099 0.0042
240 0.4120 0.5960 0.0018 0.0021 1.1384 1.3967 0.0055 0.0044
250 0.4118 0.5880 -0.0025 0.0020 1.1435 1.3839 0.0088 0.0041
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The experiment is summarized in Tables 2 and 3, which show the bias and MSEs
for each parameter along with LB and UB for MLEs. As can be seen, the MLE
method consistently estimates the parameters of the proposed model. Further, as
sample size increases, MLEs gradually approach the actual values of α and δ.

Table 3: LB, UB for MLEs, Bias, and MSEs with initial values α = 0.25 and
δ = 1.75.

n
α = 0.25 δ = 1.75

LB UB Bias MSE LB UB Bias MSE
10 0.0313 0.6271 -0.0049 0.024 1.1781 3.5613 0.3023 0.468
20 0.0715 0.4984 -0.0014 0.012 1.3271 2.753 0.1266 0.1556
30 0.1071 0.4366 -0.0065 0.0073 1.3929 2.4465 0.0908 0.0873
40 0.1157 0.4103 -0.0017 0.0057 1.4022 2.3857 0.0618 0.0656
50 0.1354 0.3911 -0.0039 0.0043 1.4548 2.2815 0.0559 0.0456
60 0.1404 0.3664 -0.0033 0.0035 1.4819 2.1821 0.0441 0.0349
70 0.1452 0.3674 -5.00E-04 0.0033 1.4854 2.1487 0.0368 0.0319
80 0.153 0.3632 0.0021 0.0029 1.4924 2.1183 0.0210 0.0264
90 0.1561 0.3524 -0.0012 0.0026 1.5201 2.1211 0.0288 0.0247
100 0.1663 0.3457 -3.00E-04 0.0022 1.5123 2.0659 0.0178 0.0205
110 0.1673 0.3422 -3.00E-04 0.0021 1.5202 2.0578 0.0227 0.0194
120 0.1735 0.3383 3.00E-04 0.0018 1.5479 2.0514 0.0186 0.0167
130 0.1750 0.3388 -0.0011 0.0018 1.5496 2.0119 0.0221 0.0153
140 0.1797 0.3357 2.00E-04 0.0016 1.5439 2.0256 0.013 0.0150
150 0.1790 0.3284 -0.0019 0.0015 1.5557 2.0171 0.0191 0.0142
160 0.1870 0.3262 -0.0011 0.0013 1.5665 1.986 0.0184 0.0119
170 0.1773 0.3176 -0.0012 0.0013 1.5632 2.0074 0.016 0.0121
180 0.1830 0.3263 -7.00E-04 0.0013 1.5672 1.9738 0.0132 0.0119
190 0.1836 0.3182 -0.0011 0.0012 1.5689 1.9828 0.0145 0.0110
200 0.1931 0.3185 9.00E-04 0.0011 1.5739 1.9571 0.007 0.0100
210 0.1905 0.3196 -2.00E-04 0.0011 1.5823 1.9547 0.0096 0.0095
220 0.1882 0.3179 2.00E-04 0.0011 1.5803 1.9534 0.009 0.0092
230 0.1899 0.3104 6.00E-04 9.00E-04 1.5883 1.9506 0.0072 0.0083
240 0.1938 0.3147 6.00E-04 9.00E-04 1.5959 1.9534 0.0068 0.0083
250 0.1972 0.3098 -2.00E-04 9.00E-04 1.5838 1.9401 0.0083 0.0083

5.12. Application
Employing two real data sets, we demonstrate the performance of the NCT-

IW distribution in this section. The data sets employed for the application of the
suggested distribution are given as follows
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Dataset-I

The dataset from (Clark and Gross, 1975) contains information on the relief
times of 20 patients who were administered an analgesic. An analgesic is a type of
medication that is commonly used to reduce pain, and the relief time refers to the
duration for which the patients experience relief from their pain after taking the
medication. The data are 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5,
1.2, 1.4, 3, 1.7, 2.3, 1.6, and 2.0.

Table 4: MLEs with SE (in parentheses) (dataset I)
Model parameter SE parameter SE parameter SE

NCT-IW(α, β) 6.6984 1.9636 3.8242 0.6632 – –
IW(λ, θ) 4.0175 0.706 6.0224 2.0083 – –
ArcTGE(α, λ, θ) 0.0000 1.2263 32.6645 4.397 2.1675 0.1147
ArcTLx(α, β, θ) 147.2664 44.0127 0.2871 0.2782 12.3869 9.6739
ASE(θ) 281.1502 4.8432 – – – –
ASEW(λ, θ, υ) 1.0488 0.1284 104.561 19.0921 3.1656 0.1303
NCW(λ, θ) 0.2505 0.081 2.293 0.3402 – –
TBXII(λ, ν, θ) 1.3952 0.1523 10.3398 4.4804 0.3949 0.2513
ECosW(β, λ, θ) 0.1902 0.0419 0.4638 0.1032 2.4299 0.0561
CosW(β, δ) 2.2183 0.3323 0.5655 0.0471 – –
SinIW(δ, θ) 5.3385 1.4594 2.8386 0.4882 – –
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Figure 3. KS and P-P plots for the dataset-I.
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Table 5: Some selection criteria and goodness-of-fit statistics (dataset-I).

Dist. -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)
NCT-IW 30.9715 34.9715 35.3603 0.1103 0.9682 0.0295 0.9803 0.1685 0.9969
IW 30.8174 34.8174 35.2062 0.102 0.9854 0.0266 0.988 0.1545 0.9984
ArcTGE 32.5499 38.5499 39.133 0.1367 0.8488 0.0501 0.8809 0.3109 0.929
ArcTLmx 35.6262 41.6262 42.2094 0.124 0.9182 0.0662 0.7806 0.5268 0.7175
ASE 170.4197 172.4197 172.6141 0.9232 0.0000 5.5995 0.0000 38.8183 0.0000
ASEW 31.1885 37.1885 37.7716 0.117 0.947 0.0363 0.9551 0.2096 0.9877
NCW 48.687 52.687 53.0757 0.1467 0.7829 0.1078 0.5521 0.78 0.494
Tan-BXII 31.0805 37.0805 37.6636 0.0917 0.996 0.0231 0.9944 0.1376 0.9994
ECosW 41.0062 47.0062 47.5893 0.1769 0.5586 0.179 0.3137 1.0983 0.3088
CosW 37.4854 41.4854 41.8742 0.177 0.5576 0.1279 0.4681 0.7563 0.5118
Sin-IW 31.1572 35.1572 35.546 0.1069 0.9763 0.0292 0.9813 0.1808 0.9949

We have compute goodness-of-fit statistics to analyze data sets under study and
the fitted models are compared using the log-likelihood value (-2logL), Akaike in-
formation criterion (AIC), Hannan-Quinn information criterion (HQIC), Anderson-
Darling (AD), Kolmogrov-Smirnov (KS) with p-values and Cramer-von Mises (CVM)
for more detail (see Johnson et al., 1995). All the essential computations are carried
out in R-software.
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Figure 4. Estimated PDF (left) and empirical vs estimated CDF (right)
(dataset-I).

Dataset-II
In this study, we consider the data used by (Tomer & Panwar, 2020), which

represent the concentration of glycosaminoglycans (GAG) in urine, measured in
milligrams per millimole of creatinine, and were collected from 40 children between
the ages of 12 and 17 years.
“5.8, 5.4, 5.7, 3.1, 6.4, 7.0, 5.7, 3.9, 9.4, 4.4, 5.0, 15.9, 3.7, 9.1, 4.7, 3.6, 3.7, 4.1,
7.9, 3.3,6.6, 1.9, 3.0, 5.7, 3.2, 3.8, 5.3, 3.2, 4.2, 6.0, 9.7, 3.4, 3.2, 2.5, 2.0, 4.0, 4.3,
2.8, 2.2, 4.7”
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For the comparison of fitting capability we have selected some models such as
inverse Weibull (IW), arctan generalized exponential (ArcTGE) (Chaudhary et al.,
2021), arctan Lomax (ArcTLx) (Chaudhary & Kumar, 2021), arcsine exponential
(ASE) (Rahman, 2021), TBXII (Souza et al., 2021), NCW (Ahmad et al., 2023),
EcosW (Muhammad et al., 2021), arcsine exponentiated Weibull (ASEW) (He et
al., 2020), CosW (Souza, 2019b) and Sin-IW (Souza et al., 2021). In Tables 4 and 6,
we have presented the estimated values of the parameters and their corresponding
standard error (SE in parentheses) of the models under study using the MLE
method. Similarly, in Tables 5 and 7, we have presented the model selection and
goodness of fit statistics such as log-likelihood, AIC, HQIC, KS, AD, and CVM
for both data sets. It has been observed that the suggested model NCT-IW has
the least statistics as compared to the models under study. Hence NCC-G is more
flexible and provides a good fit. Also, we have displayed the graphical illustrations
of the fitted models in Figures 3 and 5. These figures also verified that the NCT-IW
model can perform well as compared to candidate models.

Table 6: MLEs with SE (in parentheses) (dataset II)
Model parameter SE parameter SE parameter SE
NCT-IW(α, β) 25.712 3.654 2.3722 0.1641 – –
ArcTL(α, β, θ) 70.8335 7.3788 0.2679 0.1611 5.5074 2.1685
ASE(θ) 300.0999 7.3788 – – – –
NCW(λ, θ) 0.0793 0.027 1.6641 0.1767 – –
ECosW(β, λ, θ) 0.2824 0.0516 0.0603 0 1.9897 0.0615
CosW(β, δ) 1.6117 0.173 0.228 0.0186 – –
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Figure 5. KS and P-P plots (dataset-II).
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Figure 6. Estimated PDF (left) for all models and empirical vs estimated CDF
of NCT-IW (right) (dataset-II).

Table 7: Some selection criteria and goodness-of-fit statistics (dataset-II).

Dist. -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)
NCT-IW 170.3992 174.3992 175.6205 0.0885 0.9129 0.0561 0.8412 0.432 0.8156
ArcTL 172.3715 178.3715 180.2035 0.0899 0.9032 0.0493 0.8834 0.4402 0.8073
ASE 380.1219 382.1219 382.7326 0.8609 0.0000 10.0105 0.0000 60.1362 0.0000
NCW 196.8155 200.8155 202.0368 0.1388 0.4239 0.1178 0.5064 0.8929 0.4179
ECosW 179.81 185.81 187.642 0.1189 0.624 0.1681 0.3397 1.109 0.3045
CosW 174.3874 178.3874 179.6087 0.0963 0.8518 0.1015 0.5797 0.6701 0.5833

6. Conclusions and Future Work

We have developed a new class of distributions, called the Tan-G family, by
transforming the tangent function based on the ratio of CDF G(x) and 1 + G(x)
of a baseline distribution. The general properties of this family of distributions
have been provided. To introduce a member of this family having a reverse-j
or increasing or inverted bathtub-shaped hazard function, we used the Inverse
Weibull distribution as a baseline distribution. We have explored some statistical
properties of this member distribution, called NCT-IW. The parameters associated
with the new distribution have been estimated using the MLE method. To assess
the estimation procedure, we conducted a Monte Carlo simulation and found that
the biases and mean square errors decrease as the sample size increases, even for
small samples. We then applied the NCT-IW distribution to two real data sets.
Using model selection criteria and goodness-of-fit test statistics, we have empirically
demonstrated that the suggested model performs better than other existing models
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(most of which have more parameters) under study. Therefore, we expect that the
suggested family and its member distribution can be applied in various fields such
as medical science, reliability engineering, survival analysis, etc., and can be used
to generate new models in the future.

Further, this work can be extended to bivariate distribution and it can be
analyzed under the Bayesian approach. The estimates of the value of the best
Hausdorff approximation d (for more details, see Kyurkchiev & Markov (2015))
can be used in practice as one possible additional criterion in the ’saturation’ study
of sigmoidal cumulative function.
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