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Abstract: A graph G with q edges is said to be absolute mean graceful if there
is a one-to-one function f from V (G) to the set {0,±1,±2,±3, . . . ,±q} such that

when each edge xy is assigned the label
⌈ |f(x)−f(y)|

2

⌉
, then the resulting edge labels

are distinct. In this paper, the absolute mean graceful labeling of m-splitting and
degree splitting graphs of some graphs are investigated.
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1. Introduction and Preliminaries
All the graphs G = (V (G), E(G)) considered in this paper have p vertices and

q edges and are simple, finite, connected and undirected. We follow Harary [8] for
terminologies and notations related to graph theory.

Assigning values to the vertices or edges of graphs under certain conditions is
referred to as graph labeling. For various graph labeling problems and references
we follow the dynamic survey by Gallian [6].

Labeled graphs have wide range of applications. Some applications of labeled
graphs are found in [4, 11, 16, 17, 18]. The concept of labeled graphs is originated
by Rosa [14] to counter the conjecture due to Ringel [13]. Rosa [14] introduced
the β-valuation. It was named graceful by Golomb [7]. Several variants of graceful
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labeling are introduced like super graceful, odd graceful, k-graceful labeling etc.
Kaneria and Chudasama [9] introduced absolute mean graceful labeling with the
flavor of graceful labeling, which is defined as follows.

Definition 1.1. [9] A function f is said to be an absolute mean graceful labeling
of a graph G with q edges, if f is a one-to-one function from V (G) to the set
{0,±1,±2,±3, . . . ,±q} such that when each edge xy of G has assigned the label

f ∗(xy) =
⌈ |f(x)−f(y)|

2

⌉
, the set of resulting edge labels is {1, 2, 3, . . . , q}. A graph

G that admits absolute mean graceful labeling is called an absolute mean graceful
graph.

From the above definition we observe that,

� For any absolute mean graceful graph, the edge label q can be produced either
when the labeled vertices q and −q are adjacent or the labeled vertices q and
−(q − 1) are adjacent.

� If a set of vertex labels (x1, x2, . . . , xj) form an absolute mean graceful labeling
for G, then so do the labels (−x1,−x2, . . . ,−xj), where j = 1, 2, . . . , p.

Kaneria and Chudasama [5, 9] investigated absolute mean graceful labeling in
the context of duplication of graph elements and some graphs families. Kaneria et
al. [10] have proved various absolute mean graceful graphs in the context of path
union of graphs. Akbari et al. [2] have proved several jelly fish and jewel related
graphs are absolute mean graceful. While the same authors discussed absolute
mean graceful labeling of subdivision graphs of various graphs in [3].

In this paper we discuss absolute mean graceful labeling in the context of m-
splitting and degree splitting graphs of some graphs. First we will provide some
definitions which are useful for the discussion.

Definition 1.2. [6] The bistar is a graph formed by joining the apex vertices of
two copies of K1,n by an edge, and it is denoted by Bn,n.

Definition 1.3. [15] For a graph G, the splitting graph denoted by S ′(G) is formed
by adding a new vertex u′ to each vertex u so that u′ is adjacent to every vertex
that is adjacent to u in G.

Definition 1.4. [1] The m-splitting graph of a graph G denoted by Splm(G) is
formed from G by adding new m vertices, say w1, w2, . . . , wm to each vertex w of
a graph G, so that wj, 1 ≤ j ≤ m is adjacent to every vertex that is adjacent to w
in G.
By the above definition, 1-splitting graph is a splitting graph.
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Following are some observations regarding m-splitting graphs analogous to split-
ting graphs [15].

� Splm(G) has p = p1(1 +m) vertices and q = q1(1 + 2m) edges, where p1 and
q1 denotes the number of vertices and edges of G respectively.

� If G has k triangles then Splm(G) has (3m+ 1)k triangles.

� Let H = Splm(G) and w ∈ V (G) and w1, w2, . . . , wm are added vertices
corresponding to w. Then dH(w) = (m + 1)dG(w) and dH(wj) = dG(w), for
each j = 1, 2, . . . ,m.

Definition 1.5. [12] Consider a graph G with V (G) = H1 ∪H2 ∪ . . . Hl ∪R where
each set Hi is a set of all vertices having same degree with atleast two vertices and

R = V (G) \
l⋃

i=1

Hi. The degree splitting graph of a graph G denoted by DS(G) is

formed from G by adding vertices w1, w2, . . . , wl and joining to each vertex of Hi

for 1 ≤ i ≤ l.

2. Main Results

Theorem 2.1. Splm(Pn) is an absolute mean graceful graph for all m ≥ 1 and
n ≥ 2.
Proof. Consider Pn with vertex set {wi : 1 ≤ i ≤ n}. To obtain Splm(Pn)
add wj

1, w
j
2, . . . , w

j
n vertices corresponding to w1, w2, . . . , wn, where 1 ≤ j ≤ m. If

G = Splm(Pn) then |V (G)| = p = n(1 +m) and |E(G)| = q = (n− 1)(1 + 2m).
To define vertex labeling function f : V (G) → {0,±1,±2,±3, . . . ,±q}, consider
following two cases.

Case-1: n is odd

f(wi) = (−1)i+1(q − (i− 1)); 1 ≤ i ≤ n,

f(wj
i ) =

{
q − 2n+ 3− 3(i− 1)− (4n− 4)(j − 1); i = 1, 3, . . . , n, 1 ≤ j ≤ m,

−q + 2n+ 3(i− 2) + (4n− 4)(j − 1); i = 2, 4, . . . , n− 1, 1 ≤ j ≤ m.

Case-2: n is even

f(wi) = (−1)i+1(q − (i− 1)); 1 ≤ i ≤ n,

f(wj
i ) =

{
q − 2n+ 3− 3(i− 1)− (4n− 4)(j − 1); i = 1, 3, . . . , n− 1, 1 ≤ j ≤ m,

−q + 2n+ 3(i− 2) + (4n− 4)(j − 1); i = 2, 4, . . . , n, 1 ≤ j ≤ m.
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The vertex labeling function f defined above is one-to-one in both cases and induced
edge labels are 1, 2, 3, . . . , q. Hence Splm(Pn) is an absolute mean graceful graph
for all m ≥ 1 and n ≥ 2.

Illustration 2.1. Absolute mean graceful labeling of Spl3(P6) is shown in the
Figure 1.
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Figure 1: Spl3(P6) and its absolute mean graceful labeling

Corollary 2.1. S ′(Pn) is an absolute mean graceful graph for all n ≥ 2.
Proof. If we take m = 1 then by Theorem 2.1 the result holds.

Theorem 2.2. Splm(K1,n) is an absolute mean graceful graph for all m,n ≥ 1.
Proof. Consider K1,n with vertex set {u0, ui : 1 ≤ i ≤ n}, where u0 is called
apex vertex and u1, u2, . . . , un are pendant vertices. To obtain Splm(K1,n) add
uj
0, u

j
1, u

j
2, . . . , u

j
n vertices corresponding to u0, u1, u2, . . . , un, where 1 ≤ j ≤ m.

If G = Splm(K1,n) then |V (G)| = p = (n+1)(1+m) and |E(G)| = q = n(1+ 2m).
We define vertex labeling function f : V (G) → {0,±1,±2,±3, . . . ,±q} by

f(u0) = q,

f(u1+i) = −n+ 2i; 0 ≤ i ≤ n− 1,

f(uj
0) = n+ 2n(j − 1); 1 ≤ j ≤ m,

f(uj
i ) = −2nm+ 2nj − 3n+ 2i− 2; 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The vertex labeling function f defined above is one-to-one and induced edge labels
are 1, 2, 3, . . . , q. Hence Splm(K1,n) is an absolute mean graceful graph for all
m,n ≥ 1.
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Illustration 2.2. Absolute mean graceful labeling of Spl3(K1,4) is shown in the
Figure 2.
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Figure 2: Spl3(K1,4) and its absolute mean graceful labeling

Corollary 2.2. S ′(K1,n) is an absolute mean graceful graph for all n ≥ 1.
Proof. If we take m = 1 then by Theorem 2.2 the result holds.

Theorem 2.3. S ′(Bn,n) is an absolute mean graceful graph for all n ≥ 2.
Proof. Consider V (Bn,n) = {u0, ui, v0, vi : 1 ≤ i ≤ n}, where vi and ui are pendant
vertices, where 1 ≤ i ≤ n. Suppose u′

0, u
′
i, v

′
0 and v′i be the vertices corresponding

to u0, ui, v0 and vi, where 1 ≤ i ≤ n, which are added to obtain S ′(Bn,n).
If G = S ′(Bn,n) then |V (G)| = p = 4 + 4n and |E(G)| = q = 3 + 6n.
To define vertex labeling function f : V (G) → {0,±1,±2,±3, . . . ,±q}, consider
following two cases.
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Case-1: n is even

f(u0) = 2n+ 5,

f(v0) = 6n+ 3,

f(u′
0) = 2n+ 3,

f(v′0) = 6n+ 1,

f(u′
1) = −2n+ 3,

f(u′
2+i) = 4n+ 3− 2i; 0 ≤ i ≤ n− 2,

f(u1+i) = −2n+ 11 + 4i; 0 ≤ i ≤ n− 4

2
,

f(un
2
+i) = −4n− 1 + 4i; 0 ≤ i ≤ n

2
,

f(v′i) = −6n− 2 + 2(i− 1); 1 ≤ i ≤ n,

f(vi) = −4n− 3 + 4(i− 1); 1 ≤ i ≤ n.

Case-2: n is odd

f(u0) = 2n+ 5,

f(v0) = 6n+ 3,

f(u′
0) = 2n+ 3,

f(v′0) = 6n+ 1,

f(u′
1) = f(v′0)− 2,

f(u′
2+i) = 4n+ 3− 2i; 0 ≤ i ≤ n− 2,

f(u1+i) = −2n+ 13 + 4i; 0 ≤ i ≤ n− 5

2
,

f(un−1
2

+i) = −4n− 1 + 4i; 0 ≤ i ≤ n+ 1

2
,

f(v′i) = −6n− 2 + 2(i− 1); 1 ≤ i ≤ n,

f(vi) = −4n− 3 + 4(i− 1); 1 ≤ i ≤ n.

The vertex labeling function f defined above is one-to-one in both cases and induced
edge labels are 1, 2, 3, . . . , q. Hence S ′(Bn,n) is an absolute mean graceful graph for
all n ≥ 2.

Illustration 2.3. Absolute mean graceful labeling of S ′(B5,5) is shown in the
Figure 3.
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Figure 3: S ′(B5,5) and its absolute mean graceful labeling

Theorem 2.4. DS(Pn) is an absolute mean graceful graph for all n ≥ 4.
Proof. Consider Pn with vertex set {xi : 1 ≤ i ≤ n}. Here V (Pn) = H1∪H2,where
H1 = {x1, xn} and H2 = {xi : 2 ≤ i ≤ n − 1}. To construct DS(Pn) from Pn, we
add vertices w1 and w2 corresponding to H1 and H2 respectively. If G = DS(Pn)
then |V (G)| = p = 2 + n and |E(G)| = q = 2n− 1.
To define vertex labeling function f : V (G) → {0,±1,±2,±3, . . . ,±q}, consider
following two cases.

Case-1: n is odd

f(w1) = 2n− 1,

f(w2) = −3,

f(xi) =

{
2n− 1− 2i; i = 1, 3, . . . , n,

−2n+ 2i− 3; i = 2, 4, . . . , n− 1.

Case-2: n is even

f(w1) = 2n− 1,

f(w2) = −5,

f(xi) =

{
2n− 1− 2i; i = 1, 3, . . . , n− 1,

−2n+ 2i− 3; i = 2, 4, . . . , n.
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The vertex labeling function f defined above is one-to-one in both cases and induced
edge labels are 1, 2, 3, . . . , q. Hence DS(Pn) is an absolute mean graceful graph for
all n ≥ 4.

Illustration 2.4. Absolute mean graceful labeling of DS(P7) is shown in the
Figure 4.
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Figure 4: DS(P7) and its absolute mean graceful labeling

Theorem 2.5. DS(Bn,n) is an absolute mean graceful graph for all n ≥ 2.
Proof. Let V (Bn,n) = H1 ∪H2, where H1 = {u, v} and H2 = {vi, ui : 1 ≤ i ≤ n}.
To construct DS(Bn,n) from Bn,n, we add vertices w1 and w2 corresponding to H1

and H2 respectively. If G = DS(Bn,n) then |V (G)| = p = 4+2n and |E(G)| = q =
3 + 4n.
We define vertex labeling function f : V (G) → {0,±1,±2,±3, . . . ,±q} by

f(u) = 4n+ 1,

f(v) = 4n− 3,

f(w1) = 4n+ 3,

f(w2) = −5,

f(ui) = −4n+ 4i− 7; 1 ≤ i ≤ n,

f(vi) = 4n− 4i− 1; 1 ≤ i ≤ n.
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The vertex labeling function f defined above is one-to-one and induced edge labels
are 1, 2, 3, . . . , q. Hence DS(Bn,n) is an absolute mean graceful graph for all n ≥ 2.

Illustration 2.5. Absolute mean graceful labeling of DS(B6,6) is shown in the
Figure 5.
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Figure 5: DS(B6,6) and its absolute mean graceful labeling

Theorem 2.6. DS(K2,n) is an absolute mean graceful graph for all n ≥ 2.
Proof. Let V (K2,n) = H1 ∪H2, where H1 = {u1, u2} and H2 = {vi : 1 ≤ i ≤ n}.
Now, we consider following two cases.

Case-1: n = 2
In order to obtain DS(K2,2) from K2,2, we add a vertex w.
We define vertex labeling function f : V (G) → {0,±1,±2,±3, . . . ,±q} by

f(w) = −6,

f(u1) = 8,

f(u2) = −8,

f(v1) = 0,

f(v2) = 4.
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Case-2: n > 2
In order to obtainDS(K2,n) fromK2,n, we add vertices w1 and w2 correspond-
ing to H1 and H2 respectively. If G = DS(K2,n) then |V (G)| = p = 4 + n
and |E(G)| = q = 2 + 3n.
We define vertex labeling function f : V (G) → {0,±1,±2,±3, . . . ,±q} by

f(w1) = 3n+ 2,

f(u1) = −f(w1),

f(u2) = −3n,

f(vi) = 3n+ 2− 4i; 1 ≤ i ≤ n,

f(w2) = n− 1.

The vertex labeling function f defined above is one-to-one in both cases and induced
edge labels are 1, 2, 3, . . . , q. Hence DS(K2,n) is an absolute mean graceful graph
for all n ≥ 2.

Illustration 2.6. Absolute mean graceful labeling of DS(K2,4) is shown in the
Figure 6.
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Figure 6: DS(K2,4) and its absolute mean graceful labeling
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3. Conclusion
We have investigated new results on absolute mean graceful labeling in this

paper. Obtaining similar results for other graph labeling techniques and in the
context of different graph operations remains an open area of research.
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