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Abstract: Let H be a T2 hypergraph with n ≥ 4. The sum connectivity matrix
of H, denoted by SC(H) is defined as the square martix of order n, whose (i, j)th

entry is 1√
di+dj

if xi and xj are adjacent and zero for other cases. The sum connec-

tivity energy SCE(H) of H is the sum of the absolute values of the eigenvalues of
SC(H). It is shown that, for a T2 hypergraph ⌊SCE(H)⌋ ≤

⌊
1 + n−

√
n
δ

⌋
,where

δ is the minimum degree of H.
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tivity energy.

2020 Mathematics Subject Classification: 05C65, 05C50.

1. Introduction

The basic definitions and terminologies of a hypergraph are not given here
and we refer to it [1] and [5]. The concept of hypergraph was introduced by Berge
in 1967. In 2017, Seena V and Raji Pilakkat introduced Hausdorff hypergraph,
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T0 hypergraph and T1 hypergraph [2] and [3]. Based on [2] and [3] S. Sujitha
and D. Sharmila introduce T2 hypergraph and studied Adjacency matrix, Randic
matrix, Zagreb matrix and its corresponding energies [4]. In 2010, Bo zhou and
Nenad Trinajstic studied the sum connectivity energy of a graph [6] and later the
same concept was studied by many authors. In this article, we determine the sum
connectivity matrix and sum connectivity energy of a T2 hypergraph. Throughout
this article, H is a connected T2 hypergraph with order n and size m, where the
order and size are the minimum number of vertices and edges needed to define a T2

hypergraph. The degree of a vertex x ∈ X denoted by d(x) is the number of edges
that contain the vertex x. The maximum degree of the hypergraph H is denoted
by ∆(H) or ∆. The minimum degree of the hypergraph H is denoted by δ(H) or
δ. The following definitions and theorems are used in sequel.

Definition 1.1. [4] A hypergraph H = (X,D) is said to be a T2 hypergraph if for
any three distinct vertices u, v and w in X, there exist a hyperedge containing u
and v but not w and another hyperedge containing w but not u and v.

Example 1.2.
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Figure 1: T2 Hypergraph

Figure 1 is a T2 Hypergraph with vertices x1, x2, x3, x4, x5, x6 and hyperedges
D1, D2, D3, D4. It is easily seen that, for every three vertices xi, xj and xk there
exist a hyperedge containing xi and xj but not xk and a hyperedge containing xk

but not xi and xj.

Result 1.3. [4]

(i) The minimum number of edges needed to define a T2 hypergraph is
[
2n+5

4

]
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where n is the number of vertices.

(ii) For a T2 hypergraph H, the minimum degree δ = δ(H) = 2.

(iii) For a T2 hypergraph H, rank r(H) =
[
2n+1

4

]
where n ≥ 5. Here r(H) is the

largest cardinality of its edges.

Definition 1.4. [6] The sum connectivity matrix is defined by

SC(H) =

{
1√

di+dj
if xixj ∈ D

0 otherwise
where di and dj are degrees of the vertices xi and xj.

Definition 1.5. [6] The sum connectivity energy is defined by SCE(H) =
n∑

i=1

|λi|

where λ1, λ2, ..., λn are the sum connectivity eigen values of H.

2. Sum connectivity matrix and energy of a T2 Hypergraph

In this section, we find the energy of a T2 hypergraph using sum connectivity
matrix.

Example 2.1. Consider a T2 hypergraph given in Figure 2 with 12 vertices and 7
edges.
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Figure 2: T2 Hypergraph

Sum connectivity matrix of H is given by
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SC(H) =
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The sum connectivity eigen values of the above T2 hypergraph is(

3.0583 1.3167 0.4483 .4212 −0.408 −.5 −1.2649 −1.3475
1 1 1 1 4 2 1 1

)
Therefore, the sum connectivity energy SCE(H) =

n∑
i=1

|λi|= 10.4889

⌊SCE(H)⌋ =
⌊
1 + n−

√
n
δ

⌋
= 10

The below table presents the sum connectivity energy of a T2 hypergraph in relation
with order.

Vertices SCE(H)
⌊
1 + n−

√
n
δ

⌋
4 2.5 3

5 3.17 4

6 4.35 5

7 5.43 6

8 6.53 7

9 7.47 7

10 8.14 8

11 9.13 9

12 10.49 10

13 11.41 11

14 12.58 13

15 13.98 13
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16 14.15 14

17 14.5 15

18 15.45 16

19 16.38 16

20 16.16 17

... ... ...

n ...
⌊
1 + n−

√
n
δ

⌋
Table 1: Sum connectivity energy of a T2 hypergraph

Result 2.2. Let H be a T2 hypergraph with n ≥ 4. Then⌊
n∑

i=1

λ2
i

⌋
≤ δn− δ2. Equality holds only if n = 14 and 18 in H.

Proof. From the below Table 2, we can see that

⌊
n∑

i=1

λ2
i

⌋
≤ δn− δ2.

Vertices
n∑

i=1

λ2
i

⌊
n∑

i=1

λ2
i

⌋
δn− δ2

4 3 3 4
5 3.5 3 6
6 4.9 4 8
7 6.1 6 10
8 8.73 8 12
9 10.4 10 14
10 13.2 13 16
11 13.03 13 18
12 16.03 16 20
13 18.39 18 22
14 24.04 24 24
15 24.5 24 26
16 26.17 26 28
17 28.32 28 30
18 32.32 32 32
19 31.6 31 34
20 35.74 35 36
n ... ... ...

Table 2: Value of δn− δ2
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3. Bounds of the sum connectivity energy of a T2 Hypergraph

In this section, we discover the upper and lower bounds of the T2 hypergraph
using sum connectivity matrix.

Result 3.1. Let H be a T2 hypergraph with n ≥ 4. Then ⌊λ1⌋ ≤
⌈

n√
7δ

⌉
where λ1

is the largest eigen value of H. Equality holds only if n = 10 in H.

Observation 3.2. Let H be a T2 hypergraph with n ≥ 4. Then ⌈λ1⌉ =
⌈

n√
7δ+1

⌉
where λ1 is the largest eigen value of H. We can easily observe that, when n=10,

⌊λ1⌋ =
⌈

n√
7δ+1

⌉
and when n=16, ⌈λ1⌉ =

⌊
n√
7δ+1

⌋
Theorem 3.3. Let H be a T2 hypergraph with n ≥ 4, n ̸= 10 and 16. Then

SCE(H) >
⌈

n√
7δ+1

⌉
− 1− (n− δ) (detSC(H))

1
n−δ⌈

n√
7δ+1

⌉
Proof. From the Cauchy - Schwarz inequality,
n−1∑
i=2

√
λi ≤

√
(
n−1∑
i=2

λi)(n− 2)

n−1∑
i=2

√
λi ≤

√
(SCE(H)− λ1 − λn)(n− 2)

<
√

(SCE(H)− ⌈λ1⌉ − ⌈λn⌉)(n− 2)√
(SCE(H)−

⌈
n√
7δ+1

⌉
+ 1 ≥

n−1∑
i=2

√
λi

√
n−δ√

(SCE(H)−
⌈

n√
7δ+1

⌉
+ 1 >

(n−δ)(
√

λ2λ3...λn−1)
1

n−2

√
n−δ

SCE(H) >
⌈

n√
7δ+1

⌉
− 1− (n− δ) (detSC(H))

1
n−2⌈

n√
7δ+1

⌉
Illustration 3.4. Consider a T2 hypergraph with n = 12. SCE(H) = 10.4889,

and
⌈

n√
7δ+1

⌉
= 4. Here, SCE(H)=10.4889 >

⌈
n√
7δ+1

⌉
− 1− (n− δ) (detSC(H))

1
n−2⌈

n√
7δ+1

⌉ =

4− 1− 10× 0.6242
4

= 1.4395.

Theorem 3.5. Let H be a T2 hypergraph with n ≥ 4. Then√
δ(n− δ) < SCE(H) <

√
nδ(n− δ).

Proof. From the Cauchy - Schwarz inequality,

(
n∑

i=2

|λi|)2 ≤ n
n∑

i=2

|λi|2 < n

⌊
n∑

i=2

|λi|2
⌋
< nδ(n− δ)

SCE(H) <
√

nδ(n− δ)
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(SCE(H))2 = (
n∑

i=2

|λi|)2 >
n∑

i=2

|λi|2 >
⌊

n∑
i=2

|λi|2
⌋
< nδ(n− δ).

Illustration 3.6. Consider a T2 hypergraph with n = 12. SCE(H) = 10.4889,
δn− δ2 = 20. Here,

√
20 = 4.472 < SCE(H) = 10.4889 <

√
240 = 15.4919.

Theorem 3.7. Let H be a T2 hypergraph with n ≥ 4, n ̸= 5 and 6. Then

n(detSC(H))
1
n < SCE(H) < n(δn−δ2)2

(detSC(H))
1
n
.

Proof. From an arithmetic and a geometric mean inequality,
(

n∑
i=1

|λi|)

n
≥ (

∏n
i=1 |λi|)

1
n = (detSC(H))

1
n

SCE(H) > n(detSC(H))
1
n

We have |λ1| > (detSC(H))
1
n

|λ1|
n∑

i=1

|λi| > (detSC(H))
1
n

n∑
i=1

|λi|

Since |λi| < |λ1| ∀i
n |λ1|2 > (detSC(H))

1
nSCE(H)

SCE(H)< n|λ1|2

(detSC(H))
1
n
<

n

⌊
n∑

i=1
λ2
i

⌋2

(detSC(H))
1
n

SCE(H) < n(δn−δ2)2

(detSC(H))
1
n

n(detSC(H))
1
n < SCE(H) < n(δn−δ2)2

(detSC(H))
1
n
.

Illustration 3.8. Consider a T2 hypergraph with n = 12. SCE(H) = 10.4889,

ndet(SC(H))
1
n = 12 × 0.6752 = 8.1024 < SCE(H) = 10.4889 < n(δn−δ2)

detSC(H)
1
n

=

355.45.

Theorem 3.9. Let H be a T2 hypergraph with n ≥ 4. Then
SCE(H) <

√
n+ 13

5
+ (n− δ)

√
δ.

Proof. From the Cauchy Schwarz inequality,
n∑

i=3

λi ≤
√
(

n∑
i=3

λ2
i )(

n∑
i=3

1)

SCE(H)-(λ1 + λ2) ≤
√

(n− 2)[
n∑

i=1

λ2
i − λ2

1 − λ2
2]

<

√
(n− δ)[

⌊
n∑

i=1

λ2
i

⌋
− λ2

1 − λ2
2]

SCE(H)<
√

(n− δ)[(δn− δ2)− λ2
1 − λ2

2] + λ1 + λ2

Since λ1 + λ2 ≤
√
n+ 13

5
,
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SCE(H)<
√
n+ 13

5
+
√

(n− δ)[(δn− δ2)− λ2
1 − λ2

2]

Let h(s,t)=
√
n+ 13

5
+
√

(n− δ)[(δn− δ2)− s2 − t2]
Differentiate Partially with respect to s and t,
hs =

−s
√
n−δ√

(δn−δ2)−s2−t2

ht =
−t

√
n−δ√

(δn−δ2)−s2−t2

Stationary points are given by hs = 0 and ht = 0
hs = 0 ⇒ −s

√
n−δ√

(δn−δ2)−s2−t2
= 0 ⇒ s = 0

ht = 0 ⇒ −t
√
n−δ√

(δn−δ2)−s2−t2
= 0 ⇒ t = 0

hss = −
√
n−δ(δn−δ2−t2)

(δn−δ2−s2−t2)
3
2

htt = −
√
n−δ(δn−δ2−s2)

(δn−δ2−s2−t2)
3
2

hst = −
√
n−δ(δn−δ2−t2)

(δn−δ2−s2−t2)
3
2

At(0,0), hss = htt = − 1√
δ
< 0, hst = 0

Also, hsshtt − (hst)
2 > 0

Therefore,h(0,0)=
√
n+ 13

5
+ (n− δ)

√
δ

Hence, SCE(H) <
√
n+ 13

5
+ (n− δ)

√
δ.

Illustration 3.10. Consider a T2 hypergraph with n = 12. SCE(H) = 10.4889,
Here, SCE(H) = 10.4889 <

√
n+ 13

5
+ (n− δ)

√
δ =

√
12 + 2.6 + 10

√
2 = 20.2062.

Theorem 3.11. Let H be a T2 hypergraph with n ≥ 4. Then

SCE(H) <
⌈

n√
7δ

⌉
+

(n−1)(
⌈

n√
7δ

⌉
)2

(detSC(H))
1
n
.

Proof. We have ⌊λ1⌋ ≤
⌈

n√
7δ

⌉
⌈

n√
7δ

⌉
≥ ⌊λ1⌋ > [detSC(H)]

1
n⌈

n√
7δ

⌉ n∑
i=2

|λi| > [detSC(H)]
1
n

n∑
i=2

|λi|⌈
n√
7δ

⌉
> |λi| ∀i = 2, 3, ...n

(n− 1)(
⌈

n√
7δ

⌉
)2 > [detSC(H)]

1
n (SCE(H)− λ1)

(n−1)(
⌈

n√
7δ

⌉
)2

(detSC(H))
1
n

> (SCE(H)− λ1) > (SCE(H)− ⌊λ1⌋)

SCE(H) <
⌈

n√
7δ

⌉
+

(n−1)(
⌈

n√
7δ

⌉
)2

(detSC(H))
1
n
.

Illustration 3.12. Consider a T2 hypergraph with n = 12. SCE(H) = 10.4889
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and
⌈

n√
7δ

⌉
= 4. Clearly, SCE(H) = 10.4889 <

⌈
n√
7δ

⌉
+

(n−1)(
⌈

n√
7δ

⌉
)2

(detSC(H))
1
n

= 4+ 11×42

.6752
=

264.6635.

Theorem 3.13. Let H be a T2 hypergraph with n ≥ 4, n ̸= 5 and 6. Then

SCE(H) <
n
⌈

n√
7δ+1

⌉δ
(detSC(H)

1
n )
.

Proof. From an arithmetic and a geometric mean inequality,
(

n∑
i=1

|λi|)

n
≥ (

∏n
i=1 |λi|)

1
n = detSC(H)

1
n

⌈λ1⌉ > |λ1| > detSC(H)
1
n

⌈λ1⌉
n∑

i=1

|λi| > detSC(H)
1
n

n∑
i=1

|λi|

⌈λ1⌉
n∑

i=1

|λi| = ⌈λ1⌉ [|λ1|+ |λ2|+ ... |λn|] > n ⌈λ1⌉2 = n
⌈

n√
7δ+1

⌉δ
n
⌈

n√
7δ+1

⌉δ
> (detSC(H)

1
n )SCE(H)

SCE(H) <
n
⌈

n√
7δ+1

⌉δ
(detSC(H)

1
n )
.

Illustration 3.14. Consider a T2 hypergraph with n = 12. SCE(H) = 10.4889,

and
⌈

n√
7δ+1

⌉
= 4, detSC(H)

1
n=.6752, Hence SCE(H) = 10.4889 <

n
⌈

n√
7δ+1

⌉δ
(detSC(H)

1
n )

=

12×42

.6752
= 284.3602.

Theorem 3.15. Let H be a T2 hypergraph with n ≥ 4, n ̸= 5 and 6. Then

SCE(H) <
√
δn− δ2 + (n−1)(δn−δ2)

(detSC(H))
1
n
.

Proof. We have |λ1| ≥ |detSC(H)|
1
n

|λ1|
n∑

i=2

|λi| > |detSC(H)|
1
n

n∑
i=2

|λi|

since |λi| < |λ1| ∀i
(n− 1) |λ1|2 > |detSC(H)|

1
n [SCE(H)− |λ1|]

Let|λ1| = s and S(s) = s+ (n−1)s2

|detSC(H)|
1
n
where s=|λ1|

S ′(s) = 0 ⇒ 1 + 2s(n−1)

|detSC(H)|
1
n
= 0 ⇒ s = − |detSC(H)|

1
n

2(n−1)
and S ′′(s) = 2(n−1)

|detSC(H)|
1
n
> 0

minimum value=S(s)=S(− |detSC(H)|
1
n

2(n−1)
) = − |detSC(H)|

1
n

4(n−1)

S(s) is increasing in − |detSC(H)|
1
n

2(n−1)
< s <

√
B <

√
⌊B⌋ =

√
δn− δ2
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where B=
n∑

i=1

n∑
j=1

1
di+dj

,S(s) < S(
√
δn− δ2)

Hence SCE(H)<
√
δn− δ2 + (n−1)(δn−δ2)

(detSC(H))
1
n
.

Illustration 3.16. Consider a T2 hypergraph with n = 12. SCE(H) = 10.4889, n

det(SC(H))
1
n = 12× 0.6752 = 8.1024. Clearly SCE(H) = 10.4889 <

√
δn− δ2 +

(n−1)(δn−δ2)

(detSC(H))
1
n
= 4.4721 + 325.8294 = 330.301.

Theorem 3.17. Let H be a T2 hypergraph with n ≥ 4. Then

A(H) > n−1
n−δ

(
⌈

n√
7δ+1

⌉
− 1)δ + δ

⌈
n√
7δ+1

⌉
, where A(H) =

n∑
i=1

n∑
j=1

1√
di+dj

.

Proof. From the Cauchy - Schwarz inequality,

(
n−1∑
i=2

λi)
2 ≤ (

n−1∑
i=2

1)(
n−1∑
i=2

λ2
i )

(−λ1 − λn)
2 ≤ (n− 2)(

n∑
i=1

λ2
i − λ2

1 − λ2
n) < (n− δ)(A(H)− λ2

1 − λ2
n)

(λ1 + λn)
2 < (⌈λ1⌉+ ⌈λn⌉)2 < (n− δ)(A(H)− ⌈λ1⌉2 − ⌈λn⌉2)

(
⌈

n√
7δ+1

⌉
− 1)δ < (n− δ)[A(H)−

⌈
n√
7δ+1

⌉
− 1]

(
⌈

n√
7δ+1

⌉
− 1)δ + (n− δ)(

⌈
n√
7δ+1

⌉
+ 1) < (n− δ)A(H)

(
⌈

n√
7δ+1

⌉
− 1)δ + (n− δ)[

⌈
n√
7δ+1

⌉
+ 1− 2

⌈
n√
7δ+1

⌉
+ 2

⌈
n√
7δ+1

⌉
] < (n− δ)A(H)

(
⌈

n√
7δ+1

⌉
− 1)δ + (n− δ)[(

⌈
n√
7δ+1

⌉
− 1)δ + δ

⌈
n√
7δ+1

⌉
] < (n− δ)A(H)

< (n− 1)(
⌈

n√
7δ+1

⌉
− 1)δ + δ(n− δ)

⌈
n√
7δ+1

⌉
< (n− δ)A(H)

A(H) > n−1
n−δ

(
⌈

n√
7δ+1

⌉
− 1)δ + δ

⌈
n√
7δ+1

⌉
.

Illustration 3.18. Consider a T2 hypergraph with n = 12. SCE(H) = 10.4889,⌈
n√
7δ+1

⌉
= 4, and A(H)=36.5301.

Here, A(H) = 36.5301 > n−1
n−δ

(
⌈

n√
7δ+1

⌉
−1)δ+δ

⌈
n√
7δ+1

⌉
= 11

10
(4−1)2+2×4 = 17.9.

4. Conclusion

In this article, we established the sum connectivity matrix and its energy for
the T2 hypergraph. Also, we identified n[detSC(H)]

1
n = 8.1024 < SCE(H) =

10.4889 <
√
nδ(n− δ) = 15.49 gives the nearest upper and lower bounds of the

sum connectivity energy of the T2 hypergraph using the graph parameters δ and
n.
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