South East Asian J. of Mathematics and Mathematical Sciences Vol. 19, No. 3 (2023), pp. 347-358

DOI: 10.56827/SEAJMMS.2023.1903.27 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

SUM CONNECTIVITY MATRIX AND ENERGY OF A T_2 HYPERGRAPH

Sharmila D., Sujitha S.* and Angel Jebitha M. K.*

Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, INDIA

E-mail : sharmilareegan10@gmail.com

*PG and Research Department of Mathematics, Holy Cross College (Autonomous), Nagercoil, Tamil Nadu, INDIA

E-mail : sujitha.s@holycrossngl.edu.in, angeljebitha@holycrossngl.edu.in

(Received: Oct. 21, 2023 Accepted: Dec. 23, 2023 Published: Dec. 30, 2023)

Abstract: Let H be a T_2 hypergraph with $n \geq 4$. The sum connectivity matrix of H, denoted by $SC(H)$ is defined as the square martix of order n, whose $(i, j)^{th}$ entry is $\frac{1}{\sqrt{1}}$ $\frac{1}{d_i+d_j}$ if x_i and x_j are adjacent and zero for other cases. The sum connectivity energy $SCE(H)$ of H is the sum of the absolute values of the eigenvalues of $SC(H)$. It is shown that, for a T_2 hypergraph $\lfloor SCE(H) \rfloor \leq \lfloor 1 + n - \sqrt{\frac{n}{\delta}} \rfloor$, where δ is the minimum degree of H.

Keywords and Phrases: T_2 hypergraph, sum connectivity matrix, sum connectivity energy.

2020 Mathematics Subject Classification: 05C65, 05C50.

1. Introduction

The basic definitions and terminologies of a hypergraph are not given here and we refer to it [1] and [5]. The concept of hypergraph was introduced by Berge in 1967. In 2017, Seena V and Raji Pilakkat introduced Hausdorff hypergraph, T_0 hypergraph and T_1 hypergraph [2] and [3]. Based on [2] and [3] S. Sujitha and D. Sharmila introduce T_2 hypergraph and studied Adjacency matrix, Randic matrix, Zagreb matrix and its corresponding energies [4]. In 2010, Bo zhou and Nenad Trinajstic studied the sum connectivity energy of a graph [6] and later the same concept was studied by many authors. In this article, we determine the sum connectivity matrix and sum connectivity energy of a T_2 hypergraph. Throughout this article, H is a connected T_2 hypergraph with order n and size m, where the order and size are the minimum number of vertices and edges needed to define a T_2 hypergraph. The degree of a vertex $x \in X$ denoted by $d(x)$ is the number of edges that contain the vertex x . The maximum degree of the hypergraph H is denoted by $\Delta(H)$ or Δ . The minimum degree of the hypergraph H is denoted by $\delta(H)$ or δ . The following definitions and theorems are used in sequel.

Definition 1.1. [4] A hypergraph $H = (X, D)$ is said to be a T_2 hypergraph if for any three distinct vertices u, v and w in X, there exist a hyperedge containing u and v but not w and another hyperedge containing w but not u and v.

Example 1.2.

Figure 1: T_2 Hypergraph

Figure 1 is a T_2 Hypergraph with vertices $x_1, x_2, x_3, x_4, x_5, x_6$ and hyperedges D_1, D_2, D_3, D_4 . It is easily seen that, for every three vertices x_i, x_j and x_k there exist a hyperedge containing x_i and x_j but not x_k and a hyperedge containing x_k but not x_i and x_j .

Result 1.3. [4]

(i) The minimum number of edges needed to define a T_2 hypergraph is $\left[\frac{2n+5}{4}\right]$ $\frac{1+5}{4}$ where n is the number of vertices.

- (ii) For a T_2 hypergraph H, the minimum degree $\delta = \delta(H) = 2$.
- (iii) For a T_2 hypergraph H, rank $r(H) = \left[\frac{2n+1}{4}\right]$ $\lfloor \frac{n+1}{4} \rfloor$ where $n \geq 5$. Here $r(H)$ is the largest cardinality of its edges.

Definition 1.4. [6] The sum connectivity matrix is defined by $SC(H) = \begin{cases} \frac{1}{\sqrt{d_i}} \end{cases}$ $\frac{1}{d_i+d_j}$ if $x_ix_j \in D$ 0 otherwise where d_i and d_j are degrees of the vertices x_i and x_j .

Definition 1.5. [6] The sum connectivity energy is defined by $SCE(H) = \sum^{n}$ $\frac{i=1}{i}$ $|\lambda_i|$ where $\lambda_1, \lambda_2, ..., \lambda_n$ are the sum connectivity eigen values of H.

2. Sum connectivity matrix and energy of a T_2 Hypergraph

In this section, we find the energy of a T_2 hypergraph using sum connectivity matrix.

Example 2.1. Consider a T_2 hypergraph given in Figure 2 with 12 vertices and 7 edges.

Figure 2: T_2 Hypergraph

Sum connectivity matrix of H is given by

$$
SC(H) = \begin{pmatrix} 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 & 0 \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 & 0 \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{4}} & 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 & 0 & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6
$$

The sum connectivity eigen values of the above T_2 hypergraph is

$$
\begin{pmatrix}\n3.0583 & 1.3167 & 0.4483 & .4212 & -0.408 & -.5 & -1.2649 & -1.3475 \\
1 & 1 & 1 & 1 & 4 & 2 & 1 & 1\n\end{pmatrix}
$$

Therefore, the sum connectivity energy $SCE(H) = \sum_{n=1}^{n}$ $i=1$ $|\lambda_i|$ = 10.4889

$$
\lfloor SCE(H) \rfloor = \lfloor 1 + n - \sqrt{\frac{n}{\delta}} \rfloor = 10
$$

The below table presents the sum connectivity energy of a T_2 hypergraph in relation with order.

16	14.15	14	
17	14.5	15	
18	15.45	16	
19	16.38	16	
20	16.16	17	
$\it n$		$1+n$	

Table 1: Sum connectivity energy of a T_2 hypergraph

Result 2.2. Let H be a T_2 hypergraph with $n \geq 4$. Then $\left| \sum_{n=1}^{\infty} \right|$ $\frac{i=1}{i}$ λ_i^2 $\overline{1}$ $\leq \delta n - \delta^2$. Equality holds only if $n = 14$ and 18 in H. $\overline{1}$

Proof. From the below Table 2, we can see that $\sum_{n=1}^{\infty}$ $i=1$ λ_i^2 $\leq \delta n - \delta^2$.

Vertices	$\, n$ $\frac{\sum_{i=1}^{n} \lambda_i^2}{3}$	$\, n$ λ_i^2 $i=1$	$\delta n - \delta^2$
$\overline{4}$		$\overline{3}$	4
$\overline{5}$	$\overline{3.5}$	$\overline{3}$	6
6	4.9	4	8
$\overline{7}$	6.1	6	10
$\overline{8}$	8.73	8	12
9	10.4	10	14
10	13.2	13	16
11	13.03	13	18
12	16.03	16	20
13	18.39	18	22
14	24.04	24	24
15	24.5	24	26
16	26.17	26	28
17	28.32	28	30
18	32.32	32	32
19	31.6	31	34
20	35.74	35	36
\boldsymbol{n}			

Table 2: Value of $\delta n - \delta^2$

3. Bounds of the sum connectivity energy of a T_2 Hypergraph

In this section, we discover the upper and lower bounds of the T_2 hypergraph using sum connectivity matrix.

Result 3.1. Let H be a T_2 hypergraph with $n \geq 4$. Then $\lfloor \lambda_1 \rfloor \leq \left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil$ where λ_1 is the largest eigen value of H. Equality holds only if $n = 10$ in H.

Observation 3.2. Let H be a T_2 hypergraph with $n \geq 4$. Then $\lceil \lambda_1 \rceil = \left\lceil \frac{n}{\sqrt{7\delta+1}} \right\rceil$ where λ_1 is the largest eigen value of H. We can easily observe that, when $n=10$. $\lfloor \lambda_1 \rfloor = \left\lceil \frac{n}{\sqrt{7\delta+1}} \right\rceil$ and when $n=16, \lceil \lambda_1 \rceil = \left\lceil \frac{n}{\sqrt{7\delta+1}} \right\rceil$

Theorem 3.3. Let H be a T_2 hypergraph with $n \geq 4$, $n \neq 10$ and 16. Then $SCE(H) > \left\lceil \frac{n}{\sqrt{7\delta+1}} \right\rceil - 1 - (n-\delta) \frac{(det SC(H))^{\frac{1}{n-\delta}}}{\left\lceil \frac{n}{\delta(n-\delta)} \right\rceil}$ $\left\lceil \frac{n}{\sqrt{7\delta+1}} \right\rceil$ Proof. From the Cauchy - Schwarz inequality,

nP−1 i=2 √ λⁱ ≤ s (nP−1 i=2 λi)(n − 2) nP−1 i=2 √ λⁱ ≤ p (SCE(H) − λ¹ − λn)(n − 2) < p (SCE(H) − ⌈λ1⌉ − ⌈λn⌉)(n − 2) r (SCE(H) − l √ n ⁷δ+1 ^m + 1 ≥ ⁿP−¹ i=2 √ λi √ n−δ r (SCE(H) − l √ n ⁷δ+1 ^m + 1 > (n−δ)([√] λ2λ3...λn−1) 1 n−2 √ n−δ SCE(H) > l √ n ⁷δ+1 ^m − 1 − (n − δ) (detSC(H)) 1 n−2 l √ n ⁷δ+1 ^m

Illustration 3.4. Consider a T_2 hypergraph with $n = 12$. $SCE(H) = 10.4889$, and $\left[\frac{n}{\sqrt{7\delta+1}}\right] = 4$. Here, $SCE(H) = 10.4889 > \left[\frac{n}{\sqrt{7\delta+1}}\right] - 1 - (n-\delta)\frac{(det SC(H))^{\frac{1}{n-2}}}{\left[\frac{n}{n}\right]}$ $\frac{\left(\frac{n}{\sqrt{7\delta+1}}\right)^{n-2}}{\left(\frac{n}{\sqrt{7\delta+1}}\right)}$ = $4-1-10 \times \frac{0.6242}{4} = 1.4395.$

 $\sqrt{\delta(n-\delta)} < \text{SCE}(H) < \sqrt{n\delta(n-\delta)}.$ **Theorem 3.5.** Let H be a T_2 hypergraph with $n \geq 4$. Then Proof. From the Cauchy - Schwarz inequality, $\left(\sum_{n=1}^{n}\right)$ $i=2$ $|\lambda_i|)^2 \leq n \sum_{i=1}^n$ $i=2$ $|\lambda_i|^2 < n \left| \sum_{i=1}^n \right|$ $i=2$ $|\lambda_i|^2$ $\langle n\delta(n-\delta)\rangle$ $SCE(H) < \sqrt{n\delta(n-\delta)}$

$$
(SCE(H))^{2} = \left(\sum_{i=2}^{n} |\lambda_{i}|^{2} > \sum_{i=2}^{n} |\lambda_{i}|^{2} > \left\lfloor \sum_{i=2}^{n} |\lambda_{i}|^{2} \right\rfloor < n\delta(n-\delta).
$$

Illustration 3.6. Consider a T_2 hypergraph with $n = 12$. $SCE(H) = 10.4889$, **Inustration 3.6.** Consider a I_2 hypergraph with $n = 12$. $SCE(H) = 1$
 $\delta n - \delta^2 = 20$. Here, $\sqrt{20} = 4.472 < SCE(H) = 10.4889 < \sqrt{240} = 15.4919$.

Theorem 3.7. Let H be a T_2 hypergraph with $n \geq 4, n \neq 5$ and 6. Then $n(detSC(H))^{\frac{1}{n}} < SCE(H) < \frac{n(\delta n-\delta^2)^2}{(log(C(n)))}$ $\frac{n(on-o^-)}{(det SC(H))^{\frac{1}{n}}}.$

Proof. From an arithmetic and a geometric mean inequality,

$$
\frac{\binom{n}{\lambda}|\lambda_i|}{n} \geq (\prod_{i=1}^n |\lambda_i|)^{\frac{1}{n}} = (det SC(H))^{\frac{1}{n}}
$$

\n
$$
SCE(H) > n(det SC(H))^{\frac{1}{n}}
$$

\nWe have $|\lambda_1| > (det SC(H))^{\frac{1}{n}}$
\n
$$
|\lambda_1| \sum_{i=1}^n |\lambda_i| > (det SC(H))^{\frac{1}{n}} \sum_{i=1}^n |\lambda_i|
$$

\nSince $|\lambda_i| < |\lambda_1| \forall i$
\n $n |\lambda_1|^2 > (det SC(H))^{\frac{1}{n}} SCE(H)$
\n
$$
SCE(H) < \frac{n|\lambda_1|^2}{(det SC(H))^{\frac{1}{n}}} < \frac{n \left|\sum_{i=1}^n \lambda_i^2\right|^2}{(det SC(H))^{\frac{1}{n}}}
$$

\n
$$
SCE(H) < \frac{n(\delta n - \delta^2)^2}{(det SC(H))^{\frac{1}{n}}}
$$

\n $n(det SC(H))^{\frac{1}{n}} < SCE(H) < \frac{n(\delta n - \delta^2)^2}{(det SC(H))^{\frac{1}{n}}}.$

Illustration 3.8. Consider a T_2 hypergraph with $n = 12$. $SCE(H) = 10.4889$, $ndet(SC(H))^{\frac{1}{n}} = 12 \times 0.6752 = 8.1024 \lt SCE(H) = 10.4889 \lt \frac{n(\delta n - \delta^2)}{1.5566633}$ $\frac{n(on-o^2)}{det SC(H)^{\frac{1}{n}}} =$ 355.45.

Theorem 3.9. Let H be a T_2 hypergraph with $n \geq 4$. Then $SCE(H)$ < ,ະັ $\overline{n} + \frac{13}{5} + (n - \delta)\sqrt{\delta}.$ Proof. From the Cauchy Schwarz inequality, $\sum_{n=1}^{\infty}$ $i=3$ $\lambda_i \leq \sqrt{ }$ $\frac{n}{\left(\sum_{n=1}^{n} x_n\right)}$ $i=3$ λ_i^2)($\sum_{i=1}^{n}$ $i=3$ 1) $SCE(H)$ - $(\lambda_1 + \lambda_2) \leq \sqrt{(n-2)[\sum_{n=1}^{n}$ $i=1$ $\lambda_i^2 - \lambda_1^2 - \lambda_2^2$ \lt $\sqrt{(n-\delta)[\sum_{i=1}^{n}$ $\frac{i=1}{i}$ λ_i^2 $\overline{}$ $-\lambda_1^2-\lambda_2^2$ $SCE(H) < \sqrt{(n-\delta)[(\delta n-\delta^2)-\lambda_1^2-\lambda_2^2]} + \lambda_1 + \lambda_2$ Since $\lambda_1 + \lambda_2 \leq \sqrt{n} + \frac{13}{5}$ $\frac{13}{5}$,

$$
SCE(H) < \sqrt{n} + \frac{13}{5} + \sqrt{(n - \delta)[(\delta n - \delta^2) - \lambda_1^2 - \lambda_2^2]}
$$

Let $h(s,t) = \sqrt{n} + \frac{13}{5} + \sqrt{(n - \delta)[(\delta n - \delta^2) - s^2 - t^2]}$
Differentiate Partially with respect to s and t,
 $h_s = \frac{-s\sqrt{n - \delta}}{\sqrt{(\delta n - \delta^2) - s^2 - t^2}}$
 $h_t = \frac{t\sqrt{n - \delta}}{\sqrt{(\delta n - \delta^2) - s^2 - t^2}}$
Stationary points are given by $h_s = 0$ and $h_t = 0$
 $h_s = 0 \Rightarrow \frac{-s\sqrt{n - \delta}}{\sqrt{(\delta n - \delta^2) - s^2 - t^2}} = 0 \Rightarrow s = 0$
 $h_t = 0 \Rightarrow \frac{-t\sqrt{n - \delta}}{\sqrt{(\delta n - \delta^2) - s^2 - t^2}} = 0 \Rightarrow t = 0$
 $h_{ss} = -\frac{\sqrt{n - \delta}(\delta n - \delta^2 - \delta^2)}{(\delta n - \delta^2 - \delta^2 - \delta^2)^{\frac{3}{2}}}$
 $h_{tt} = -\frac{\sqrt{n - \delta}(\delta n - \delta^2 - s^2)}{(\delta n - \delta^2 - s^2 - \delta^2)^{\frac{3}{2}}}$
 $h_{st} = -\frac{\sqrt{n - \delta}(\delta n - \delta^2 - \delta^2)}{(\delta n - \delta^2 - s^2 - \delta^2)^{\frac{3}{2}}}$
At(0,0), $h_{ss} = h_{tt} = -\frac{1}{\sqrt{\delta}} < 0$, $h_{st} = 0$
Also, $h_{ss}h_{tt} - (h_{st})^2 > 0$
Therefore, $h(0,0) = \sqrt{n} + \frac{13}{5} + (n - \delta)\sqrt{\delta}$
Hence, $SCE(H) < \sqrt{n} + \frac{13}{5} + (n - \delta)\sqrt{\delta}$.

Illustration 3.10. Consider a T_2 hypergraph with $n = 12$. $SCE(H) = 10.4889$, Here, $SCE(H) = 10.4889 <$ √ $\overline{n} + \frac{13}{5} + (n - \delta)$ √ $\delta =$ $n = 12.5C E(H) = 10.4889,$
 $\sqrt{12} + 2.6 + 10\sqrt{2} = 20.2062.$

Theorem 3.11. Let *H* be a *T*₂ hypergraph with
$$
n \ge 4
$$
. Then
\n
$$
SCE(H) < \left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil + \frac{(n-1)(\left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil)^2}{(det SC(H))^{\frac{1}{n}}}.
$$
\n**Proof.** We have $\lfloor \lambda_1 \rfloor \le \left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil$
\n
$$
\left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil \ge \lfloor \lambda_1 \rfloor > [det SC(H)]^{\frac{1}{n}}
$$

\n
$$
\left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil \ge \lfloor \lambda_i \rfloor > [det SC(H)]^{\frac{1}{n}} \sum_{i=2}^n |\lambda_i|
$$

\n
$$
\left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil > |\lambda_i| \forall i = 2, 3, ...n
$$

\n
$$
(n-1)(\left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil)^2 > [det SC(H)]^{\frac{1}{n}} (SCE(H) - \lambda_1)
$$

\n
$$
\frac{(n-1)(\left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil)^2}{(det SC(H))^{\frac{1}{n}}} > (SCE(H) - \lambda_1) > (SCE(H) - \lfloor \lambda_1 \rfloor)
$$

\n
$$
SCE(H) < \left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil + \frac{(n-1)(\left\lceil \frac{n}{\sqrt{7\delta}} \right\rceil)^2}{(det SC(H))^{\frac{1}{n}}}.
$$

Illustration 3.12. Consider a T_2 hypergraph with $n = 12$. $SCE(H) = 10.4889$

and
$$
\left[\frac{n}{\sqrt{7\delta}}\right]
$$
 = 4. Clearly, $SCE(H) = 10.4889 < \left[\frac{n}{\sqrt{7\delta}}\right] + \frac{(n-1)(\left[\frac{n}{\sqrt{7\delta}}\right])^2}{(det SC(H))^\frac{1}{n}} = 4 + \frac{11 \times 4^2}{.6752} = 264.6635.$

Theorem 3.13. Let H be a T_2 hypergraph with $n \geq 4, n \neq 5$ and 6. Then $SCE(H) < \frac{n\left[\frac{n}{\sqrt{7\delta+1}}\right]^{\delta}}{(1+3C(n)\epsilon)^{\frac{1}{\delta}}}$ $\frac{|\sqrt{7}\delta+1|}{(\det SC(H)^{\frac{1}{n}})}$. **Proof.** From an arithmetic and a geometric mean inequality, $\left(\sum_{i=1}^n |\lambda_i|\right)$ $\frac{1}{n} \geq (\prod_{i=1}^n |\lambda_i|)^{\frac{1}{n}} = detSC(H)^{\frac{1}{n}}$ $\lceil \lambda_1 \rceil > |\lambda_1| > detSC(H)^{\frac{1}{n}}$ $\lceil \lambda_1 \rceil \sum_{ }^n$ $i=1$ $|\lambda_i| > det SC(H)^{\frac{1}{n}} \sum_{i=1}^{n}$ $\frac{i=1}{i}$ $|\lambda_i|$ $\lceil \lambda_1 \rceil \sum_{i=1}^n$ $i=1$ $|\lambda_i| = \lceil \lambda_1 \rceil | |\lambda_1| + |\lambda_2| + ... | \lambda_n |] > n \lceil \lambda_1 \rceil^2 = n \left[\frac{n}{\sqrt{7\delta+1}} \right]^{\delta}$ $n\left[\frac{n}{\sqrt{7\delta+1}}\right]^{\delta} > (det SC(H)^{\frac{1}{n}}) SCE(H)$ $\text{SCE(H)} < \frac{n \left[\frac{n}{\sqrt{7\delta+1}}\right]^{\delta}}{n \left[\frac{n}{\sqrt{7\delta+1}}\right]}$ $\frac{|\sqrt{7\delta+1}|}{(\det SC(H)^{\frac{1}{n}})}.$

Illustration 3.14. Consider a T_2 hypergraph with $n = 12$. $SCE(H) = 10.4889$, and $\left[\frac{n}{\sqrt{7\delta+1}}\right] = 4, det SC(H)^{\frac{1}{n}} = .6752$, Hence $SCE(H) = 10.4889 < \frac{n\left[\frac{n}{\sqrt{7\delta+1}}\right]^{\delta}}{(det SC(H)^{\frac{1}{n}})}$ $\frac{\sqrt{7\delta+1}}{(det SC(H)^{\frac{1}{n}})} =$ $\frac{12\times4^2}{.6752} = 284.3602.$

Theorem 3.15. Let H be a T_2 hypergraph with $n \geq 4, n \neq 5$ and 6. Then $SCE(H) <$ √ $\delta n-\delta^2+\frac{(n-1)(\delta n-\delta^2)}{(n-\delta)(\delta n-\delta^2)}$ $\frac{(n-1)(\delta n-\delta^2)}{(\det SC(H))^{\frac{1}{n}}}.$ **Proof.** We have $|\lambda_1| \geq |det SC(H)|^{\frac{1}{n}}$ $|\lambda_1| \sum_{ }^n$ $i=2$ $|\lambda_i| > |det SC(H)|^{\frac{1}{n}} \sum_{i=1}^{n}$ $i=2$ $|\lambda_i|$ since $|\lambda_i| < |\lambda_1| \,\forall i$ $(n-1)|\lambda_1|^2 > |det SC(H)|^{\frac{1}{n}} [SCE(H) - |\lambda_1|]$ Let $|\lambda_1| = s$ and $S(s) = s + \frac{(n-1)s^2}{(s+1)(S(s))}$ $\frac{(n-1)s^2}{|det SC(H)|^{\frac{1}{n}}}$ where s= $|\lambda_1|$ $S'(s) = 0 \Rightarrow 1 + \frac{2s(n-1)}{|det SC(H)|^{\frac{1}{n}}} = 0 \Rightarrow s = -\frac{|det SC(H)|^{\frac{1}{n}}}{2(n-1)}$ and $S''(s) = \frac{2(n-1)}{|det SC(H)|^{\frac{1}{n}}} > 0$ minimum value=S(s)= $S(-\frac{|detSC(H)|^{\frac{1}{n}}}{2(n-1)}) = -\frac{|detSC(H)|^{\frac{1}{n}}}{4(n-1)}$ $4(n-1)$ S(s) is increasing in $-\frac{|detSC(H)|^{\frac{1}{n}}}{2(n-1)}$ $\frac{tSC(H)|^{\frac{1}{n}}}{2(n-1)} < s < \sqrt{B} < \sqrt{\lfloor B \rfloor} =$ √ $\delta n-\delta^2$

where $B=\sum_{n=1}^n$ $i=1$ $\sum_{n=1}^{\infty}$ $j=1$ 1 $\frac{1}{d_i+d_j}, S(s) < S($ √ $\delta n-\delta^2)$ Hence SCE(H)< √ $\delta n-\delta^2+\frac{(n-1)(\delta n-\delta^2)}{(n+\delta)(\delta n-\delta^2)}$ $\frac{(n-1)(\delta n-\delta^2)}{(\det SC(H))^{\frac{1}{n}}}.$

Illustration 3.16. Consider a T_2 hypergraph with $n = 12$. $SCE(H) = 10.4889$, n $det(SC(H))^{\frac{1}{n}} = 12 \times 0.6752 = 8.1024$. Clearly $SCE(H) = 10.4889$ < √ $\delta n-\delta^2 +$ $(n-1)(\delta n-\delta^2)$ $\frac{(n-1)(on-o^{-})}{(det SC(H))^\frac{1}{n}} = 4.4721 + 325.8294 = 330.301.$

Theorem 3.17. Let H be a T_2 hypergraph with $n > 4$. Then $A(H) > \frac{n-1}{n-\delta}$ $\frac{n-1}{n-\delta}(\left\lceil \frac{n}{\sqrt{7\delta+1}} \right\rceil - 1)^{\delta} + \delta \left\lceil \frac{n}{\sqrt{7\delta+1}} \right\rceil$, where $A(H) = \sum_{i=1}^{n}$ $\frac{i=1}{i}$ $\sum_{n=1}^{\infty}$ $j=1$ $\frac{1}{\sqrt{1}}$ $\frac{1}{d_i+d_j}$.

Proof. From the Cauchy - Schwarz inequality,

$$
\begin{aligned}\n&\left(\sum_{i=2}^{n-1}\lambda_{i}\right)^{2} \leq \left(\sum_{i=2}^{n-1}1\right)\left(\sum_{i=2}^{n}\lambda_{i}^{2}\right) \\
&(-\lambda_{1}-\lambda_{n})^{2} \leq (n-2)\left(\sum_{i=1}^{n}\lambda_{i}^{2}-\lambda_{1}^{2}-\lambda_{n}^{2}\right) < (n-\delta)(A(H)-\lambda_{1}^{2}-\lambda_{n}^{2}) \\
&(\lambda_{1}+\lambda_{n})^{2} < \left(\lceil\lambda_{1}\rceil+\lceil\lambda_{n}\rceil\right)^{2} < (n-\delta)(A(H)-\lceil\lambda_{1}\rceil^{2}-\lceil\lambda_{n}\rceil^{2}) \\
&\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil-1\right)^{\delta} < (n-\delta)\left[A(H)-\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil-1\right] \\
&\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil-1\right)^{\delta}+(n-\delta)\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil+1 < (n-\delta)A(H) \\
&\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil-1\right)^{\delta}+(n-\delta)\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil+1-2\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil+2\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil < (n-\delta)A(H) \\
&\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil-1\right)^{\delta}+(n-\delta)\left[\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil-1\right)^{\delta}+\delta\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil < (n-\delta)A(H) \\
< (n-1)\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil-1\right)^{\delta}+\delta(n-\delta)\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil < (n-\delta)A(H) \\
&A(H)>\frac{n-1}{n-\delta}\left(\left\lceil\frac{n}{\sqrt{7\delta+1}}\right\rceil-1\right)^{\delta}+\delta\left\lceil\frac{n}{\sqrt{7\
$$

Illustration 3.18. Consider a T_2 hypergraph with $n = 12$. $SCE(H) = 10.4889$, $\left[\frac{n}{\sqrt{7\delta+1}}\right] = 4$, and A(H)=36.5301. Here, $A(H) = 36.5301 > \frac{n-1}{n-1}$ $\frac{n-1}{n-\delta}(\left[\frac{n}{\sqrt{7\delta+1}}\right] - 1)^{\delta} + \delta\left[\frac{n}{\sqrt{7\delta+1}}\right] = \frac{11}{10}(4-1)^2 + 2 \times 4 = 17.9.$

4. Conclusion

In this article, we established the sum connectivity matrix and its energy for the T_2 hypergraph. Also, we identified $n[det SC(H)]^{\frac{1}{n}} = 8.1024 < SCE(H)$ $10.4889 < \sqrt{n\delta(n-\delta)} = 15.49$ gives the nearest upper and lower bounds of the sum connectivity energy of the T_2 hypergraph using the graph parameters δ and \overline{n} .

Acknowledgement

The author (Sharmila. D, Registration No: 19233042092008, Research Scholar) would like to thank the research supervisor Dr. S. Sujitha. She is working as an Assistant Professor, PG and Research Department of Mathematics, Holy Cross College (Autonomous) Nagercoil (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627012, India).

References

- [1] Berge C., Hypergraphs: Combinotorics of finite sets, vol. 4, Elsevier, 1984.
- [2] Seena V. and Pilakkat R., T_0 hypergraphs, International of Applied Mathematics, Vol. 13, No. 10 (2017), 7467-7478.
- [3] Seena V. and Pilakkat R., T_1 hypergraphs, International of Applied Mathematics, Vol. 13, No. 10 (2010), 7453-7466.
- [4] Sujitha S., Sharmila D., Angel Jebitha. M. K., Randic Matrix and Energy of a T² Hypergraph, South East Asian J. of Mathematics and Mathematical sciences, Vol. 19, Proceedings, (2022), 25-34.
- [5] Voloshin V., Introduction to graph and hypergraph theory, Nova, 2009.
- [6] Zhou B. and Trinajstic N., On sum connectivity matrix and sum-connectivity energy of a (molecular) graph, Acta Chim, 57(3) (2010), 518-523.

This page intertionally let blank.