CONJUGATE S_{3}-MAGIC GRAPHS

Anusha C. and Anil Kumar V.
Department of Mathematics, University of Calicut, Malappuram - 673635, Kerala, INDIA
E-mail : canusha235@gmail.com, anil@uoc.ac.in

(Received: Apr. 20, 2023 Accepted: Dec. 10, 2023 Published: Dec. 30, 2023)
Abstract: In this paper, we introduce conjugate A-magic labeling of graphs where A is a finite non-abelian group and investigate the graphs that are conjugate S_{3} magic.

Keywords and Phrases: A-magic labeling, Non-abelian group, conjugate $S_{3}-$ magic.

2020 Mathematics Subject Classification: 05C25, 05C78.

1. Introduction

Throughout this paper, we shall consider only connected, finite, simple, and undirected graphs. Let $G=(V(G), E(G))$ be any finite graph and let A be an abelian group under addition with the identity element 0 . Let $A^{*}=A \backslash\{0\}$. Any mapping $\ell: E(G) \rightarrow A^{*}$ is called an edge labeling. Observe that any edge labeling induces a mapping $\ell^{+}: V(G) \rightarrow A$ as follows: $\ell^{+}(u)=\Sigma\{\ell(u v): u v \in E(G)\}$. A graph G is called A-magic, if there exists $a \in A$ such that $\ell^{+}(u)=a$, for all $u \in V(G)$. Several authors studied about V_{4}-magic graphs $[6,8,9]$ and $Z_{k^{-}}$ magic graphs [5]. Recently, Anusha C. and Anil Kumar V. [2, 3, 4] introduced A-magic labeling of graphs where A is non-abelian and studied graphs that are S_{3} magic, D_{4}-magic and Q_{8}-magic. In this paper, we introduce a new magic labeling of graphs using a non-abelian group namely, the conjugate A-magic labeling of graphs and investigate conjugate S_{3}-magic labeling of some graphs. Consider the set $X=\{1,2,3\}$. A permutation of X is a function from X to itself that is both

1-1 and onto. The permutations of X with the composition of functions as a binary operation is a non-abelian group, called the symmetric group S_{3}. The group S_{3} is a non-abelian group of order 6 and its elements are given by

$$
\begin{aligned}
& \rho_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \rho_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \rho_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
& \mu_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \mu_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \mu_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
\end{aligned}
$$

2. Main Results

Here we need the following definition due to Anusha C and Anil Kumar V [4].
Definition 2.1. [4] Let $G=(V(G), E(G))$ be a finite graph with p vertices and q edges, and let $(A, *)$ be a finite non-abelian group with identity element 1 . Let $f: E(G) \rightarrow N_{q}=\{1,2, \ldots, q\}$ and let $g: E(G) \rightarrow A \backslash\{1\}$ be two edge labelings of G such that f is bijective. Define an edge labeling $\ell: E(G) \rightarrow N_{q} \times A \backslash\{1\}$ by

$$
l(e):=(f(e), g(e)), e \in E(G)
$$

Define a relation \leq on the range of ℓ by:

$$
(f(e), g(e)) \leq\left(f\left(e^{\prime}\right), g\left(e^{\prime}\right)\right) \quad \text { if and only if } \quad f(e) \leq f\left(e^{\prime}\right)
$$

Then obviously, the relation \leq is a partial order on the range of ℓ.
Let $\left\{\left(f\left(e_{1}\right), g\left(e_{1}\right)\right),\left(f\left(e_{2}\right), g\left(e_{2}\right)\right), \ldots,\left(f\left(e_{k}\right), g\left(e_{k}\right)\right)\right\}$ be a chain in the range of ℓ. We define the product of this chain as follows:

$$
\prod_{i=1}^{k}\left(f\left(e_{i}\right), g\left(e_{i}\right)\right):=\left(\left(\left(\left(g\left(e_{1}\right) * g\left(e_{2}\right)\right) * g\left(e_{3}\right)\right) * g\left(e_{4}\right)\right) * \ldots\right) * g\left(e_{k}\right)
$$

Let $u \in V(G)$ and let $N^{*}(u)$ be the set of all edges incident with u. Consider the restriction of the function ℓ on $N(u)$, that is, $\left.\ell\right|_{N^{*}(u)}$. Observe that the range of $\left.\ell\right|_{N^{*}(u)}$ is a chain, say $\left(f\left(e_{1}\right), g\left(e_{1}\right)\right) \leq\left(f\left(e_{2}\right), g\left(e_{2}\right)\right) \leq \cdots \leq\left(f\left(e_{n}\right), g\left(e_{n}\right)\right)$. We define

$$
\begin{equation*}
\ell^{*}(u)=\prod_{i=1}^{n}\left(f\left(e_{i}\right), g\left(e_{i}\right)\right) \tag{2.1}
\end{equation*}
$$

If $\ell^{*}(u)$ is a constant, say a for all $u \in V(G)$, we say that the graph G is A-magic. The map ℓ^{*} is called an A-magic labeling of G and the corresponding constant a is called the magic constant.

In the above definition if the elements $g\left(e_{2}\right), g\left(e_{3}\right), \ldots, g\left(e_{n}\right)$ belong to the conjugacy class determined by $g\left(e_{1}\right)$, then we say that the graph G is conjugate A-magic. Formally, we have the following:
Definition 2.2. Let $G=(V(G), E(G))$ be a graph with p vertices and q edges, and A be a finite non-abelian group of order n with identity 1 . The graph G is said to be a conjugate A-magic graph if
(i) for all $u \in V(G)$,

$$
\ell^{*}(u)=\prod_{i=1}^{n}\left(f\left(e_{i}\right), g\left(e_{i}\right)\right)=\text { constant in } A(\text { see definition 2.1). }
$$

(ii) the elements $g\left(e_{2}\right), g\left(e_{3}\right), \ldots, g\left(e_{n}\right)$ belong to the conjugacy class determined by $g\left(e_{1}\right)$.

Definition 2.3. If the map g in the definition 2.2 is a constant map then the conjugate A-magic labeling is said to be constant conjugate A-magic labeling otherwise it is said to be non-constant conjugate A-magic labeling.

In this paper, we consider the nonabelian group S_{3} and investigate the graphs which are conjugate S_{3}-magic.
Theorem 2.1. Let G be a conjugate S_{3}-magic graph. If G has a vertex of degree 2, then the conjugate S_{3}-magic constant does not belong to $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$.
Proof. Let G be a conjugate S_{3}-magic graph with magic constant a. Let v be the vertex of G having degree 2. Let u_{1} and u_{2} be the vertices adjacent to v. Then $\ell^{*}(v)=a=g\left(u_{1} v\right) * g\left(v u_{2}\right)$ or $\ell^{*}(v)=g\left(v u_{2}\right) * g\left(u_{1} v\right)$. Since the product of any two elements(need not be distinct) from a conjugacy class always belongs to $\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$, we have $a \notin\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$.
Corollary 2.1. If G is conjugate S_{3}-magic determined by the functions $f: E(G) \rightarrow$ N_{q} and $g: E(G) \rightarrow S_{3} \backslash\left\{\rho_{0}\right\}$. Suppose G has a vertex of order 2 then the range of g is always belongs to the conjugacy class $\left\{\rho_{1}, \rho_{2}\right\}$.

Theorem 2.2. There does not exist a non-constant conjugate S_{3}-magic labeling for the cycle graph C_{3}.
Proof. Let the vertices of C_{3} be denoted by u_{1}, u_{2} and u_{3}. Suppose to the contrary that there exist a non-constant conjugate S_{3}-magic labeling for C_{3}. Without loss of generality, we take $g\left(u_{1} u_{2}\right)=\rho_{1}$ then $g\left(u_{2} u_{3}\right)=\rho_{2}$ or $g\left(u_{1} u_{3}\right)=\rho_{2}$, since g is non constant. If $g\left(u_{2} u_{3}\right)=\rho_{2}$ then $\ell^{*}\left(u_{2}\right)=\rho_{0}$ then the magic constant must be ρ_{0} so $\ell^{*}\left(u_{3}\right)=\rho_{0}=g\left(u_{1} u_{3}\right) * g\left(u_{2} u_{3}\right)$ implies $g\left(u_{1} u_{3}\right)=\rho_{1}$ but then
$\ell^{*}\left(u_{1}\right)=g\left(u_{1} u_{2}\right) * g\left(u_{1} u_{3}\right)=\rho_{1} * \rho_{1}=\rho_{2}$ which is a contradiction. Hence we cannot label C_{3} using ρ_{1} and ρ_{2} under the map g. Similarly, we can prove that there does not exist a non-constant mapping $g: E(G) \rightarrow\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ to make the cycle C_{3} conjugate S_{3}-magic. This completes the proof of the theorem.

Theorem 2.3. If $n>3$, there exist a non-constant S_{3}-magic labeling for cycle C_{n}.
Proof. Let the vertices of C_{n} be denoted by $u_{1}, u_{2}, \ldots, u_{n}$. We consider the following two cases:

Case(i) n is even.
Suppose n is even. Then take f as any bijective map from $E\left(C_{n}\right)$ to N_{n} and define the map g as follows: label the adjacent edges of C_{n} by ρ_{1} and ρ_{2} alternatively. Then clearly $\ell^{*}(u)=\rho_{0}, \forall u \in V(G)$.

Case(ii) n is odd and $n>3$.
Suppose that n is odd and $n>3$. we define a conjugate S_{3}-magic labeling of C_{n} with magic constant ρ_{1}. Define f and g as follows:

Subcase(a) n is odd and $n \equiv 2(\bmod 3)$.
Let $g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}\mu_{1}, \text { if } i \equiv 1(\bmod 3), \\ \mu_{2}, \text { if } i \equiv 2(\bmod 3), \\ \mu_{3}, \text { if } i \equiv 0(\bmod 3) .\end{array} \quad\right.$ and $f\left(u_{i} u_{i+1}\right)=i, 1 \leq i \leq n, i+1$ is taken modulo n .

Subcase(b) n is odd and $n \equiv 1(\bmod 3)$.
Let $g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}\mu_{1}, \text { if } i \equiv 1(\bmod 3), i<n, \\ \mu_{2}, \text { if } i \equiv 2(\bmod 3) \text { and } i=n, \\ \mu_{3}, \text { if } i \equiv 0(\bmod 3) .\end{array}\right.$
Now define $f\left(u_{i} u_{i+1}\right)=i, 1 \leq i \leq n-2, f\left(u_{n-1} u_{n}\right)=n, f\left(u_{n} u_{1}\right)=n-1$.
Subcase(c) n is odd and $n \equiv 0(\bmod 3)$.
Let $g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}\mu_{1}, \text { if } i \equiv 1(\bmod 3), i \leq n-3, \\ \mu_{2}, \text { if } i \equiv 2(\bmod 3), i \leq n-3 \text { and } i=n, \\ \mu_{3}, \text { if } i \equiv 0(\bmod 3), i \leq n-3 \text { and } i=n-1 .\end{array}\right.$
Now define $f\left(u_{i} u_{i+1}\right)=i, 1 \leq i \leq n-2, f\left(u_{n-2} u_{n-1}\right)=n, f\left(u_{n-1} u_{n}\right)=$ $n-2, f\left(u_{n} u_{1}\right)=n-2$.

This completes the proof of the theorem.
Theorem 2.4. There does not exist a non-constant conjugate S_{3}-magic labeling
for the star graph, $K_{1, n}, n \geq 2$.
Proof. Suppose that $K_{1, n}$ is conjugate S_{3}-magic with magic constant a. Since there are n pendant vertices in $K_{1, n}$, all pendant edges should be mapped to a under g. So g must be a constant map. We observe that, the star graph $K_{1, n}$ is S_{3}-magic if and only if either n is odd or $n \equiv 1(\bmod 3)$ [4]. Thus we have $K_{1, n}$ is S_{3}-magic if and only if it is conjugate S_{3}-magic. So $K_{1, n}$ is conjugate S_{3}-magic if and only if n is odd or $n \equiv 1(\bmod 3)$.
Theorem 2.5. The bistar graph B_{n} is conjugate S_{3}-magic except when n is odd and $n \equiv 1(\bmod 3)$.
Proof. Let the end vertices of the bridge be k_{1} and k_{2}. Label the pendant vertices of first star by $u_{1}, u_{2}, \ldots, u_{n}$ and the pendant vertices of the second star by $v_{1}, v_{2}, \ldots, v_{n}$.

Case(i) n is even.
Let $f: E\left(B_{n}\right) \rightarrow N_{2 n+1}$ be any bijective map. Define $g: E(G) \rightarrow S_{3} \backslash \rho_{0}$ as $g(e)=\mu_{1}, \forall e \in E\left(B_{n}\right)$. Then clearly $\ell^{*}(u)=\mu_{1}, \forall u \in V\left(B_{n}\right)$.

Case(ii) n is odd and $n \equiv 0(\bmod 3)$.
In this case, let f as above and define g as $g(e)=\rho_{1}, \forall e \in E\left(B_{n}\right)$. Then $\ell^{*}(u)=\rho_{1}, \forall u \in V(G)$.

Case(iii) n is odd and $n \equiv 2(\bmod 3)$.
In this case also let f as above and define $g(e)=\left\{\begin{array}{l}\rho_{2}, \text { if } e=k_{1} k_{2}, \\ \rho_{1}, \text { otherwise. }\end{array} \quad\right.$ Clearly $\ell^{*}(u)=\rho_{1}, \forall u \in V\left(B_{n}\right)$.

Case(iv) n is odd and $n \equiv 1(\bmod 3)$.
Suppose that, B_{n} is conjugate S_{3}-magic with magic constant ' a ', $a \in S_{3}$. So each pendant edge should be mapped to a under the map g. Now let $g\left(k_{1} k_{2}\right)=b, b \in S_{3} \backslash\left\{\rho_{0}\right\}$, then there are n possible values for $\ell^{*}\left(k_{1}\right)$. But in all the cases $\ell^{*}\left(k_{1}\right)=a$ implies $b=\rho_{0}$. Which is a contradiction. So B_{n} is not conjugate S_{3}-magic when n is odd and $n \equiv 1(\bmod 3)$.

This completes the proof of the theorem.
Theorem 2.6. The cycle graph C_{n} with a pendant edge is not conjugate S_{3}-magic. Proof. Let G be the graph C_{n} with a pendant edge e. Denote the vertices of C_{n} by $u_{1}, u_{2}, \ldots, u_{n}$. Without loss of generality, let the one end vertex of the pendant edge e is at u_{1} and let the other end vertex of e be denoted by u_{n+1}.

Suppose to the contrary that, the graph G is conjugate S_{3}-magic with magic constant ' a ', where $a \in S_{3}$. Clearly $a \neq \rho_{0}$. Let $g\left(u_{i} u_{i+1}\right)=a_{i}$, where $a_{i} \in S_{3} \backslash\left\{\rho_{0}\right\}$. Suppose that the conjugate magic constant is ρ_{1}. Then $g\left(u_{1} u_{n+1}\right)=\rho_{1}$. But $\ell^{*}\left(u_{1}\right)=\rho_{1}$ implies that $g\left(u_{1} u_{2}\right) * g\left(u_{n} u_{n+1}\right)=\rho_{0}$ also $a_{i} \in\left\{\rho_{1}, \rho_{2}\right\}$. Without loss of generality, let $g\left(u_{1} u_{2}\right)=\rho_{1}$ and $g\left(u_{n} u_{1}\right)=\rho_{2}$. But then $\ell^{*}\left(u_{2}\right)=\rho_{1}$ implies $g\left(u_{2} u_{3}\right)=\rho_{0}$, which is a contradiction. Similarly, we can prove that the magic constant cannot be ρ_{2}. Now, suppose that $a=\mu_{1}$, then $g\left(u_{1} u_{n+1}\right)=\mu_{1}$. There are 6 possible product for $\ell^{*}\left(u_{1}\right)$. i.e., $a_{1} * a_{n} * \mu_{1}=\mu_{1}, a_{n} * a_{1} * \mu_{1}=\mu_{1}, \mu_{1} * a_{1} * a_{n}=$ $\mu_{1}, \mu_{1} * a_{n} * a_{1}=\mu_{1}, a_{1} * \mu_{1} * a_{n}=\mu_{1}$ or $a_{n} * \mu_{1} * a_{1}=\mu_{1}$. But all the six products leads to a contradiction as above. Hence the proof.

A wheel graph W_{n} of order $n+1$, is a graph that contains a cycle of order n and for which every vertex in the cycle is connected to one other vertex (which is known as the hub). The edges of a wheel which include the hub are called spokes. Equivalently, $W_{n}=K_{1}+C_{n}$.
Theorem 2.7. If $n \geq 3$, the wheel W_{n} is S_{3}-magic.
Proof. Let G be the wheel W_{n} and let the vertices of C_{n} be $v_{1}, v_{2}, \ldots, v_{n}$ and the vertex of K_{1} be k. Consider the following four cases, for all the following cases let f be any bijection from $E\left(W_{n}\right)$ to $N_{2 n}$:

Case(i) n is odd.
In this case, define $g(e)=\mu_{1}, \forall e \in E\left(W_{n}\right)$. Clearly W_{n} is conjugate S_{3}-magic with magic constant μ_{1}.

Case(ii) n is even and $n \equiv 0(\bmod 3)$.
Here we define $g: E\left(W_{n}\right) \rightarrow S_{3} \backslash\left\{\rho_{0}\right\}$ be the constant map $g(e)=\rho_{1}, \forall e \in$ $E\left(W_{n}\right)$. Then W_{n} becomes conjugate S_{3}-magic with constant ρ_{0}.

Case(iii) n is even and $n \equiv 1(\bmod 3)$.
Here we define f as above and let $g: E\left(W_{n}\right) \rightarrow S_{3} \backslash\left\{\rho_{0}\right\}$ be defined as :
for $1 \leq i \leq n, g\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}\rho_{1}, \text { if } i \text { is odd, } \\ \rho_{2}, \text { if } i \text { is even. }\end{array} \quad\right.$ and $g\left(k v_{i}\right)=\rho_{1}, i+1$ is taken modulo n.
Clearly, $\ell^{*}(u)=\rho_{0}, \forall u \in V\left(W_{n}\right)$. Hence the theorem is valid in this case.
Case(iv) n is even and $n \equiv 2(\bmod 3)$.
We define g as : $g(e)=\left\{\begin{array}{l}\rho_{1}, \text { if } e=k v_{i}, 1 \leq i \leq n, \\ \rho_{2}, \text { if } e=v_{i} v_{i+1}, 1 \leq i \leq n, n+1=1 .\end{array} \quad\right.$ In this case, W_{n} is conjugate S_{3}-magic with magic constant ρ_{2}.

This completes the proof of the theorem.
The helm H_{n} is a graph obtained from a wheel W_{n} by attaching a pendant edge at each vertex of the n cycle.
Theorem 2.8. The Helm graph $H_{n}, n \geq 3$ is conjugate S_{3}-magic if and only if $n \not \equiv 0(\bmod 3)$.
Proof. Let H_{n} be the Helm graph of order $2 n+1$. Denote the vertices of C_{n} by $u_{1}, u_{2}, \ldots, u_{n}$, vertex of C_{1} be k and denote the other vertices by $v_{1}, v_{2}, \ldots, v_{n}$ such that $u_{i} v_{i}$ is a pendant edge. Suppose that $n \not \equiv 0(\bmod 3)$. Now consider the following cases:

Case(i) $n \equiv 1(\bmod 3)$.
Let f be any bijective map from $E\left(H_{n}\right)$ to $N_{3 n}$ and let g be the constant map $g(e)=\rho_{1}, \forall e \in E\left(H_{n}\right)$. Clearly H_{n} becomes conjugate S_{3}-magic with constant ρ_{1}.

Case(ii) $n \equiv 2(\bmod 3)$.
Here, we define f as above and let g be the map $g(e)=\left\{\begin{array}{l}\rho_{1}, \text { if } e \text { is a pendant edge }, \\ \rho_{2}, \text { otherwise. }\end{array}\right.$
Then the above f and g determine a conjugate S_{3}-magic labeling of H_{n} with constant ρ_{1}.

Suppose to the contrary that H_{n} is conjugate S_{3}-magic when $n \equiv 0(\bmod 3)$. Let the magic constant be $a, a \in S_{3}$. Observe that $a \neq \rho_{0}$. Now if possible, let $a \in\left\{\rho_{1}, \rho_{2}\right\}$ then $g(e) \in\left\{\rho_{1}, \rho_{2}\right\}$ and f can be any bijection. Also $g\left(u_{i} v_{i}\right)=a, 1 \leq$ $i \leq n$. Now

$$
\begin{equation*}
\ell^{*}\left(u_{i}\right)=g\left(u_{i} v_{i}\right) * g\left(u_{i} u_{i+1}\right) * g\left(u_{i-1} u_{i}\right) * g\left(u_{i} k\right) . \tag{2.2}
\end{equation*}
$$

Since $\ell^{*}\left(u_{i}\right)=a$ the equation 2.2 implies $g\left(u_{i} u_{i+1}\right)=g\left(u_{i-1} u_{i}\right)=g\left(u_{i} k\right)=$ b, where $b \in\left\{\rho_{1}, \rho_{2}\right\}$. Thus $\ell^{*}(k)=\underbrace{b * b * \cdots * b}_{n \text { times }}=\rho_{0}$. Which is a contradiction. Hence $a \notin\left\{\rho_{1}, \rho_{2}\right\}$. Now suppose that $a \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$. Without loss of generality, let $a=\mu_{1}$ then $g\left(u_{i} v_{i}\right)=\mu_{1}, \forall 1 \leq i \leq n$. Let $g\left(u_{1} u_{2}\right)=p, g\left(u_{1} u_{n}\right)=$ $q, g\left(u_{1} k\right)=r$, where $p, q, r \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ then

$$
\begin{equation*}
\ell^{*}\left(u_{1}\right)=\prod_{e \in N^{*}\left(u_{1}\right)}(f(e), g(e))=\mu_{1} . \tag{2.3}
\end{equation*}
$$

Suppose $f\left(u_{1} u_{2}\right)<f\left(u_{1} u_{n}\right)<f\left(u_{1} k\right)$ then $\ell^{*}\left(u_{1}\right)=p * q * r * \mu_{1}$ or $\mu_{1} * p * q *$ r or $p * \mu_{1} * q * r$ or $p * q * \mu_{1} * r$. If $p * q * r * \mu_{1}=\mu_{1}$ or $\mu_{1} * p * q * r *=\mu_{1}$ then
$p * q * r=\rho_{0}$, which is not possible for any value of $p, q, r \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$. Similarly, we cannot find $p, q, r \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ satisfying equation 2.3 for any possible values of $f\left(u_{1} u_{2}\right), f\left(u_{1} u_{n}\right)$ and $f\left(u_{1} k\right)$. Hence $a \notin\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$. This completes the proof of the theorem.

A gear graph is a graph G_{n} obtained from the wheel W_{n} by adding a vertex between every pair of adjacent vertices of the n cycle.
Theorem 2.9. The gear graph G_{n} is conjugate S_{3}-magic if and only if n is even. Proof. Let $G=G_{n}$. Denote the central vertex of G by k and the vertices of W_{n} by $u_{1}, u_{2}, \ldots, u_{n}$ and let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices such that v_{i} is adjacent to u_{i} and u_{i+1}. Suppose that n is even. Define f be any bijective map from $E(G)$ to $N_{3 n}$. For $1 \leq i \leq n$, define $g: E(G) \rightarrow S_{3} \backslash\left\{\rho_{0}\right\}$ as $g\left(k u_{i}\right)=g\left(u_{i} v_{i}\right)= \begin{cases}\rho_{1}, & \text { if } i \text { is odd, } \\ \rho_{2}, & \text { if } i \text { is even } .\end{cases}$ and $g\left(v_{i} u_{i+1}\right)= \begin{cases}\rho_{2}, & \text { if } i \text { is even, } \\ \rho_{1}, & \text { if } i \text { is odd. }\end{cases}$
Clearly G is conjugate S_{3}-magic with magic constant ρ_{0}.
Conversely, suppose that n is odd and G is conjugate S_{3}-magic with magic constant a. Note that $a \notin\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$. We have $\ell^{*}\left(v_{1}\right)=a$ and $g\left(u_{1} v_{1}\right)$ is conjugate to $g\left(v_{1} u_{2}\right)$. Observe that the product of two elements from a conjugacy class in S_{3} always belongs to $\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$. Suppose that $a=\rho_{0}$ and g is a map from $E(G)$ to $\left\{\rho_{1}, \rho_{2}\right\}$. Without loss of generality, let $g\left(u_{1} v_{1}\right)=\rho_{1}$ and $g\left(v_{1} u_{2}\right)=\rho_{2}$. Then $\ell^{*}\left(u_{2}\right)=\rho_{0}$ implies $g\left(k u_{2}\right)=g\left(u_{2} v_{2}\right)=\rho_{2}$. Then $g\left(u_{2} v_{2}\right)=\rho_{2}$ implies $g\left(v_{2} u_{3}\right)=\rho_{1}$ and $g\left(k u_{3}\right)=\rho_{1}$. Proceeding like this, we obtain $g\left(k u_{n}\right)=g\left(u_{n} v_{n}\right)=\rho_{1}$ and $g\left(v_{n} u_{1}\right)=\rho_{2}$. Then $\ell^{*}\left(u_{1}\right)=\rho_{0}$ implies $g\left(k u_{1}\right)=\rho_{0}$. Which is a contradiction. So $g(e) \notin\left\{\rho_{1}, \rho_{2}\right\}$. Now suppose g is a map from $E(G)$ to $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$. Then $a=\rho_{0}$ implies $g\left(u_{1} v_{1}\right)=g\left(v_{1} u_{2}\right)$. Without loss of generality, let $g\left(u_{1} v_{1}\right)=g\left(v_{1} u_{2}\right)=\mu_{1}$. Now $\ell^{*}\left(u_{2}\right)=\rho_{0}$ implies $g\left(k u_{2}\right) * \mu_{1} * g\left(u_{2} v_{2}\right)=\rho_{0}$ or $g\left(k u_{2}\right) * g\left(u_{2} v_{2}\right) * \mu_{1}=\rho_{0}$. or $g\left(u_{2} v_{2}\right) * \mu_{1} * g\left(k u_{2}\right)=\rho_{0}$ or $g\left(u_{2} v_{2}\right) * g\left(k u_{2}\right) * \mu_{1}=\rho_{0}$ or $\mu_{1} * g\left(k u_{2}\right) * g\left(u_{2} v_{2}\right)=\rho_{0}$ or $\mu_{1} * g\left(u_{2} v_{2}\right) * g\left(k u_{2}\right)=\rho_{0}$. But we cannot find $g\left(u_{2} v_{2}\right), g\left(k u_{2}\right) \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ satisfying any of the above 6 equations.

Now, suppose that $a=\rho_{1}$ and $g(e) \in\left\{\rho_{1}, \rho_{2}\right\}$. So $\ell^{*}\left(v_{1}\right)=\rho_{1}$ implies $g\left(u_{1} v_{1}\right)=$ $g\left(v_{1} u_{2}\right)=\rho_{2}$. Also $\ell^{*}\left(u_{2}\right)=\rho_{1}$ implies $g\left(u_{2} v_{2}\right)=g\left(k u_{1}\right)=\rho_{1}$ but then $\ell^{*}\left(v_{2}\right)=$ $g\left(u_{2} v_{2}\right) * g\left(v_{2} u_{3}\right)=\rho_{1}$ implies $g\left(v_{2} u_{3}\right)=\rho_{0}$, which is a contradiction.

Suppose that $a=\rho_{1}$ with $g(e) \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$. Without loss of generality, let $f\left(u_{1} v_{1}\right)<f\left(v_{1} u_{2}\right)$ and $g\left(u_{1} v_{1}\right)=\mu_{1}$ and $g\left(v_{1} u_{2}\right)=\mu_{2}$. There are 6 possible products for $\ell^{*}\left(u_{2}\right)$ as above depending on the function f. But all the 6 product leads to a contradiction as in the above cases. So $a \neq \rho_{1}$. Similarly, we can prove that $a \neq \rho_{2}$. Hence n can not be an odd number. This completes the proof of the
theorem.
A shell $S_{n, n-3}, n \geq 4$ of width n is a graph obtained by taking $n-3$ concurrent chords in a cycle C_{n} of n vertices. The vertex at which all chords are concurrent is called apex. The two vertices adjacent to the apex have degree 2 , the apex has degree $n-1$ and all other vertices have degree 3 .
Theorem 2.10. The shell graph $S_{n, n-3}$ is conjugate S_{3}-magic for all $n>4$ except when $n \neq 6$.
Proof. Let $S_{n, n-3}$ be the shell graph and denote the vertices of $S_{n, n-3}$ by $u_{1}, u_{2}, \ldots, u_{n}$. Without loss of generality, let the apex be u_{1}. Consider the following four cases also for all the following cases let f be any bijection from $E\left(S_{n, n-3}\right)$ to $N_{2 n-3}$ and let $u_{n+1}=u_{1}$. Let $1 \leq i \leq n$ and $3 \leq j \leq n-1$.

Case(i) $n \equiv 1(\bmod 3), n \neq 4$.

$$
\begin{aligned}
& \text { In this case, define } g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}
\rho_{1}, \text { if } i=1,2, n-1, n, \\
\rho_{2}, \text { otherwise. }
\end{array}\right. \text { and } \\
& \qquad g\left(u_{1} u_{j}\right)= \begin{cases}\rho_{2}, & \text { if } j=3, n-1, \\
\rho_{1}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then clearly $\ell^{*}(u)=\rho_{2}, \forall u \in V\left(S_{n, n-3}\right)$.
Case(ii) $n \equiv 2(\bmod 3)$.

$$
\begin{aligned}
& \text { Here we define } g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}
\rho_{1}, \text { if } i=1, n, \\
\rho_{2}, \text { if } 2 \leq i \leq n-1 .
\end{array}\right. \text { and } \\
& g\left(u_{1} v_{j}\right)=\rho_{2}, 3 \leq j \leq n-1 .
\end{aligned}
$$

Hence the above f and g will determine a conjugate S_{3}-magic labeling of $S_{n, n-3}$ with magic constant ρ_{0}.

Case $(i i i) ~ n \equiv 0(\bmod 3)$ and n odd. In this case, define
$g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}\rho_{1}, \text { if } i \text { is even and } 4 \leq i \leq n-1, i=1,2, n-1, n, \quad \text { and } \\ \rho_{2}, \text { if } i \text { is odd and } 3 \leq i \leq n-2 .\end{array}\right.$
$g\left(u_{1} u_{j}\right)=\rho_{2}$. Hence $\ell^{*}(u)=\rho_{2}, \forall u \in V\left(S_{n, n-3}\right)$.
Case(iv) $n \equiv 0(\bmod 3), n$ is even and $n \neq 6$.

Here we define

$$
\begin{aligned}
g\left(u_{1} u_{2}\right) & =g\left(u_{2} u_{3}\right)=g\left(u_{1} u_{n}\right)=g\left(u_{n-1} u_{n}\right)=\rho_{1}, \\
g\left(u_{3} u_{4}\right) & =g\left(u_{4} u_{5}\right)=g\left(u_{5} u_{6}\right)=g\left(u_{n-2} u_{n-1}\right)=g\left(u_{n-3} u_{n-2}\right)=\rho_{2}, \\
g\left(u_{i} u_{i+1}\right) & =\left\{\begin{array}{ll}
\rho_{1}, & \text { if } i \text { is even and } 6 \leq i \leq n-4, \\
\rho_{2}, & \text { if } i \text { is odd and } 7 \leq i \leq n-4 .
\end{array}\right. \text { and } \\
g\left(u_{1} u_{j}\right) & = \begin{cases}\rho_{1}, & \text { if } i=4,5, n-2, \\
\rho_{2}, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Thus $\ell^{*}(u)=\rho_{2}, \forall u \in V\left(S_{n, n-3}\right)$.
This completes the proof of the theorem.
Theorem 2.11. The shell graphs $S_{4,1}$ and $S_{6,3}$ are not conjugate S_{3}-magic.
Proof. Let the vertices of $S_{4,1}$ be u_{1}, u_{2}, u_{3} and u_{4}. Let the apex be u_{1}. Suppose that $S_{4,1}$ is conjugate S_{3}-magic with magic constant $a, a \in S_{3}$. Since u_{2} and u_{4} have degree 2, $a \in\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$ (Theorem 2.1). Consider the following cases.

Case (i) $a=\rho_{0}$ and $g(e) \in\left\{\rho_{1}, \rho_{2}\right\}$.
Without loss of generality, let $g\left(u_{1} u_{2}\right)=\rho_{1} . \ell^{*}\left(u_{2}\right)=\rho_{0}$ implies $g\left(u_{2} u_{3}\right)=\rho_{2}$.
Similarly, $\ell^{*}\left(u_{3}\right)=\rho_{0}$ implies $g\left(u_{1} u_{3}\right)=g\left(u_{3} u_{4}\right)=\rho_{2}$. Then $\ell^{*}\left(u_{4}\right)=\rho_{0}$ implies $g\left(u_{4} u_{1}\right)=\rho_{1}$. Hence $\ell^{*}\left(u_{1}\right)=g\left(u_{1} u_{2}\right) * g\left(u_{1} u_{3}\right) * g\left(u_{4} u_{1}\right)=\rho_{1} * \rho_{2} * \rho_{1}=$ $\rho_{1} \neq \rho_{0}$. Which is a contradiction.

Case(ii) $a=\rho_{0}$ and $g(e) \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$.
In this case, without loss of generality, let $g\left(u_{1} u_{2}\right)=\mu_{1}$ then $\ell^{*}\left(u_{2}\right)=$ ρ_{0} implies $g\left(u_{2} u_{3}\right)=\mu_{1}$. Now $\ell^{*}\left(u_{3}\right)=\prod_{e \in N^{*}\left(u_{3}\right)}(f(e), g(e))$. We have $g\left(u_{2} u_{3}\right), g\left(u_{1} u_{3}\right) \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ but the product of any three elements in $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ (need not be distinct) does not yield the value ρ_{0}. Hence $\ell^{*}\left(u_{3}\right) \neq$ ρ_{0}, which is a contradiction.
The above 2 cases show that $a \neq \rho_{0}$.
Case(iii) $a=\rho_{1}$ and $g(e) \in\left\{\rho_{1}, \rho_{2}\right\}$.
Since $a=\rho_{1}, \ell^{*}\left(u_{2}\right)=\rho_{1}$. So $g\left(u_{1} u_{2}\right)=g\left(u_{2} u_{3}\right)=\rho_{2}$. Similarly, $\ell^{*}\left(u_{3}\right)=\rho_{1}$ implies $g\left(u_{1} u_{3}\right)=g\left(u_{3} u_{4}\right)=\rho_{1}$. But $\ell^{*}\left(u_{4}\right)=\rho_{1}$ implies $g\left(u_{4} u_{1}\right)=\rho_{0}$, a contradiction.

Case(iv) $a=\rho_{1}$ and $g(e) \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$.
In the graph $S_{4,1}$ the vertices u_{1} and u_{3} are of degree 3. Observe that
$g\left(u_{2} u_{3}\right), g\left(u_{1} u_{3}\right), g\left(u_{1} u_{4}\right) \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ but the product of any three elements in $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ (need not be distinct) does not yield the values ρ_{0}, ρ_{1} and ρ_{2}. Hence the above case does not exist.

Case(v) $a=\rho_{2}$.
We can prove that, the magic constant a cannot be ρ_{2} when $g(e) \in\left\{\rho_{1}, \rho_{2}\right\}$ or $g(e) \in\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$. The proof is similar to the above cases (iii) and (iv). Hence there does not exist a conjugate S_{3} magic labeling for $S_{4,1}$ with magic constant ρ_{2}.

All the above cases show that there does not exist a conjugate S_{3}-magic labeling for the shell graph $S_{4,1}$. Similarly, we can prove that $S_{6,1}$ is not conjugate S_{3}-magic.

A fan graph, denoted by F_{n}, is defined as $P_{n}+K_{1}$, where P_{n} is a path on n vertices.

Theorem 2.12. The fan graph F_{n} is conjugate S_{3}-magic whenever $n \neq 3,5$.
Proof. We have $F_{n}=P_{n}+K_{1}$. Let $V\left(F_{n}\right)=\left\{k, u_{1}, u_{2}, \ldots, v_{n}\right\}$, where $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices corresponding to P_{n} and k be the vertex corresponding to K_{1}. Now consider the following four cases. For all the cases take f be any bijection from $E\left(F_{n}\right)$ to $N_{2 n-1}$.

Case(i) $n \equiv 0(\bmod 3)$ and $n>3$.
In this case, define $g: E\left(F_{n}\right) \rightarrow\left\{\rho_{1}, \rho_{2}\right\}$ as:

$$
\begin{gathered}
\text { for } 1 \leq i \leq n-1, g\left(u_{i} u_{i+1}\right)= \begin{cases}\rho_{1}, & \text { if } i=1 \text { and } i=n-1, \\
\rho_{2}, & \text { otherwise. }\end{cases} \\
g\left(k u_{i}\right)= \begin{cases}\rho_{2}, & \text { if } i=2, i=n-1, \\
\rho_{1}, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Clearly, f and g will determine a conjugate S_{3}-magic labeling for F_{n} with magic constant ρ_{2}.

Case(ii) $n \equiv 1(\bmod 3)$.
In this case, let g be defined by

$$
\begin{aligned}
g\left(u_{i} u_{i+1}\right) & =\rho_{1}, \text { if } i=1 \leq i \leq n-1 \text { and } \\
g\left(k u_{i}\right) & =\left\{\begin{array}{l}
\rho_{2}, \text { if } i=1, n, \\
\rho_{1}, \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Then the maps f and g will define a conjugate S_{3}-magic labeling for F_{n} with the magic constant ρ_{0}.

Case(iii) $n \equiv 2(\bmod 3)$ and n is even.
Here we define g as
$g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}\rho_{2}, \text { if } i \text { is odd, } \\ \rho_{1}, \text { if } i \text { is even. }\end{array}\right.$ and $g\left(k u_{i}\right)=\left\{\begin{array}{l}\rho_{2}, \text { if } i=1, i=n, \\ \rho_{1}, \text { otherwise } .\end{array}\right.$
Clearly $\ell^{*}(u)=\rho_{1}, \forall u \in V\left(F_{n}\right)$.
Case(iv) $n \equiv 2(\bmod 3), n$ is odd and $n \neq 5$.
In this case also we define f as above and for $1 \leq i \leq n$ define g as follows:

$$
\begin{aligned}
g\left(u_{1} u_{2}\right) & =g\left(u_{n-1} u_{n}\right)=g\left(u_{n-3} u_{n-2}\right)=\rho_{2}, \\
g\left(u_{2} u_{3}\right) & =g\left(u_{3} u_{4}\right)=g\left(u_{n-4} u_{n-3}\right)=g\left(u_{n-2} u_{n-1}\right)=\rho_{1}, \\
g\left(u_{i} u_{i+1}\right) & =\left\{\begin{array}{l}
\rho_{1}, \text { if } i \text { is even and } 4 \leq i \leq n-4, \\
\rho_{2},
\end{array}, \text { if } i \text { is odd and } 4 \leq i \leq n-4 .\right.
\end{aligned} \text { and }, ~=\left\{\begin{array}{l}
\rho_{2}, \text { if } i=1, n, 3,4, n-4, \\
\rho_{1}, \text { otherwise. }
\end{array}\right.
$$

By defining f and g as above we get a conjugate S_{3}-magic labeling for F_{n} with magic constant ρ_{1}.

Theorem 2.13. The fan graphs F_{3} and F_{5} are not conjugate S_{3}-magic.
Proof. Consider the fan graph F_{3}. Let the vertices of P_{3} be denoted by u_{1}, u_{2} and u_{3} and the vertex of K_{1} be denoted by k. Suppose on the contrary that F_{3} is conjugate S_{3}-magic with magic constant a, where $a \in\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$. Suppose that $a=\rho_{0}$. Without loss of generality, let $g\left(u_{1} u_{2}\right)=\rho_{1}$ then $g\left(u_{1} k\right)=\rho_{2}$ and $g\left(u_{2} k\right)=g\left(u_{2} u_{3}\right)=\rho_{1}$. Then $g\left(u_{2} u_{3}\right)=\rho_{1}$ implies $g\left(u_{3} k\right)=\rho_{2}$. But then $\ell^{*}(k)=$ $\rho_{2} * \rho_{1} * \rho_{2}=\rho_{2}$, which is a contradiction. Hence $a \neq \rho_{0}$. Suppose that $a=\rho_{1}$, then $\ell^{*}\left(u_{1}\right)=\ell^{*}\left(u_{3}\right)=\rho_{1}$ implies $g\left(u_{1} u_{2}\right)=\rho_{2}=g\left(k u_{1}\right)=g\left(k u_{3}\right)=g\left(u_{2} u_{3}\right)$. But then $\ell^{*}\left(u_{2}\right)=g\left(u_{1} u_{2}\right) * g\left(u_{2} u_{3}\right) * g\left(u_{2} k\right)=\rho_{1}$ implies $g\left(k u_{2}\right)=\rho_{1}$, which is a contradiction. Hence $a \neq \rho_{1}$. Similarly, we can prove that $a \neq \rho_{2}$. Hence F_{3} is not a conjugate S_{3}-magic graph. In a similar manner we can prove that the fan graph F_{5} is not conjugate S_{3}-magic.
Theorem 2.14. The complete bipartite graph $K_{m, n}$ is conjugate S_{3}-magic for $m, n>1$.
Proof. Let U and V be the two partite sets of $V\left(K_{m, n}\right)$. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices in U and V respectively. If m and n are of same parity then the constant map $g(e)=\mu_{1}$ together with any bijection $f: E\left(K_{m, n}\right) \rightarrow N_{m n}$ will give a conjugate S_{3}-magic labeling. Now, without loss of generality, assume
that m is an even number and n is an odd number. Now consider the following cases: For all the following cases let f be any bijection from $E\left(K_{m, n}\right)$ to $N_{m n}$.
Case(i) m is even and $n \equiv 0(\bmod 3)$.
In this case define $g: E\left(K_{m n}\right) \rightarrow S_{3} \backslash \rho_{0}$ as follows: For $1 \leq i \leq m$ and $1 \leq j \leq n$ define $g\left(u_{i} v_{j}\right)=\left\{\begin{array}{l}\rho_{1}, \text { if } i \text { is odd, } \\ \rho_{2}, \text { if } i \text { is even. }\end{array}\right.$

Case(ii) m is even and $n \equiv 1(\bmod 3)$.
For $1 \leq i \leq m$ and $1 \leq j \leq n-3$, define

$$
\begin{aligned}
g\left(u_{i} v_{j}\right) & =\left\{\begin{array}{l}
\rho_{1}, \text { if } i \text { is odd and } j \text { is odd }, i \text { is even and } j \text { is even, } \\
\rho_{2}, \text { if if } i \text { is odd and } j \text { is even }, i \text { is even and } j \text { is odd }
\end{array}\right. \text { and } \\
g\left(u_{i} v_{n-2}\right) & =g\left(u_{i} v_{n-1}\right)=g\left(u_{i} v_{n}\right)=\left\{\begin{array}{l}
\rho_{1}, \text { if } i \text { is odd, } \\
\rho_{2},
\end{array}, \text { if } i\right. \text { is even. }
\end{aligned}
$$

Case(iii) m is even and $n \equiv 2(\bmod 3)$.
For $1 \leq i \leq m$, let
$g\left(u_{i} v_{j}\right)=\left\{\begin{array}{l}\rho_{1}, \text { if } i \text { is odd and } 1 \leq j \leq n-1 ; i \text { is even and } j=n, \\ \rho_{2}, \text { if } i \text { is even and } 1 \leq j \leq n-1 ; i \text { is odd and } j=n .\end{array}\right.$
In all the above cases, we can prove that f and g will determine a conjugate $S_{3^{-}}$ magic labeling for $K_{m, n}$ with magic constant ρ_{0}. Hence the proof.

Acknowledgement

The first author acknowledges the financial support from the University Grants Commission, Government of India.

References

[1] Anil Kumar, V., Vandana, P. T., V_{4}-magic labelings of some Shell related graphs, British Journal of Mathematics and Computer Science, Vol. 9, Issue 3 (2015), 199-223.
[2] Anusha, C., and Anil Kumar, V., D_{4}-magic graphs, Ratio Mathematica, 42 (2022), 167-181.
[3] Anusha, C., and Anil Kumar, V., Q_{8}-magic labeling of some graphs and its subdivision graphs, Advances and Applications in Discrete Mathematics, 34 (2022), 67-85,.
[4] Anusha, C., and Anil Kumar, V., On the S_{3}-magic graphs, South East Asian Journal of Mathematics and Mathematical Sciences, Vol. 18, No. 3 (2022), 317-328.
[5] Jeyanthi, P., \& Jeyadaisy, K., Z_{k}-Magic Labeling of Some Families of Graphs. Journal of algorithms and computation, 50(2) (2018), 1-12.
[6] Lee, S. M., Saba, F., Salehi, E., Sun, H., On The V_{4}-Magic Graphs, Congressus Numerantium, (2002), 59-68.
[7] Sedláček, J., On magic graphs, Math. Slov., 26 (1976), 329-335.
[8] Sweetly, R., and Paulraj Joseph, J., Some special V_{4}-magic graphs, Journal of Informatics and Mathematical Sciences, 2 (2010), 141-148.
[9] Vandana, P. T., and Anil Kumar, V., V V_{4} Magic Labelings of Wheel related graphs, British Journal of Mathematics and Computer Science, Vol. 8, Issue 3 (2015).

