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1. Introduction
Throughout this paper, we shall consider only connected, finite, simple, and

undirected graphs. Let G = (V (G), E(G)) be any finite graph and let A be an
abelian group under addition with the identity element 0. Let A∗ = A \ {0}. Any
mapping ℓ : E(G) → A∗ is called an edge labeling. Observe that any edge labeling
induces a mapping ℓ+ : V (G) → A as follows: ℓ+(u) = Σ{ℓ(uv) : uv ∈ E(G)}.
A graph G is called A-magic, if there exists a ∈ A such that ℓ+(u) = a, for
all u ∈ V (G). Several authors studied about V4-magic graphs [6, 8, 9] and Zk-
magic graphs [5]. Recently, Anusha C. and Anil Kumar V. [2, 3, 4] introduced
A-magic labeling of graphs where A is non-abelian and studied graphs that are S3-
magic, D4-magic and Q8-magic. In this paper, we introduce a new magic labeling
of graphs using a non-abelian group namely, the conjugate A-magic labeling of
graphs and investigate conjugate S3-magic labeling of some graphs. Consider the
set X = {1, 2, 3}. A permutation of X is a function from X to itself that is both
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1-1 and onto. The permutations of X with the composition of functions as a binary
operation is a non-abelian group, called the symmetric group S3. The group S3 is
a non-abelian group of order 6 and its elements are given by

ρ0 =

(
1 2 3
1 2 3

)
, ρ1 =

(
1 2 3
2 3 1

)
, ρ2 =

(
1 2 3
3 1 2

)
,

µ1 =

(
1 2 3
1 3 2

)
, µ2 =

(
1 2 3
3 2 1

)
, µ3 =

(
1 2 3
2 1 3

)
.

2. Main Results
Here we need the following definition due to Anusha C and Anil Kumar V [4].

Definition 2.1. [4] Let G = (V (G), E(G)) be a finite graph with p vertices and
q edges, and let (A, ∗) be a finite non-abelian group with identity element 1. Let
f : E(G) → Nq = {1, 2, . . . , q} and let g : E(G) → A \ {1} be two edge labelings of
G such that f is bijective. Define an edge labeling ℓ : E(G) → Nq × A \ {1} by

l(e) := (f(e), g(e)), e ∈ E(G).

Define a relation ≤ on the range of ℓ by:

(f(e), g(e)) ≤ (f(e
′
), g(e′)) if and only if f(e) ≤ f(e′).

Then obviously, the relation ≤ is a partial order on the range of ℓ.
Let {(f(e1), g(e1)), (f(e2), g(e2)), . . . , (f(ek), g(ek))} be a chain in the range of ℓ.
We define the product of this chain as follows:

k∏
i=1

(f(ei), g(ei)) := ((((g(e1) ∗ g(e2)) ∗ g(e3)) ∗ g(e4)) ∗ . . .) ∗ g(ek).

Let u ∈ V (G) and let N∗(u) be the set of all edges incident with u. Consider the
restriction of the function ℓ on N(u), that is, ℓ|N∗(u). Observe that the range of
ℓ|N∗(u) is a chain, say (f(e1), g(e1)) ≤ (f(e2), g(e2)) ≤ · · · ≤ (f(en), g(en)). We
define

ℓ∗(u) =
n∏

i=1

(f(ei), g(ei)). (2.1)

If ℓ∗(u) is a constant, say a for all u ∈ V (G), we say that the graph G is A-magic.
The map ℓ∗ is called an A-magic labeling of G and the corresponding constant a is
called the magic constant.
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In the above definition if the elements g(e2), g(e3), . . . , g(en) belong to the conju-
gacy class determined by g(e1), then we say that the graph G is conjugate A-magic.
Formally, we have the following:

Definition 2.2. Let G = (V (G), E(G)) be a graph with p vertices and q edges,
and A be a finite non-abelian group of order n with identity 1. The graph G is said
to be a conjugate A-magic graph if

(i) for all u ∈ V (G),

ℓ∗(u) =
n∏

i=1

(f(ei), g(ei)) = constant in A(see definition 2.1).

(ii) the elements g(e2), g(e3), . . . , g(en) belong to the conjugacy class determined
by g(e1).

Definition 2.3. If the map g in the definition 2.2 is a constant map then the con-
jugate A-magic labeling is said to be constant conjugate A-magic labeling otherwise
it is said to be non-constant conjugate A-magic labeling.

In this paper, we consider the nonabelian group S3 and investigate the graphs
which are conjugate S3-magic.

Theorem 2.1. Let G be a conjugate S3-magic graph. If G has a vertex of degree
2, then the conjugate S3-magic constant does not belong to {µ1, µ2, µ3}.
Proof. Let G be a conjugate S3-magic graph with magic constant a. Let v be
the vertex of G having degree 2. Let u1 and u2 be the vertices adjacent to v.
Then ℓ∗(v) = a = g(u1v) ∗ g(vu2) or ℓ

∗(v) = g(vu2) ∗ g(u1v). Since the product of
any two elements(need not be distinct) from a conjugacy class always belongs to
{ρ0, ρ1, ρ2}, we have a /∈ {µ1, µ2, µ3}.
Corollary 2.1. If G is conjugate S3-magic determined by the functions f : E(G) →
Nq and g : E(G) → S3 \ {ρ0}. Suppose G has a vertex of order 2 then the range of
g is always belongs to the conjugacy class {ρ1, ρ2}.
Theorem 2.2. There does not exist a non-constant conjugate S3-magic labeling
for the cycle graph C3.
Proof. Let the vertices of C3 be denoted by u1, u2 and u3. Suppose to the contrary
that there exist a non-constant conjugate S3-magic labeling for C3. Without loss
of generality, we take g(u1u2) = ρ1 then g(u2u3) = ρ2 or g(u1u3) = ρ2, since
g is non constant. If g(u2u3) = ρ2 then ℓ∗(u2) = ρ0 then the magic constant
must be ρ0 so ℓ∗(u3) = ρ0 = g(u1u3) ∗ g(u2u3) implies g(u1u3) = ρ1 but then
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ℓ∗(u1) = g(u1u2) ∗ g(u1u3) = ρ1 ∗ ρ1 = ρ2 which is a contradiction. Hence we
cannot label C3 using ρ1 and ρ2 under the map g. Similarly, we can prove that
there does not exist a non-constant mapping g : E(G) → {µ1, µ2, µ3} to make the
cycle C3 conjugate S3-magic. This completes the proof of the theorem.

Theorem 2.3. If n > 3, there exist a non-constant S3-magic labeling for cycle Cn.
Proof. Let the vertices of Cn be denoted by u1, u2, . . . , un. We consider the
following two cases:

Case(i) n is even.
Suppose n is even. Then take f as any bijective map from E(Cn) to Nn and
define the map g as follows: label the adjacent edges of Cn by ρ1 and ρ2
alternatively. Then clearly ℓ∗(u) = ρ0,∀u ∈ V (G).

Case(ii) n is odd and n > 3.
Suppose that n is odd and n > 3. we define a conjugate S3-magic labeling of
Cn with magic constant ρ1. Define f and g as follows:

Subcase(a) n is odd and n ≡ 2(mod 3).

Let g(uiui+1) =


µ1, if i ≡ 1(mod 3),

µ2, if i ≡ 2(mod 3),

µ3, if i ≡ 0(mod 3).

and f(uiui+1) = i, 1 ≤ i ≤ n, i+ 1

is taken modulo n.

Subcase(b) n is odd and n ≡ 1(mod 3).

Let g(uiui+1) =


µ1, if i ≡ 1(mod 3), i < n,

µ2, if i ≡ 2(mod 3) and i = n,

µ3, if i ≡ 0(mod 3).

Now define f(uiui+1) = i, 1 ≤ i ≤ n− 2, f(un−1un) = n, f(unu1) = n− 1.

Subcase(c) n is odd and n ≡ 0(mod 3).

Let g(uiui+1) =


µ1, if i ≡ 1(mod 3), i ≤ n− 3,

µ2, if i ≡ 2(mod 3), i ≤ n− 3 and i = n,

µ3, if i ≡ 0(mod 3), i ≤ n− 3 and i = n− 1.

Now define f(uiui+1) = i, 1 ≤ i ≤ n − 2, f(un−2un−1) = n, f(un−1un) =
n− 2, f(unu1) = n− 2.

This completes the proof of the theorem.

Theorem 2.4. There does not exist a non-constant conjugate S3-magic labeling



Conjugate S3-Magic Graphs 323

for the star graph, K1,n, n ≥ 2.
Proof. Suppose that K1,n is conjugate S3-magic with magic constant a. Since
there are n pendant vertices in K1,n, all pendant edges should be mapped to a
under g. So g must be a constant map. We observe that, the star graph K1,n is
S3-magic if and only if either n is odd or n ≡ 1(mod 3) [4]. Thus we have K1,n is
S3-magic if and only if it is conjugate S3-magic. So K1,n is conjugate S3-magic if
and only if n is odd or n ≡ 1(mod 3).

Theorem 2.5. The bistar graph Bn is conjugate S3-magic except when n is odd
and n ≡ 1(mod 3).
Proof. Let the end vertices of the bridge be k1 and k2. Label the pendant ver-
tices of first star by u1, u2, . . . , un and the pendant vertices of the second star by
v1, v2, . . . , vn.

Case(i) n is even.
Let f : E(Bn) → N2n+1 be any bijective map. Define g : E(G) → S3 \ ρ0 as
g(e) = µ1,∀e ∈ E(Bn). Then clearly ℓ∗(u) = µ1,∀u ∈ V (Bn).

Case(ii) n is odd and n ≡ 0(mod 3).
In this case, let f as above and define g as g(e) = ρ1,∀e ∈ E(Bn). Then
ℓ∗(u) = ρ1,∀u ∈ V (G).

Case(iii) n is odd and n ≡ 2(mod 3).

In this case also let f as above and define g(e) =

{
ρ2, if e = k1k2,

ρ1, otherwise.
Clearly

ℓ∗(u) = ρ1,∀u ∈ V (Bn).

Case(iv) n is odd and n ≡ 1(mod 3).
Suppose that, Bn is conjugate S3-magic with magic constant ‘a’, a ∈ S3.
So each pendant edge should be mapped to a under the map g. Now let
g(k1k2) = b, b ∈ S3 \ {ρ0}, then there are n possible values for ℓ∗(k1). But in
all the cases ℓ∗(k1) = a implies b = ρ0. Which is a contradiction. So Bn is
not conjugate S3-magic when n is odd and n ≡ 1(mod 3).

This completes the proof of the theorem.

Theorem 2.6. The cycle graph Cn with a pendant edge is not conjugate S3-magic.
Proof. Let G be the graph Cn with a pendant edge e. Denote the vertices of Cn

by u1, u2, . . . , un. Without loss of generality, let the one end vertex of the pendant
edge e is at u1 and let the other end vertex of e be denoted by un+1.
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Suppose to the contrary that, the graph G is conjugate S3-magic with magic
constant ‘a’, where a ∈ S3. Clearly a ̸= ρ0. Let g(uiui+1) = ai, where ai ∈ S3\{ρ0}.
Suppose that the conjugate magic constant is ρ1. Then g(u1un+1) = ρ1. But
ℓ∗(u1) = ρ1 implies that g(u1u2) ∗ g(unun+1) = ρ0 also ai ∈ {ρ1, ρ2}. Without loss
of generality, let g(u1u2) = ρ1 and g(unu1) = ρ2. But then ℓ∗(u2) = ρ1 implies
g(u2u3) = ρ0, which is a contradiction. Similarly, we can prove that the magic
constant cannot be ρ2. Now, suppose that a = µ1, then g(u1un+1) = µ1. There are
6 possible product for ℓ∗(u1). i.e., a1 ∗an ∗µ1 = µ1, an ∗a1 ∗µ1 = µ1, µ1 ∗a1 ∗an =
µ1, µ1 ∗an ∗a1 = µ1, a1 ∗µ1 ∗an = µ1 or an ∗µ1 ∗a1 = µ1. But all the six products
leads to a contradiction as above. Hence the proof.

A wheel graph Wn of order n + 1, is a graph that contains a cycle of order n
and for which every vertex in the cycle is connected to one other vertex (which is
known as the hub). The edges of a wheel which include the hub are called spokes.
Equivalently, Wn = K1 + Cn.

Theorem 2.7. If n ≥ 3, the wheel Wn is S3-magic.
Proof. Let G be the wheel Wn and let the vertices of Cn be v1, v2, . . . , vn and the
vertex of K1 be k. Consider the following four cases, for all the following cases let
f be any bijection from E(Wn) to N2n:

Case(i) n is odd.
In this case, define g(e) = µ1,∀e ∈ E(Wn). Clearly Wn is conjugate S3-magic
with magic constant µ1.

Case(ii) n is even and n ≡ 0(mod 3).
Here we define g : E(Wn) → S3 \ {ρ0} be the constant map g(e) = ρ1,∀e ∈
E(Wn). Then Wn becomes conjugate S3-magic with constant ρ0.

Case(iii) n is even and n ≡ 1(mod 3).
Here we define f as above and let g : E(Wn) → S3 \ {ρ0} be defined as :

for 1 ≤ i ≤ n, g(vivi+1) =

{
ρ1, if i is odd,

ρ2, if i is even.
and g(kvi) = ρ1, i+ 1 is taken

modulo n.
Clearly, ℓ∗(u) = ρ0, ∀u ∈ V (Wn). Hence the theorem is valid in this case.

Case(iv) n is even and n ≡ 2(mod 3).

We define g as : g(e) =

{
ρ1, if e = kvi, 1 ≤ i ≤ n,

ρ2, if e = vivi+1, 1 ≤ i ≤ n, n+ 1 = 1.
In this

case, Wn is conjugate S3-magic with magic constant ρ2.
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This completes the proof of the theorem.
The helm Hn is a graph obtained from a wheel Wn by attaching a pendant edge

at each vertex of the n cycle.

Theorem 2.8. The Helm graph Hn, n ≥ 3 is conjugate S3-magic if and only if
n ̸≡ 0(mod 3).
Proof. Let Hn be the Helm graph of order 2n + 1. Denote the vertices of Cn

by u1, u2, . . . , un, vertex of C1 be k and denote the other vertices by v1, v2, . . . , vn
such that uivi is a pendant edge. Suppose that n ̸≡ 0(mod 3). Now consider the
following cases:

Case(i) n ≡ 1(mod 3).
Let f be any bijective map from E(Hn) to N3n and let g be the constant
map g(e) = ρ1,∀e ∈ E(Hn). Clearly Hn becomes conjugate S3-magic with
constant ρ1.

Case(ii) n ≡ 2(mod 3).
Here, we define f as above and let g be the map

g(e) =

{
ρ1, if e is a pendant edge,

ρ2, otherwise.

Then the above f and g determine a conjugate S3-magic labeling of Hn with
constant ρ1.

Suppose to the contrary that Hn is conjugate S3-magic when n ≡ 0(mod 3).
Let the magic constant be a, a ∈ S3. Observe that a ̸= ρ0. Now if possible, let
a ∈ {ρ1, ρ2} then g(e) ∈ {ρ1, ρ2} and f can be any bijection. Also g(uivi) = a, 1 ≤
i ≤ n. Now

ℓ∗(ui) = g(uivi) ∗ g(uiui+1) ∗ g(ui−1ui) ∗ g(uik). (2.2)

Since ℓ∗(ui) = a the equation 2.2 implies g(uiui+1) = g(ui−1ui) = g(uik) =
b, where b ∈ {ρ1, ρ2}. Thus ℓ∗(k) = b ∗ b ∗ · · · ∗ b︸ ︷︷ ︸

n times

= ρ0. Which is a contradic-

tion. Hence a /∈ {ρ1, ρ2}. Now suppose that a ∈ {µ1, µ2, µ3}. Without loss of
generality, let a = µ1 then g(uivi) = µ1,∀1 ≤ i ≤ n. Let g(u1u2) = p, g(u1un) =
q, g(u1k) = r, where p, q, r ∈ {µ1, µ2, µ3} then

ℓ∗(u1) =
∏

e∈N∗(u1)

(f(e), g(e)) = µ1. (2.3)

Suppose f(u1u2) < f(u1un) < f(u1k) then ℓ∗(u1) = p ∗ q ∗ r ∗ µ1 or µ1 ∗ p ∗ q ∗
r or p ∗ µ1 ∗ q ∗ r or p ∗ q ∗ µ1 ∗ r. If p ∗ q ∗ r ∗ µ1 = µ1 or µ1 ∗ p ∗ q ∗ r∗ = µ1 then
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p ∗ q ∗ r = ρ0, which is not possible for any value of p, q, r ∈ {µ1, µ2, µ3}. Similarly,
we cannot find p, q, r ∈ {µ1, µ2, µ3} satisfying equation 2.3 for any possible values
of f(u1u2), f(u1un) and f(u1k). Hence a /∈ {µ1, µ2, µ3}. This completes the proof
of the theorem.

A gear graph is a graph Gn obtained from the wheel Wn by adding a vertex
between every pair of adjacent vertices of the n cycle.

Theorem 2.9. The gear graph Gn is conjugate S3-magic if and only if n is even.
Proof. Let G = Gn. Denote the central vertex of G by k and the vertices of Wn by
u1, u2, . . . , un and let v1, v2, . . . , vn be the vertices such that vi is adjacent to ui and
ui+1. Suppose that n is even. Define f be any bijective map from E(G) to N3n. For

1 ≤ i ≤ n, define g : E(G) → S3 \ {ρ0} as g(kui) = g(uivi) =

{
ρ1, if i is odd,

ρ2, if i is even.

and g(viui+1) =

{
ρ2, if i is even,

ρ1, if i is odd.

Clearly G is conjugate S3-magic with magic constant ρ0.

Conversely, suppose that n is odd and G is conjugate S3-magic with magic
constant a. Note that a /∈ {µ1, µ2, µ3}. We have ℓ∗(v1) = a and g(u1v1) is conjugate
to g(v1u2). Observe that the product of two elements from a conjugacy class in
S3 always belongs to {ρ0, ρ1, ρ2}. Suppose that a = ρ0 and g is a map from E(G)
to {ρ1, ρ2}. Without loss of generality, let g(u1v1) = ρ1 and g(v1u2) = ρ2. Then
ℓ∗(u2) = ρ0 implies g(ku2) = g(u2v2) = ρ2. Then g(u2v2) = ρ2 implies g(v2u3) = ρ1
and g(ku3) = ρ1. Proceeding like this, we obtain g(kun) = g(unvn) = ρ1 and
g(vnu1) = ρ2. Then ℓ∗(u1) = ρ0 implies g(ku1) = ρ0. Which is a contradiction. So
g(e) /∈ {ρ1, ρ2}. Now suppose g is a map from E(G) to {µ1, µ2, µ3}. Then a = ρ0
implies g(u1v1) = g(v1u2). Without loss of generality, let g(u1v1) = g(v1u2) = µ1.
Now ℓ∗(u2) = ρ0 implies g(ku2) ∗ µ1 ∗ g(u2v2) = ρ0 or g(ku2) ∗ g(u2v2) ∗ µ1 = ρ0. or
g(u2v2) ∗µ1 ∗ g(ku2) = ρ0 or g(u2v2) ∗ g(ku2) ∗µ1 = ρ0 or µ1 ∗ g(ku2) ∗ g(u2v2) = ρ0
or µ1 ∗ g(u2v2) ∗ g(ku2) = ρ0. But we cannot find g(u2v2), g(ku2) ∈ {µ1, µ2, µ3}
satisfying any of the above 6 equations.

Now, suppose that a = ρ1 and g(e) ∈ {ρ1, ρ2}. So ℓ∗(v1) = ρ1 implies g(u1v1) =
g(v1u2) = ρ2. Also ℓ∗(u2) = ρ1 implies g(u2v2) = g(ku1) = ρ1 but then ℓ∗(v2) =
g(u2v2) ∗ g(v2u3) = ρ1 implies g(v2u3) = ρ0, which is a contradiction.

Suppose that a = ρ1 with g(e) ∈ {µ1, µ2, µ3}. Without loss of generality, let
f(u1v1) < f(v1u2) and g(u1v1) = µ1 and g(v1u2) = µ2. There are 6 possible
products for ℓ∗(u2) as above depending on the function f . But all the 6 product
leads to a contradiction as in the above cases. So a ̸= ρ1. Similarly, we can prove
that a ̸= ρ2. Hence n can not be an odd number. This completes the proof of the
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theorem.

A shell Sn,n−3, n ≥ 4 of width n is a graph obtained by taking n− 3 concurrent
chords in a cycle Cn of n vertices. The vertex at which all chords are concurrent
is called apex. The two vertices adjacent to the apex have degree 2, the apex has
degree n− 1 and all other vertices have degree 3.

Theorem 2.10. The shell graph Sn,n−3 is conjugate S3-magic for all n > 4 except
when n ̸= 6.
Proof. Let Sn,n−3 be the shell graph and denote the vertices of Sn,n−3 by u1, u2, . . . , un.
Without loss of generality, let the apex be u1. Consider the following four cases
also for all the following cases let f be any bijection from E(Sn,n−3) to N2n−3 and
let un+1 = u1. Let 1 ≤ i ≤ n and 3 ≤ j ≤ n− 1.

Case(i) n ≡ 1(mod 3), n ̸= 4.

In this case, define g(uiui+1) =

{
ρ1, if i = 1, 2, n− 1, n,

ρ2, otherwise.
and

g(u1uj) =

{
ρ2, if j = 3, n− 1,

ρ1, otherwise.

Then clearly ℓ∗(u) = ρ2,∀u ∈ V (Sn,n−3).

Case(ii) n ≡ 2(mod 3).

Here we define g(uiui+1) =

{
ρ1, if i = 1, n,

ρ2, if 2 ≤ i ≤ n− 1.
and

g(u1vj) = ρ2, 3 ≤ j ≤ n− 1.

Hence the above f and g will determine a conjugate S3-magic labeling of
Sn,n−3 with magic constant ρ0.

Case(iii) n ≡ 0(mod 3) and n odd. In this case, define

g(uiui+1) =

{
ρ1, if i is even and 4 ≤ i ≤ n− 1, i = 1, 2, n− 1, n,

ρ2, if i is odd and 3 ≤ i ≤ n− 2.
and

g(u1uj) = ρ2. Hence ℓ∗(u) = ρ2, ∀u ∈ V (Sn,n−3).

Case(iv) n ≡ 0(mod 3) , n is even and n ̸= 6.
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Here we define

g(u1u2) = g(u2u3) = g(u1un) = g(un−1un) = ρ1,

g(u3u4) = g(u4u5) = g(u5u6) = g(un−2un−1) = g(un−3un−2) = ρ2,

g(uiui+1) =

{
ρ1, if i is even and 6 ≤ i ≤ n− 4,

ρ2, if i is odd and 7 ≤ i ≤ n− 4.
and

g(u1uj) =

{
ρ1, if i = 4, 5, n− 2,

ρ2, otherwise.

Thus ℓ∗(u) = ρ2,∀u ∈ V (Sn,n−3).

This completes the proof of the theorem.

Theorem 2.11. The shell graphs S4,1 and S6,3 are not conjugate S3-magic.
Proof. Let the vertices of S4,1 be u1, u2, u3 and u4. Let the apex be u1. Suppose
that S4,1 is conjugate S3-magic with magic constant a, a ∈ S3. Since u2 and u4

have degree 2, a ∈ {ρ0, ρ1, ρ2} (Theorem 2.1). Consider the following cases.

Case (i) a = ρ0 and g(e) ∈ {ρ1, ρ2}.
Without loss of generality, let g(u1u2) = ρ1. ℓ

∗(u2) = ρ0 implies g(u2u3) = ρ2.
Similarly, ℓ∗(u3) = ρ0 implies g(u1u3) = g(u3u4) = ρ2. Then ℓ∗(u4) = ρ0
implies g(u4u1) = ρ1. Hence ℓ

∗(u1) = g(u1u2)∗g(u1u3)∗g(u4u1) = ρ1∗ρ2∗ρ1 =
ρ1 ̸= ρ0. Which is a contradiction.

Case(ii) a = ρ0 and g(e) ∈ {µ1, µ2, µ3}.
In this case, without loss of generality, let g(u1u2) = µ1 then ℓ∗(u2) =
ρ0 implies g(u2u3) = µ1. Now ℓ∗(u3) =

∏
e∈N∗(u3)

(f(e), g(e)). We have

g(u2u3), g(u1u3) ∈ {µ1, µ2, µ3} but the product of any three elements in
{µ1, µ2, µ3}(need not be distinct) does not yield the value ρ0. Hence ℓ

∗(u3) ̸=
ρ0, which is a contradiction.

The above 2 cases show that a ̸= ρ0.

Case(iii) a = ρ1 and g(e) ∈ {ρ1, ρ2}.
Since a = ρ1, ℓ

∗(u2) = ρ1. So g(u1u2) = g(u2u3) = ρ2. Similarly, ℓ∗(u3) = ρ1
implies g(u1u3) = g(u3u4) = ρ1. But ℓ∗(u4) = ρ1 implies g(u4u1) = ρ0, a
contradiction.

Case(iv) a = ρ1 and g(e) ∈ {µ1, µ2, µ3}.
In the graph S4,1 the vertices u1 and u3 are of degree 3. Observe that
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g(u2u3), g(u1u3), g(u1u4) ∈ {µ1, µ2, µ3} but the product of any three ele-
ments in {µ1, µ2, µ3} (need not be distinct) does not yield the values ρ0, ρ1
and ρ2. Hence the above case does not exist.

Case(v) a = ρ2.
We can prove that, the magic constant a cannot be ρ2 when g(e) ∈ {ρ1, ρ2}
or g(e) ∈ {µ1, µ2, µ3}. The proof is similar to the above cases (iii) and (iv).
Hence there does not exist a conjugate S3 magic labeling for S4,1 with magic
constant ρ2.

All the above cases show that there does not exist a conjugate S3-magic labeling
for the shell graph S4,1. Similarly, we can prove that S6,1 is not conjugate S3-magic.

A fan graph, denoted by Fn, is defined as Pn + K1, where Pn is a path on n
vertices.

Theorem 2.12. The fan graph Fn is conjugate S3-magic whenever n ̸= 3, 5.
Proof. We have Fn = Pn+K1. Let V (Fn) = {k, u1, u2, . . . , vn}, where u1, u2, . . . , un

be the vertices corresponding to Pn and k be the vertex corresponding to K1. Now
consider the following four cases. For all the cases take f be any bijection from
E(Fn) to N2n−1.

Case(i) n ≡ 0(mod 3) and n > 3.
In this case, define g : E(Fn) → {ρ1, ρ2} as:

for 1 ≤ i ≤ n− 1, g(uiui+1) =

{
ρ1, if i = 1 and i = n− 1,

ρ2, otherwise.

g(kui) =

{
ρ2, if i = 2, i = n− 1,

ρ1, otherwise.

Clearly, f and g will determine a conjugate S3-magic labeling for Fn with
magic constant ρ2.

Case(ii) n ≡ 1(mod 3).
In this case, let g be defined by

g(uiui+1) = ρ1, if i = 1 ≤ i ≤ n− 1 and

g(kui) =

{
ρ2, if i = 1, n,

ρ1, otherwise.

Then the maps f and g will define a conjugate S3-magic labeling for Fn with
the magic constant ρ0.
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Case(iii) n ≡ 2(mod 3) and n is even.
Here we define g as

g(uiui+1) =

{
ρ2, if i is odd,

ρ1, if i is even.
and g(kui) =

{
ρ2, if i = 1, i = n,

ρ1, otherwise.

Clearly ℓ∗(u) = ρ1,∀u ∈ V (Fn).

Case(iv) n ≡ 2( mod 3) , n is odd and n ̸= 5.
In this case also we define f as above and for 1 ≤ i ≤ n define g as follows:

g(u1u2) = g(un−1un) = g(un−3un−2) = ρ2,

g(u2u3) = g(u3u4) = g(un−4un−3) = g(un−2un−1) = ρ1,

g(uiui+1) =

{
ρ1, if i is even and 4 ≤ i ≤ n− 4,

ρ2, if i is odd and 4 ≤ i ≤ n− 4.
and

g(kui) =

{
ρ2, if i = 1, n, 3, 4, n− 4,

ρ1, otherwise.

By defining f and g as above we get a conjugate S3 -magic labeling for Fn

with magic constant ρ1.

Theorem 2.13. The fan graphs F3 and F5 are not conjugate S3-magic.
Proof. Consider the fan graph F3. Let the vertices of P3 be denoted by u1, u2

and u3 and the vertex of K1 be denoted by k. Suppose on the contrary that F3

is conjugate S3-magic with magic constant a, where a ∈ {ρ0, ρ1, ρ2}. Suppose
that a = ρ0. Without loss of generality, let g(u1u2) = ρ1 then g(u1k) = ρ2 and
g(u2k) = g(u2u3) = ρ1. Then g(u2u3) = ρ1 implies g(u3k) = ρ2. But then ℓ∗(k) =
ρ2 ∗ ρ1 ∗ ρ2 = ρ2, which is a contradiction. Hence a ̸= ρ0. Suppose that a = ρ1,
then ℓ∗(u1) = ℓ∗(u3) = ρ1 implies g(u1u2) = ρ2 = g(ku1) = g(ku3) = g(u2u3).
But then ℓ∗(u2) = g(u1u2) ∗ g(u2u3) ∗ g(u2k) = ρ1 implies g(ku2) = ρ1, which is a
contradiction. Hence a ̸= ρ1. Similarly, we can prove that a ̸= ρ2. Hence F3 is not
a conjugate S3-magic graph. In a similar manner we can prove that the fan graph
F5 is not conjugate S3-magic.

Theorem 2.14. The complete bipartite graph Km,n is conjugate S3-magic for
m,n > 1.
Proof. Let U and V be the two partite sets of V (Km,n). Let u1, u2, . . . , un and
v1, v2, . . . , vn be the vertices in U and V respectively. If m and n are of same parity
then the constant map g(e) = µ1 together with any bijection f : E(Km,n) → Nmn

will give a conjugate S3-magic labeling. Now, without loss of generality, assume
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that m is an even number and n is an odd number. Now consider the following
cases: For all the following cases let f be any bijection from E(Km,n) to Nmn.

Case(i) m is even and n ≡ 0(mod 3).
In this case define g : E(Kmn) → S3 \ ρ0 as follows: For 1 ≤ i ≤ m and

1 ≤ j ≤ n define g(uivj) =

{
ρ1, if i is odd,

ρ2, if i is even.

Case(ii) m is even and n ≡ 1(mod 3).
For 1 ≤ i ≤ m and 1 ≤ j ≤ n− 3, define

g(uivj) =

{
ρ1, if i is odd and j is odd , i is even and j is even,

ρ2, if if i is odd and j is even , i is even and j is odd
and

g(uivn−2) = g(uivn−1) = g(uivn) =

{
ρ1, if i is odd,

ρ2, if i is even.

Case(iii) m is even and n ≡ 2(mod 3).
For 1 ≤ i ≤ m, let

g(uivj) =

{
ρ1, if i is odd and 1 ≤ j ≤ n− 1; i is even and j = n,

ρ2, if i is even and 1 ≤ j ≤ n− 1; i is odd and j = n.

In all the above cases, we can prove that f and g will determine a conjugate S3-
magic labeling for Km,n with magic constant ρ0. Hence the proof.
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