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Abstract: Let L be a locale with top element 1, and J be a join semilattice with
bottom element 0;. The L-slice (o, J) is the action of the locale on join semilattice
satisfying certain properties. The concept of L-slices were modelled in tune with
the modules in algebra. The benefit of studying L-slices is that we can approach
the structure algebraically as well as topologically.

This paper deals with the graph theoretic approach to L-slices. The idea of re-
lating graphs with algebraic structures was started by the work of Beck in [3]. The
algebraic properties of L-slices prompted us to consider the possibility of various
graphs that could be associated with L-slices. The article introduces two different
graphs on L-slices. The total graph I'((T'(o, J)) is defined. We derive a character-
isation for such graphs to be nonempty. The structural properties of I'((T'(c, J))
is studied. The weak Zariski Topology on (o, J) gives us the graph Gr(w*). The
conditions under which the graph is nonempty is examined. Also some of the struc-
tural properties of G'r(w*) is obtained.
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1. Introduction and Preliminaries

Marshall Stone made a great impact on the concept of topological spaces
through his famous representation theorem.The theorem led to consider the con-
cept of point free topology. Many topologists of the time like Isabel made huge
contributions to the field. The complete lattices with meet distributing over arbi-
trary joins were named as frames/loclaes and was started to be viewed as gener-
alised topological spaces.Most of the topological concepts have been studied in the
localic background. The connection between Boolean algebra and Boolean rings
instigated the idea of taking locale theory to a more wider area of abstract alge-
bra. The concept of modules have seen a wide range of development in the field
of abstract algebra. The thought of connecting locales with modules shaped the
construction of L-slices. The idea of relating graphs with algebraic structures was
started by the work of Beck in [3]. The algebraic properties of L-slices prompted us
to consider the possibility of various graphs that could be associated L-slices.The
connection between graph theory and L-slices could be used to solve problems in
one theory using tools from the other.The complexity in studying L-slices can be
simplified using the techniques in graph theory. Further, we may be able to look
into the applications of L-slices in areas like networking. The chapter introduces
two different graphs on L-slices. The total graph I'((T'(o, J)) is defined. We derive
a characterisation for such graphs to be nonempty. The structural properties of
I'((T(0,J)) is studied. The weak Zariski Topology on (o, .J) gives us the graph
Gr(w*). The conditions under which the graph will be nonempty is examined.
Also, some of the structural properties of Gr(w*) is obtained. Here we consider
only finite L-slices and consequently the graphs under consideration would be the
finite ones.

1.1. Frames and Locales

Definition 1.1. [12] A frame is a complete lattice L satisfying the infinite dis-
tributivity law aM | |B = | {aMb;b € B} foralla e L and B C L.

Example 1.2. [12] i.The lattice of open subsets of topological space.
ii. The Boolean algebra B of all regularly open subsets of Real line R.

Remark. The category of frames is denoted by Frm and the dual category is the
category Loc of locales.

Definition 1.3. [12] A subset F' of locale L is said to be a filter if

1. I is a sub-meet-semilattice of L; that is 1, € F and a € F, b € F imply
allbe F.

1. F'is an upper set; that isa € F and a T b imply b € F.
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Definition 1.4. [12] A filter F is proper if F # L, that is if 0, ¢ F.
A proper filter F' in a locale L is prime if a; U as € F implies that a; € F or
as € F.

Definition 1.5. [12] A proper filter F' in a locale L is a completely prime filter if
for any indexing set J and a; € L, i € J, | |a; € F = Ji € J such that a; € F.
Completely prime filters are denoted by c.p filters.

1.2. L-slice and its Properties

This section discusses the concept of L-slice and some of its properties. Given
a locale L and a join semilattice J with bottom element 0;, we have introduced
a new concept of an action o of locale L on join semilattice J together with a set
of conditions. The pair (o, J) is called L-slice. L-slice, though algebraic in nature
adopts properties of L through the action o.

Definition 1.6. [13] Let L be a locale and J be join semilattice with bottom element
0;. By the “action of L on J”7 we mean a function o : L x J — J such that the
following conditions are satisfied.

i. o(a,z1V x9) =o(a,x1)Vo(a,xse) for alla € L,xy,x9 € J.

ii. 0(a,05) =0y for alla € L.

iti. o(aMb,x) =0c(a,o(b,x)) =0c(b,o(a,x)) for alla,b € L,x € J.

. o(1p,z) =x and 0(0p,x) =0y for all z € J.

v. o(aUb,z) =o(a,x)Vao(bx) fora,be L,z e J.

If o is an action of the locale L on a join semilattice J, then we call (o,J) as
L-slice.

Definition 1.7. [13] 1. Let L be a locale and I be any ideal of L. Consider each
x € I as constant map x: L — L. Then (0,1) is an L-slice. In particular (o, L) is
an L-slice.

2. Let the locale L be a chain with Top and Bottom elements and J be any join
semilattice with bottom element. Define o : L x J — J by o(a,j) =j Ya #0 and
0(0r,7) =0y. Then o is an action of L on J and (o,J) is an L-slice.

Definition 1.8. [13] Let (0, ), (u, K) be L-slices of a locale L. A map

fi(o,J) = (u, K) is said to be L-slice homomorphism if

i. f(x1 Vo) = f(x1)V fag) for all x1, 29 € J.

ii. f(o(a,x)) = u(a, f(x)) for alla € L and all x € (o, J).

Definition 1.9. [13] Let (0,.J) be an L-slice of a locale L. A subjoin semilattice
J" of J is said to be L-subslice of J if J' is closed under action by elements of L.

Example 1.10. [13] 1. Let L be a locale and O(L) denotes the collection of all
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order preserving maps on L. Then (o,0(L)) is an L-slice, where o : L x O(L) —
O(L) is defined by o(a, f) = fa, where f, : L — L is defined by f,(z) = f(x) MNa.
Let K = {f € O(L) : f(x) C o,V € L}. Then (0, K) is an L-subslice of the
L-slice (o, O(L)).

2. Let (0,J) be an L-slice and let « € (o, J). Define (z) = {o(a,z);a € L}. Then
(o, (x)) is an L-subslice of (o, J) and it is the smallest L-subslice of (¢, J) containing
.

Definition 1.11. [13] Let (o,J) be an L-slice of a locale L. For each a € L, the
map o, : (0,J) — (0,J) defined by 0,(x) = o(a,x) is an L-slice homomorphism.
Definition 1.12. [13] A subslice (0,1) of an L-slice (o,J) is said to be ideal of
(0,J) ifx € (0,1) and y € (0,J) are such that y < z, then y € (o,1).

Definition 1.13. An ideal (o,1) of an L-slice (0,J) is a prime ideal if it has the
following properties:

i. If a and b are any two elements of L such that o(aMb,z) € (0,1), then either
o(a,z) € (0,1) oro(b,z) € (a,1).

it. (o,1) is not equal to the whole slice (o, J).

Definition 1.14. [13] Let (0,J), (1, K) be L-slices of a locale L. A map

f (o, J) = (u, K) is said to be L-slice homomorphism if

i. f(xy V) = f(x1) V f(ag) for all x1,29 € (0,J).

it. f(o(a,x)) = p(a, f(x)) for alla € L and all x € (o, J).

Example 1.15. [13] i. Let (0,.J) be an L-slice and (o, J’) be an L-subslice of
(0,J). Then the inclusion map i : (o, J') — (0, J) is an L-slice homomorphism.

ii. Let I =] (a),J =| (b) be principal ideals of the locale L. Then (o, I), (o, J) are
L-slices. Then the map f : (0,1) — (0,J) defined by f(z) = x M b is an L-slice
homomorphism.

Proposition 1.16. [13] If f : (0,J) — (u, K) is a L-slice homomorphism, then
f(OJ) - OK.

1.3. L-Prime Elements and Spec(o, C)

Definition 1.17. [10] An element p # 1¢ of (0,C) is said to be L-prime element
if for every r € L andn € (0,C),o(r,n) < p implies that either r € [1c — p|L or
n < p.

Example 1.18. [10] If we consider the L-slice (M, L) then the L-prime elements

are precisely the meet irreducible elements of L.
We now discuss some of the properties of L-prime elements.
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Theorem 1.19. [10] If p be a L-prime element and x € (o,C') then [x — pl| is a
prime ideal of L.

Corollary 1.20. If p is a L-prime element then [1c — p| is a prime ideal of a
locale L.

Definition 1.21. [10] The set of all L -prime elements of (o,C) is called the
spectrum of (o,C') and is denoted by Spec(o,C).

Definition 1.22. [10] For n € (o,C) we define C(n) = {p € Spec(o,C) : n < p}.

Proposition 1.23. [10] Forn € (0,C) and p € Spec(o, C) we have the following :
i) C'(0¢) = Spec(o,C)
it) C(lc) = ¢
i) (N;e; C(ni) = C(V,;ep i) for some indexed set [
i) C(n)UC(l) CC(nAl).
The above proposition leads us to the following theorem.

Theorem 1.24. [10] On Spec(o,C),A = {C(n) : n € (0,C)} forms a basis for
some topology €.

Definition 1.25. [10] Specn (o, C) is the set of all p € (0,C) such that p is meet
irreducible as well as an L-prime element of (o, C).

Proposition 1.26. [10] On Speca(o,C), C(n)UC(l) = C(n Al).

Proof. We have C(n) UC(l) C C(nAl). If pe C(nAl)then n Al <p. The
L-prime element p being meet irreducible, either n < p or [ < p. That is, either
p € C(n)orpe C(l). Hence p € C(n) UC(l) and C(n) UC(l) = C(n Al).

Proposition 1.27. [10] The collection v = {C(n) : n € (0,C)} defined on
Specp(o,C) forms a family of closed sets for some topology on Specy (o, C).

Definition 1.28. [10] The topology V generated by the family of closed sets v is
called the Zariski topology on Specy(o,C).

2. Main Results

This paper deals with the graph theoretic approach to L-slices. The idea of re-
lating graphs with algebraic structures was started by the work of Beck in [3]. The
algebraic properties of L-slices prompted us to consider the possibility of various
graphs that could be associated with it. The paper introduces two different graphs
on L-slices. The total graph I'((T'(e, J)) is defined. We derive a characterisation for
such graphs to be nonempty. The structural properties of I'((T'(a, J)) is studied.
The weak Zariski Topology on (o, J) gives us the graph Gr(w*). The conditions
under which the graph is nonempty is examined. Also some of the structural prop-
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erties of G'r(w*) is obtained. Here we consider only finite L-slices and consequently
the graphs under consideration would be the finite ones.

2.1. Total Graph of L-Slice

Definition 2.1. Let (0, J) be an L-slice and L* = L\ {0.}. We define the torsion
elements of a L-slice T(o,J) as T(0,J) = {x € (0,J) : o(a,x) =0, for some a €
L*}. It is evident that T(o,J) is always nonempty.

Theorem 2.2. T(0,J) is an ideal of L-slice (o,J).

Proof. If z,y € T(o,J) then there exists a,b € L* such that o(a,z) = 0, and
o(b,y) = 0y. Also, o(aMb,xzVy) = o(a,0b,xVy)) =olaobz)Valby) =
o(a,o(b,z)) =0o(b,o(a,z)) =0c(b,0;) =0,. Therefore x Vy € T(0o,J).

If z < x then o(a,z) < o(a,x) implies o(a,z) = 0;. Therefore z € T(o,J). Con-
sider o(b,x) € (o,J), then o(a,o(b,z)) = o(b,o(a,z)) = o(b,0;) = 0,. Hence
T(o,J) is an ideal of (o, J).

Example 2.3. i) Let L be a locale and let J =| « for some x € L. Then (M, J) is
asliceand T(M,J) ={y € J:M(a,y) =0} ={ye J:aly=0,}.
ii) Consider the locale represented by the following Hasse diagram

1

Let J =l b= {0,a,b{}} then T'(N, J) = {0,}.
Note that for any L-slice (o, J) the annihilator Ann(J) = {z € (0,J) : 0(a,z) =
05 Vz € (0,J)} CT(0,J). We now define the total graph of the L-slice (o, J).

Definition 2.4. The vertex set Vi of I'(T'(o,J)) is the set of all elements of the
L-slice and the edge set Ep of T'(T(0,J)) = {(z,y) :xaVy € T(o,J)}.

Theorem 2.5. The total graph T'(T(o,J)) is complete if and only if T(o,J) =
(o,J).
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Proof. Suppose I'(T'(o, J)) is complete then there exists an edge between every
xz,y € Vp. That is, x Vy € T(o,J). In particular, every vertex is adjacent to
0;. Hence v 0; =2 € T(o,J) VYx € (0,J). Thus T(c,J) = (0,J). Conversely
suppose that T'(o,J) = (o,J). Since J is a join semilattice, for any two vertices
u,v € Vp implies u Vv € J =T(0,J). Thus I'(T(o, J)) is complete.

Corollary 2.6. The above theorem is necessarily satisfied if Ann(J) # {0,}.
Proof. Suppose a € Ann(J). The definition of Ann(J) shows that o(a,x) =
0y, Vz € (o,J). Evidently, T'(o,J) = (0,J) and I'(T'(0, J)) is complete.
Example 2.7. i) Let X = {a,b,c}.Then P(X) = {¢,{a}, {b}, {c}, {a,b}, {a,c},
{b,¢c}, {a,b,c}}. Let A ={b,c}. ] A={C € P(X):C C A} implies | A =
{6, {b},{c},{b,c}}. | A is a join semilattice under the partial ordering C. Also,
(B(X), C) isalocale. Define the action Mon | AasM(B, A;) = BNA; where A; €]
A. The annihilator Ann(] A) = {¢,{a}} and T(7,] A) = {¢, {b},{c},{b,c}} =|
A. Therefore I'(T'(M, ] A)) is complete. Also, I'(T'(M, | A)) is the complete graph
K4.

{b,c}

{b} {c}

0

ii) In Example 2.3 ii), we observed that T'(M,] b) = {0,}. Then the total graph
[(T(M,] b)) is totally disconnected.

b. o
([
0

Now we can generalise the above as follows.

Proposition 2.8. I'(T(o, J)) is totally disconnected if and only if T (o, JJ) = {0,}.
Proof. Since I'(T'(0, J)) is totally disconnected we have that 0; is not connected
with any other vertices. Hence xV0; = x ¢ T'(o, J) implying that T'(c, J) = {0,}.
Conversely, let T'(o,J) = {0,}. Any two vertices x,y of I'(T'(c, J)) is connected
if and only if x Vy = 0; and that is possible if and only if x = 0,y = 0;.Hence
['(T(0,J)) is totally disconnected.
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We have already shown that T'(c, J) is an ideal of (o, J). Now we propose the
next two theorems which is a consequence of the structure of T'(c, J).

Theorem 2.9. The subgraph induced by the set T(o,J) is always complete. In
particular, if | T'(o,J) |= n then the subgraph induced will be the complete graph
K,.

Proof. Since T'(o,J) is an ideal of (o, J), if z,y € T(0,J) then x Vy € T(o,J).
Therefore the subgraph induced by T'(o, J) is always complete.

Corollary 2.10. The clique number w(I'(T'(c,J))) is | T(o,J) |.

Corollary 2.11. The subgraph induced by (o, J) \ T'(c,J) is totally disconnected
and the independence number S(I(T (o, J))) =| (o, J)\ T'(0,J) |.

Theorem 2.12. [f T'(o,J) is a proper ideal of (o,J) then I'(T(o,J)) is always
disconnected.
Proof. Let x,y € (0,J) such that € T(0,J) and y € (0,J) \ T(o,J). The
subgraph induced by T'(o,J) and (o,J) \ T'(c, J) are disjoint. Suppose they are
connected then z Vy € T(o,J). But T(o,J) is an ideal would imply that y €
T(o,J), which is a contradiction. Thus the subgraphs induced by T'(o,J) and
(0,J)\ T'(o,J) will always be disjoint. Thus I'(T'(o, J)) is always disconnected.
Let us consider some L-slices and examine the properties of total graph associ-
ated with them.

Example 2.13. Let J be given by the Hasse diagram

And let L = {0 < ¢ < 1}. Define the action on J as M(a,x) = aMz for a € L and
xz € J. The ideal T'(o,J) = {0,b,d} and it is a proper ideal of (M, J). I'(T(M, J))

is disconnected and the graph is
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Thus the total graph of the L-slice is the union of two K3 graphs and two K;
graphs.

If we consider L = {0 < a < 1} then T'(M,J) = {0,b}. Then the total graph of
L-slice is

c @ .d

a @ b

0

The total graph of the L-slice is the union of one K, graph and four K; graphs.
If welet L ={0<d <1} then T(N,J) = {0} and I'(T'(M, J)) is disconnected.

Remark. A L-slice is said to be a o-domain over L if there exists mo torsion
elements for the L-slice. In other words, there exists no a € L* such that o(a,x) =
0.

Example 2.14. i) If L is a chain then the L-slice (M, L) is a o-domain over L.
Let T*(o,J) = {x # 0; : Ja € L* such that o(a,z) = 0;} then the corresponding
total graph is denoted by I'(T*(a, J)).

In this case, if T*(o, J) is nonempty then T*(o, J) is a subslice. Also, if an L-slice
is a o-domain over L then the corresponding I'(7™*(o, J)) is an empty graph.

ii) If L is a chain then I'(7*(M, L)) is an empty graph.

Definition 2.15. A locale L is said to have zero divisors if for a € L* there exists
b e L* such that am™b =0y,

Lemma 2.16. Let a be a zero divisor of the locale L. If x € (o, J) then o(a,x) €
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T(o,J).
Proof. If a is a zero divisor of L then there exists b € L such that aMb = 0y .
Therefore o(b,0(a,z)) = o(aMb,x) = o(0r,x) = 0; implies that o(a,z) € T(c, J).

Lemma 2.17. If the top element 11, of the locale L is the join of n zero divisors
of L then every element of the L-slice (o, J) is the join of n torsion elements.
Proof. Let 1, = z; U 2, L ..... U z,, where each z; is a zero divisor of L.

For any x € (0,J), o(1p,2)=0(z1 Uz U ... U 2, )
=o0(z1,2) Vo(z,1)...0(z, )
=1z =0(z1,2) Vo(29,2)...0(2,, T)

The above lemma states that each o(z;,z) € T'(o, J). Hence the result.
A characterisation of the total graph of an L-slice based on the zero
divisors of the locale L.

Theorem 2.18. If L has a finite basis of zero divisors then the total graph of the
L-slice (o, J) is complete.

Proof. If {z,29,....2,} be the finite basis of zero divisors then from the above
lemma = = o(21,2) V 0(22,2)...0(2,, x), where each o(z;,z) € T(0,J). And the
fact that T'(o, J) is an ideal will give us the theorem.

Proposition 2.19. The chromatic number xI'(T (o, J)) of I'(T(o,J)) is such that
either always xU'(T(c,J)) =1 or xI'(T(c,J)) =n+ 1, where n =| T(c, J) |.
Proof. If T'(o,J) = {0,} then graph I'(T'(o,J)) is totally disconnected and
xI'(T(o,J)) is one. We know that the subgraph induced by T'(o, J) is the complete
graph K. Theorem 2.12 shows that if T'(c, J) is a proper ideal then I'(T'(e, J)) is
always disconnected. Thus if T'(¢, J) # {0;} then xI'(T(o, J)) = n + 1.

Remark. Theorem 2.8 (t = {0}) and Theorem 2.12 (t # {0}) shows that I'(T' (o, J))

15 never a critical graph.

Property 1. The diameter of the graph diam(I'(T (o, J))) € {1, 00}.
Proof. The theorem 2.5 shows that diam(I'(T'(o, J))) = 1. If T'(0, J) = {0,} then
the graph is totally disconnected and diam()I'(T ( J))) =

Property 2. The radius r(I'(T' (o, J))) € {0,1}.
Proof. The graph I'(7'(o, J)) is either complete or disconnected. Hence the radius
of the total graph of the L-slice will be either 0 or 1.

Let us denote the subgraph induced by T'(o, J) as I',,(T'(o, J)), where n denotes
the cardinality of the set T'(o, J).

Property 3. IfT'(o,J) is proper ideal then the diameter and radius of T',,(T (o, J))

tr
00.
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will be the same and equal to 1.
Proof. The property is obtained through the completeness of the subgraph.

Property 4. Whenever |T(o,J)|= n > 3, then the girth of T,(T(o,J)) denoted
as gr(L'n(T(o, J))) = 3 and the circumference of I'y,(T (0, J)), c¢(I'y(T(0,J))) = n.
Proof. Follows from the completeness of I',,(T'(a, J)).

The above property can also be restated as.
Property 5. If |T(o,J)|=n > 3 if and only if gr(T',,(T (o, J))) = 3.

In this section we have defined and studied various properties of the total graph.

We have observed that T'(T'(a, J)) is complete if |Ann(J)|> 2. If |T(o, J)|> 2 then
['(T(o,J)) disconnected. Thus I'(T'(o, J)) is either complete or disconnected.

2.2. Graphs associated with weak Zariski topology w* on Spec(a, C')

We have shown in [10] that the sets C'(n) = {p € Spec(o,C) : n < p} forms
basis for a topology on prime spectrum Spec(o, C). Also, if C(n)UC(l) = C(nAl)
the collection v = {C(n) : n € (o,C)} will then be the collection of closed sets on
Spec(o,C) and the topology so formed may be called weak Zariski topology w* on
Spec(a,C) .

This section deals with graphs associated with this weak Zariski topology w*. For
a subset T of Spec(o, C') we introduce a graph Gr(w*). We study some of its prop-
erties and show that it has a bipartite subgraph.

Definition 2.20. Let T be a nonempty subset of Spec(o,C). The graph Gr(w*) has
as vertex set V(Gr(w*)) = {n € (0,C) : 3 1 € (0,C) such that C(n)UC(I)
T}. Also, two vertices n and k are adjacent if and only if C(n) UC(k) =T. I
other words, the graph Gr(w*) has n as vertex if and only if there exists al € (o,C)
such that C(n A1) =T.

3

Remark. We study the properties of graphs associated with the weak Zariski topol-
ogy. The definition itself gives us two conditions for such a graph to exist. We state
them as our next two propositions.

Proposition 2.21. Gr(w*) # ¢ if and only if T is closed and is not an irreducible
subset of Spec(o,C').
Proof. Follows directly from the definition of Gp(w*).

The above proposition can be rephrased as follows.

Proposition 2.22. Gr(w*) # ¢ if and only if T = C(A\T) and T is not an irre-
ducible subset of Spec(o,C').

Proof. Suppose Gr(w*) # ¢. The above proposition shows that 7" is closed.So
it remains to show that 7" = C(AT). We know that T C C(AT). Let C(n)
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be any closed subset of Spec(o,C) containing T. Then n < p Vp € T implies
that n < A crp = ¢q. Therefore for evey | € C(q) implies I € C(n). That
is, C(n) 2 C(q). Hence C(q) is the smallest closed set containing 7. Thus
T =C(q) = C(N\perp) = C(NT).

Theorem 2.23. The weak Zariski topology graph Gr(w*) is connected and the
diameter of the graph, diam(Gr(w*)) < 2.

Proof. If n and k are not adjacent then C'(n)UC (k) # T. Now there exists vertices
[ and k such that C(n)UC(l) =C(nAl)=T and C(m)UC(k) =C(mAk)=T.
If | = m then n — [ — k is a path of length two. If [ # m thenn — (I Am) —k is a
path of length two. Hence G (w*) is connected and diam(Gr(w*)) < 2.

Corollary 2.24. If Gr(w*) contains a cycle then the girth g(Gr(w*)) < 3.
Proof. Suppose g(Gr(w*)) =k > 3. Let ny —ng —ng —---—np_1 —ng —ng be a
cycle with length k. Then clearly ny — (ng Ang_1) — ng — nq is a cycle of length 3.
Hence a contradiction. Therefore g(Gr(w*)) < 3.

Example 2.25. i) Let C' = {1,2,3,4,5} and (C, <) be complete lattice with < as
the usual ordering ‘less than or equal to’. Let the locale be (L = {1,2,5}, <). The
action o defined as o(a,z) = a Mz will make C' an L-component (M1, C).

In this case Spec(o, C') = {2,3,4} and C(1) = Spec(o,C), C(2) ={2,3,4}, C(3) =
{3,4}, C(4) = {4}, C(5) = ¢. Also, C(n) U C(m) = C(n Am) for every n,m €
(M, C). If T'={3,4} then V(Gr(w*)) = {3,4,5}. The graph Gr(w*) is K ».

5

3 4

If T'={2,3,4} then V(Gr(w*)) = {1,2,3,4,5} and the graph Gr(w*) is Ka3.

3 4 5

1 2

Also if T = {2,4} then Gr(w* = ¢)
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ii) Consider the complete lattice

® o

Let L = {0,a,1}. The spectrum Spec(o,C) = {z,a,b}. C(0) = Spec(o,C),
c(1) = ¢, C(z) = {x,a,b}, C(c) = {a,b}, C(a) = {a}, C(b) = {b}. It can be
easily verified that C(n) U C'(m) = C(n A m) for every pair n,m € (o,C). For
T = {z,a} then Gr(w*) = ¢. If T = {a,b} then V(Gr(w*)) = {1,¢,a,b} and the
graph is

1 c
If T = {a} then V(Gr(w*)) = {1,a} and the graph is
o——©

1 a

Remark. Since C(1¢) = () the top element 1¢ will always belong to the vertex set
and deg(1c) > 1. Also deg(1¢) is the cardinality of the set {n € (0,C) : C(n) =
T}.

Proposition 2.26. For any finite set T and Gr(w*) # ¢ we have that
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TNV(Gr(w*) # ¢.
Proof. Let p € T then we have C(p) U C(A er,z,9) = T.Therefore, p €
V(GT(W*))

2.3. The subgraph G.(w*)

Definition 2.27. The subgraph G (w*) of Gr(w*) has verter set V(Gp(w*))
defined as {n € (0,C) : there exist | € (0,C) such that C(n) U C(l) = T,
C(n),C(l) # T,C(n) N C(l) = ¢}, where (u,v) € E(Gr(w*)) if and only i
Cu)UC(v) =T,C(u) NC(v) = ¢.

Note that the degree of u is the number of vertices k with C'(v) = C(k).

Proposition 2.28. G'(w*) # ¢ if and only if T = C(Nyer @) and is disconnected.
Proof. We have already shown Gr(w*) # ¢ then T' = C(A\,crq). Let n,l €

!

V(Gp(w*)), then C(n)UC(l) =T,C(n)NC(l) = ¢. Thus, T is disconnected. The
converse follows easily from the definition.

Theorem 2.29. G(w*) is a bipartite graph.

Proof. A graph is bipartite if and only if it does not contain an odd cycle [4]. We
will show that G7(w*) does not have an odd cycle. Suppose g(Gp(w*)) = k > 4.
Consider the cycle ny —no —ng — --- — np_1 — np — ny of length k. It is evident
that C'(ng_1) = C(ny). The cycle ny —ng —ng — - -+ —ng_o —ny is of length k — 1.
Thus g(Gp(w*)) < 4. We show that g(G7(w*)) # 3. Suppose ny — ny — ng — ny is
3-cycle. Then ¢ = (C'(n1)NC(n2))U(C(ng)NC(ny)) =C(n1)N(C(ne)UC(ng)) =
C(ny) NT = C(ny).Thus we arrive at a contradiction. Hence the graph does not
contain an odd cycle.

Corollary 2.30. If G;r(w*) contains a cycle then gr(Gp(w*)) = 4.

Remark. G(w*) is a complete bipartite graph if and only if C(n) = C(I) for
every vertices [,n belonging to same vertex set.

Example 2.31. i) Consider the complete lattice C' to be

1

0
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For L = {0,a,1}, Spec(o,C) = {x,a,b}.If T = {a,b}, then V(G (w*)) = {a,b}.

Hence G/T(w*) is K7 1.Also if T' = {a}, then V(G/T(w*)) = .
ii) Consider the complete lattice C' to be

18
6 9
2 3
1

For L = {1,2,18}, Spec(c,C) ={2,6,9}.1f T' = {6, 9},
then V(Gr(w*)) = {3,6,9, 18} and the corresponding graph is

1 9
and V(G (w*)) = {6,9} and the graph is K7 ;.

iii) Consider the complete lattice C' to be

1
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L ={0,d,e, 1}, Spec(o,C) = {b,d,e}. If T = {d,e}, then V(Gr(w*)) = {d,e, 1}

and the corresponding graph is

d e

and V(Gp(w*)) = ¢. If T = {b,e}, then V(Gr(w*)) = {f,b,e,1} and the corre-
sponding graph is

b e

V(Gr(w*)) = {b,e} and Gp(w*) is K7 .

3. Conclusion

This paper introduces the concepts of total graphs and that of graphs associated
with the weak Zariski topology. The introduction of concepts of algebraic graph
theory into L-slices is initiated through this article. Different types of graphs can
be studied in the background of L-slices. The topological properties of L-slices can
be used to study the graphs associated with them.Graph theoretic development
of L-slices led us to the total graph I'(7'(o, J)) and Gr(w*) on L-slices. We have
shown that if T'(o, J) is a proper ideal of (o, J) then I'(T(c, J)) is disconnected.
Also we showed that I'(T'(o, J)) is complete if and only if the L-slice (o, J) is not
faithful. We were also able to prove that the weak Zariski topology graph Gr(w*)
is connected and diam(Gr(w*)) < 2.
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