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Abstract: Let L be a locale with top element 1L and J be a join semilattice with
bottom element 0J . The L-slice (σ, J) is the action of the locale on join semilattice
satisfying certain properties. The concept of L-slices were modelled in tune with
the modules in algebra. The benefit of studying L-slices is that we can approach
the structure algebraically as well as topologically.

This paper deals with the graph theoretic approach to L-slices. The idea of re-
lating graphs with algebraic structures was started by the work of Beck in [3]. The
algebraic properties of L-slices prompted us to consider the possibility of various
graphs that could be associated with L-slices. The article introduces two different
graphs on L-slices. The total graph Γ((T (σ, J)) is defined. We derive a character-
isation for such graphs to be nonempty. The structural properties of Γ((T (σ, J))
is studied. The weak Zariski Topology on (σ, J) gives us the graph GT (ω

∗). The
conditions under which the graph is nonempty is examined. Also some of the struc-
tural properties of GT (ω

∗) is obtained.
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1. Introduction and Preliminaries

Marshall Stone made a great impact on the concept of topological spaces
through his famous representation theorem.The theorem led to consider the con-
cept of point free topology. Many topologists of the time like Isabel made huge
contributions to the field.The complete lattices with meet distributing over arbi-
trary joins were named as frames/loclaes and was started to be viewed as gener-
alised topological spaces.Most of the topological concepts have been studied in the
localic background. The connection between Boolean algebra and Boolean rings
instigated the idea of taking locale theory to a more wider area of abstract alge-
bra. The concept of modules have seen a wide range of development in the field
of abstract algebra. The thought of connecting locales with modules shaped the
construction of L-slices. The idea of relating graphs with algebraic structures was
started by the work of Beck in [3]. The algebraic properties of L-slices prompted us
to consider the possibility of various graphs that could be associated L-slices.The
connection between graph theory and L-slices could be used to solve problems in
one theory using tools from the other.The complexity in studying L-slices can be
simplified using the techniques in graph theory. Further, we may be able to look
into the applications of L-slices in areas like networking. The chapter introduces
two different graphs on L-slices. The total graph Γ((T (σ, J)) is defined. We derive
a characterisation for such graphs to be nonempty. The structural properties of
Γ((T (σ, J)) is studied. The weak Zariski Topology on (σ, J) gives us the graph
GT (ω

∗). The conditions under which the graph will be nonempty is examined.
Also, some of the structural properties of GT (ω

∗) is obtained. Here we consider
only finite L-slices and consequently the graphs under consideration would be the
finite ones.

1.1. Frames and Locales

Definition 1.1. [12] A frame is a complete lattice L satisfying the infinite dis-
tributivity law a ⊓⊔

B =
⊔{a ⊓ b; b ∈ B} for all a ∈ L and B ⊆ L.

Example 1.2. [12] i.The lattice of open subsets of topological space.
ii.The Boolean algebra B of all regularly open subsets of Real line R.

Remark. The category of frames is denoted by Frm and the dual category is the
category Loc of locales.

Definition 1.3. [12] A subset F of locale L is said to be a filter if
i. F is a sub-meet-semilattice of L; that is 1L ∈ F and a ∈ F , b ∈ F imply
a ⊓ b ∈ F .
ii. F is an upper set; that is a ∈ F and a ⊑ b imply b ∈ F .
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Definition 1.4. [12] A filter F is proper if F ̸= L, that is if 0L /∈ F .
A proper filter F in a locale L is prime if a1 ⊔ a2 ∈ F implies that a1 ∈ F or
a2 ∈ F .

Definition 1.5. [12] A proper filter F in a locale L is a completely prime filter if
for any indexing set J and ai ∈ L, i ∈ J ,

⊔
ai ∈ F ⇒ ∃i ∈ J such that ai ∈ F .

Completely prime filters are denoted by c.p filters.

1.2. L-slice and its Properties

This section discusses the concept of L-slice and some of its properties. Given
a locale L and a join semilattice J with bottom element 0J , we have introduced
a new concept of an action σ of locale L on join semilattice J together with a set
of conditions. The pair (σ, J) is called L-slice. L-slice, though algebraic in nature
adopts properties of L through the action σ.

Definition 1.6. [13] Let L be a locale and J be join semilattice with bottom element
0J . By the “action of L on J” we mean a function σ : L × J → J such that the
following conditions are satisfied.
i. σ(a, x1 ∨ x2) = σ(a, x1) ∨ σ(a, x2) for all a ∈ L, x1, x2 ∈ J .
ii. σ(a, 0J) = 0J for all a ∈ L.
iii. σ(a ⊓ b, x) = σ(a, σ(b, x)) = σ(b, σ(a, x)) for all a, b ∈ L, x ∈ J .
iv. σ(1L, x) = x and σ(0L, x) = 0J for all x ∈ J .
v. σ(a ⊔ b, x) = σ(a, x) ∨ σ(b, x) for a, b ∈ L, x ∈ J .

If σ is an action of the locale L on a join semilattice J , then we call (σ, J) as
L-slice.

Definition 1.7. [13] 1. Let L be a locale and I be any ideal of L. Consider each
x ∈ I as constant map x : L → L. Then (σ, I) is an L-slice. In particular (σ, L) is
an L-slice.
2. Let the locale L be a chain with Top and Bottom elements and J be any join
semilattice with bottom element. Define σ : L× J → J by σ(a, j) = j ∀a ̸= 0 and
σ(0L, j) = 0J . Then σ is an action of L on J and (σ, J) is an L-slice.

Definition 1.8. [13] Let (σ, J), (µ,K) be L-slices of a locale L. A map
f : (σ, J) → (µ,K) is said to be L-slice homomorphism if
i. f(x1 ∨ x2) = f(x1) ∨ f(x2) for all x1, x2 ∈ J .
ii. f(σ(a, x)) = µ(a, f(x)) for all a ∈ L and all x ∈ (σ, J).

Definition 1.9. [13] Let (σ, J) be an L-slice of a locale L. A subjoin semilattice
J ′ of J is said to be L-subslice of J if J ′ is closed under action by elements of L.

Example 1.10. [13] 1. Let L be a locale and O(L) denotes the collection of all
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order preserving maps on L. Then (σ,O(L)) is an L-slice, where σ : L × O(L) →
O(L) is defined by σ(a, f) = fa, where fa : L → L is defined by fa(x) = f(x) ⊓ a.
Let K = {f ∈ O(L) : f(x) ⊑ x,∀x ∈ L}. Then (σ,K) is an L-subslice of the
L-slice (σ,O(L)).

2. Let (σ, J) be an L-slice and let x ∈ (σ, J). Define ⟨x⟩ = {σ(a, x); a ∈ L}. Then
(σ, ⟨x⟩) is an L-subslice of (σ, J) and it is the smallest L-subslice of (σ, J) containing
x.

Definition 1.11. [13] Let (σ, J) be an L-slice of a locale L. For each a ∈ L, the
map σa : (σ, J) → (σ, J) defined by σa(x) = σ(a, x) is an L-slice homomorphism.

Definition 1.12. [13] A subslice (σ, I) of an L-slice (σ, J) is said to be ideal of
(σ, J) if x ∈ (σ, I) and y ∈ (σ, J) are such that y ≤ x, then y ∈ (σ, I).

Definition 1.13. An ideal (σ, I) of an L-slice (σ, J) is a prime ideal if it has the
following properties:
i. If a and b are any two elements of L such that σ(a ⊓ b, x) ∈ (σ, I), then either
σ(a, x) ∈ (σ, I) or σ(b, x) ∈ (σ, I).
ii. (σ, I) is not equal to the whole slice (σ, J).

Definition 1.14. [13] Let (σ, J), (µ,K) be L-slices of a locale L. A map
f : (σ, J) → (µ,K) is said to be L-slice homomorphism if
i. f(x1 ∨ x2) = f(x1) ∨ f(x2) for all x1, x2 ∈ (σ, J).
ii. f(σ(a, x)) = µ(a, f(x)) for all a ∈ L and all x ∈ (σ, J).

Example 1.15. [13] i. Let (σ, J) be an L-slice and (σ, J ′) be an L-subslice of
(σ, J). Then the inclusion map i : (σ, J ′) → (σ, J) is an L-slice homomorphism.
ii. Let I =↓ (a), J =↓ (b) be principal ideals of the locale L. Then (σ, I), (σ, J) are
L-slices. Then the map f : (σ, I) → (σ, J) defined by f(x) = x ⊓ b is an L-slice
homomorphism.

Proposition 1.16. [13] If f : (σ, J) → (µ,K) is a L-slice homomorphism, then
f(0J) = 0K.

1.3. L-Prime Elements and Spec(σ,C)

Definition 1.17. [10] An element p ̸= 1C of (σ,C) is said to be L-prime element
if for every r ∈ L and n ∈ (σ,C), σ(r, n) ≤ p implies that either r ∈ [1C → p]L or
n ≤ p.

Example 1.18. [10] If we consider the L-slice (⊓, L) then the L-prime elements
are precisely the meet irreducible elements of L.

We now discuss some of the properties of L-prime elements.
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Theorem 1.19. [10] If p be a L-prime element and x ∈ (σ,C) then [x → p]L is a
prime ideal of L.

Corollary 1.20. If p is a L-prime element then [1C → p]L is a prime ideal of a
locale L.

Definition 1.21. [10] The set of all L -prime elements of (σ,C) is called the
spectrum of (σ,C) and is denoted by Spec(σ,C).

Definition 1.22. [10] For n ∈ (σ,C) we define C(n) = {p ∈ Spec(σ,C) : n ≤ p}.
Proposition 1.23. [10] For n ∈ (σ,C) and p ∈ Spec(σ,C) we have the following :
i) C(0C) = Spec(σ,C)
ii) C(1C) = ϕ
iii)

⋂
i∈I C(ni) = C(

∨
i∈I ni),for some indexed set I

iv) C(n) ∪ C(l) ⊆ C(n ∧ l).

The above proposition leads us to the following theorem.

Theorem 1.24. [10] On Spec(σ,C),Λ = {C(n) : n ∈ (σ,C)} forms a basis for
some topology Ω.

Definition 1.25. [10] Spec∧(σ,C) is the set of all p ∈ (σ,C) such that p is meet
irreducible as well as an L-prime element of (σ,C).

Proposition 1.26. [10] On Spec∧(σ,C), C(n) ∪ C(l) = C(n ∧ l).
Proof. We have C(n) ∪ C(l) ⊆ C(n ∧ l). If p ∈ C(n ∧ l) then n ∧ l ≤ p . The
L-prime element p being meet irreducible, either n ≤ p or l ≤ p. That is, either
p ∈ C(n) or p ∈ C(l). Hence p ∈ C(n) ∪ C(l) and C(n) ∪ C(l) = C(n ∧ l).

Proposition 1.27. [10] The collection ν = {C(n) : n ∈ (σ,C)} defined on
Spec∧(σ,C) forms a family of closed sets for some topology on Spec∧(σ,C).

Definition 1.28. [10] The topology Ψ generated by the family of closed sets ν is
called the Zariski topology on Spec∧(σ,C).

2. Main Results

This paper deals with the graph theoretic approach to L-slices. The idea of re-
lating graphs with algebraic structures was started by the work of Beck in [3]. The
algebraic properties of L-slices prompted us to consider the possibility of various
graphs that could be associated with it. The paper introduces two different graphs
on L-slices. The total graph Γ((T (σ, J)) is defined. We derive a characterisation for
such graphs to be nonempty. The structural properties of Γ((T (σ, J)) is studied.
The weak Zariski Topology on (σ, J) gives us the graph GT (ω

∗). The conditions
under which the graph is nonempty is examined. Also some of the structural prop-
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erties of GT (ω
∗) is obtained. Here we consider only finite L-slices and consequently

the graphs under consideration would be the finite ones.

2.1. Total Graph of L-Slice

Definition 2.1. Let (σ, J) be an L-slice and L∗ = L \ {0L}. We define the torsion
elements of a L-slice T (σ, J) as T (σ, J) = {x ∈ (σ, J) : σ(a, x) = 0J for some a ∈
L∗}. It is evident that T (σ, J) is always nonempty.

Theorem 2.2. T (σ, J) is an ideal of L-slice (σ, J).
Proof. If x, y ∈ T (σ, J) then there exists a, b ∈ L∗ such that σ(a, x) = 0J and
σ(b, y) = 0J . Also, σ(a ⊓ b, x ∨ y) = σ(a, σ(b, x ∨ y)) = σ(a, σ(b, x) ∨ σ(b, y)) =
σ(a, σ(b, x)) = σ(b, σ(a, x)) = σ(b, 0J) = 0J . Therefore x ∨ y ∈ T (σ, J).
If z ≤ x then σ(a, z) ≤ σ(a, x) implies σ(a, z) = 0J . Therefore z ∈ T (σ, J). Con-
sider σ(b, x) ∈ (σ, J), then σ(a, σ(b, x)) = σ(b, σ(a, x)) = σ(b, 0J) = 0J . Hence
T (σ, J) is an ideal of (σ, J).

Example 2.3. i) Let L be a locale and let J =↓ x for some x ∈ L. Then (⊓, J) is
a slice and T (⊓, J) = {y ∈ J : ⊓(a, y) = 0J} = {y ∈ J : a ⊓ y = 0J}.
ii) Consider the locale represented by the following Hasse diagram

b

b

b b

b

b

1

d

c

a

b

0

Let J =↓ b = {0, a, b{}} then T (⊓, J) = {0J}.
Note that for any L-slice (σ, J) the annihilator Ann(J) = {x ∈ (σ, J) : σ(a, x) =

0J ∀x ∈ (σ, J)} ⊆ T (σ, J). We now define the total graph of the L-slice (σ, J).

Definition 2.4. The vertex set VT of Γ(T (σ, J)) is the set of all elements of the
L-slice and the edge set ET of Γ(T (σ, J)) = {(x, y) : x ∨ y ∈ T (σ, J)}.
Theorem 2.5. The total graph Γ(T (σ, J)) is complete if and only if T (σ, J) =
(σ, J).
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Proof. Suppose Γ(T (σ, J)) is complete then there exists an edge between every
x, y ∈ VT . That is, x ∨ y ∈ T (σ, J). In particular, every vertex is adjacent to
0J . Hence x ∨ 0J = x ∈ T (σ, J) ∀x ∈ (σ, J). Thus T (σ, J) = (σ, J). Conversely
suppose that T (σ, J) = (σ, J). Since J is a join semilattice, for any two vertices
u, v ∈ VT implies u ∨ v ∈ J = T (σ, J). Thus Γ(T (σ, J)) is complete.

Corollary 2.6. The above theorem is necessarily satisfied if Ann(J) ̸= {0J}.
Proof. Suppose a ∈ Ann(J). The definition of Ann(J) shows that σ(a, x) =
0J , ∀x ∈ (σ, J). Evidently, T (σ, J) = (σ, J) and Γ(T (σ, J)) is complete.

Example 2.7. i) Let X = {a, b, c}.Then P(X) = {ϕ, {a}, {b}, {c}, {a, b}, {a, c},
{b, c}, {a, b, c}}. Let A = {b, c}. ↓ A = {C ∈ P(X) : C ⊆ A} implies ↓ A =
{ϕ, {b}, {c}, {b, c}}. ↓ A is a join semilattice under the partial ordering ⊆. Also,
(P(X),⊆) is a locale. Define the action ⊓ on ↓ A as ⊓(B,A1) = B∩A1 where A1 ∈↓
A. The annihilator Ann(↓ A) = {ϕ, {a}} and T (⊓, ↓ A) = {ϕ, {b}, {c}, {b, c}} =↓
A. Therefore Γ(T (⊓, ↓ A)) is complete. Also, Γ(T (⊓, ↓ A)) is the complete graph
K4.

b

b b

b

{b,c}

{c}{b}

/0

ii) In Example 2.3 ii), we observed that T (⊓, ↓ b) = {0J}. Then the total graph
Γ(T (⊓, ↓ b)) is totally disconnected.

b b

b

a

0

b

Now we can generalise the above as follows.

Proposition 2.8. Γ(T (σ, J)) is totally disconnected if and only if T (σ, J) = {0J}.
Proof. Since Γ(T (σ, J)) is totally disconnected we have that 0J is not connected
with any other vertices. Hence x∨ 0J = x /∈ T (σ, J) implying that T (σ, J) = {0J}.
Conversely, let T (σ, J) = {0J}. Any two vertices x, y of Γ(T (σ, J)) is connected
if and only if x ∨ y = 0J and that is possible if and only if x = 0J , y = 0J .Hence
Γ(T (σ, J)) is totally disconnected.
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We have already shown that T (σ, J) is an ideal of (σ, J). Now we propose the
next two theorems which is a consequence of the structure of T (σ, J).

Theorem 2.9. The subgraph induced by the set T (σ, J) is always complete. In
particular, if | T (σ, J) |= n then the subgraph induced will be the complete graph
Kn.
Proof. Since T (σ, J) is an ideal of (σ, J), if x, y ∈ T (σ, J) then x ∨ y ∈ T (σ, J).
Therefore the subgraph induced by T (σ, J) is always complete.

Corollary 2.10. The clique number ω(Γ(T (σ, J))) is | T (σ, J) |.
Corollary 2.11. The subgraph induced by (σ, J) \ T (σ, J) is totally disconnected
and the independence number β(Γ(T (σ, J))) =| (σ, J) \ T (σ, J) |.
Theorem 2.12. If T (σ, J) is a proper ideal of (σ, J) then Γ(T (σ, J)) is always
disconnected.
Proof. Let x, y ∈ (σ, J) such that x ∈ T (σ, J) and y ∈ (σ, J) \ T (σ, J). The
subgraph induced by T (σ, J) and (σ, J) \ T (σ, J) are disjoint. Suppose they are
connected then x ∨ y ∈ T (σ, J). But T (σ, J) is an ideal would imply that y ∈
T (σ, J), which is a contradiction. Thus the subgraphs induced by T (σ, J) and
(σ, J) \ T (σ, J) will always be disjoint. Thus Γ(T (σ, J)) is always disconnected.

Let us consider some L-slices and examine the properties of total graph associ-
ated with them.

Example 2.13. Let J be given by the Hasse diagram

b

b b

b b

b

1

dc

ba

0

And let L = {0 ≤ c ≤ 1}. Define the action on J as ⊓(a, x) = a ⊓ x for a ∈ L and
x ∈ J . The ideal T (σ, J) = {0, b, d} and it is a proper ideal of (⊓, J). Γ(T (⊓, J))
is disconnected and the graph is



A Study on Graphs Defined on L-slices 309

Thus the total graph of the L-slice is the union of two K3 graphs and two K1

graphs.
If we consider L = {0 ≤ a ≤ 1} then T (⊓, J) = {0, b}. Then the total graph of
L-slice is

b

b b

b b

b

1

dc

ba

0

The total graph of the L-slice is the union of one K2 graph and four K1 graphs.
If we let L = {0 ≤ d ≤ 1} then T (⊓, J) = {0} and Γ(T (⊓, J)) is disconnected.
Remark. A L-slice is said to be a σ-domain over L if there exists no torsion
elements for the L-slice. In other words, there exists no a ∈ L∗ such that σ(a, x) =
0J .

Example 2.14. i) If L is a chain then the L-slice (⊓, L) is a σ-domain over L.
Let T ∗(σ, J) = {x ̸= 0J : ∃a ∈ L∗ such that σ(a, x) = 0J} then the corresponding
total graph is denoted by Γ(T ∗(σ, J)).
In this case, if T ∗(σ, J) is nonempty then T ∗(σ, J) is a subslice. Also, if an L-slice
is a σ-domain over L then the corresponding Γ(T ∗(σ, J)) is an empty graph.
ii) If L is a chain then Γ(T ∗(⊓, L)) is an empty graph.

Definition 2.15. A locale L is said to have zero divisors if for a ∈ L∗ there exists
b ∈ L∗ such that a ⊓ b = 0L.

Lemma 2.16. Let a be a zero divisor of the locale L. If x ∈ (σ, J) then σ(a, x) ∈
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T (σ, J).
Proof. If a is a zero divisor of L then there exists b ∈ L such that a ⊓ b = 0L.
Therefore σ(b, σ(a, x)) = σ(a⊓ b, x) = σ(0L, x) = 0J implies that σ(a, x) ∈ T (σ, J).

Lemma 2.17. If the top element 1L of the locale L is the join of n zero divisors
of L then every element of the L-slice (σ, J) is the join of n torsion elements.
Proof. Let 1L = z1 ⊔ z2 ⊔ ... . . ⊔ zn, where each zi is a zero divisor of L.

For any x ∈ (σ, J), σ(1L, x)= σ(z1 ⊔ z2 ⊔ ... ⊔ zn, x)
= σ(z1, x) ∨ σ(z2, x)...σ(zn, x)

⇒ x = σ(z1, x) ∨ σ(z2, x)...σ(zn, x)

The above lemma states that each σ(zi, x) ∈ T (σ, J). Hence the result.
A characterisation of the total graph of an L-slice based on the zero
divisors of the locale L.

Theorem 2.18. If L has a finite basis of zero divisors then the total graph of the
L-slice (σ, J) is complete.
Proof. If {z1, z2, ....zn} be the finite basis of zero divisors then from the above
lemma x = σ(z1, x) ∨ σ(z2, x)...σ(zn, x), where each σ(zi, x) ∈ T (σ, J). And the
fact that T (σ, J) is an ideal will give us the theorem.

Proposition 2.19. The chromatic number χΓ(T (σ, J)) of Γ(T (σ, J)) is such that
either always χΓ(T (σ, J)) = 1 or χΓ(T (σ, J)) = n+ 1, where n =| T (σ, J) |.
Proof. If T (σ, J) = {0J} then graph Γ(T (σ, J)) is totally disconnected and
χΓ(T (σ, J)) is one. We know that the subgraph induced by T (σ, J) is the complete
graph Kn. Theorem 2.12 shows that if T (σ, J) is a proper ideal then Γ(T (σ, J)) is
always disconnected. Thus if T (σ, J) ̸= {0J} then χΓ(T (σ, J)) = n+ 1.

Remark. Theorem 2.8 (t = {0}) and Theorem 2.12 (t ̸= {0}) shows that Γ(T (σ, J))
is never a critical graph.

Property 1. The diameter of the graph diam(Γ(T (σ, J))) ∈ {1,∞}.
Proof. The theorem 2.5 shows that diam(Γ(T (σ, J))) = 1. If T (σ, J) = {0J} then
the graph is totally disconnected and diam()Γ(T (σ, J))) = ∞.

Property 2. The radius r(Γ(T (σ, J))) ∈ {0, 1}.
Proof. The graph Γ(T (σ, J)) is either complete or disconnected. Hence the radius
of the total graph of the L-slice will be either 0 or 1.

Let us denote the subgraph induced by T (σ, J) as Γn(T (σ, J)), where n denotes
the cardinality of the set T (σ, J).

Property 3. If T (σ, J) is proper ideal then the diameter and radius of Γn(T (σ, J))
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will be the same and equal to 1.
Proof. The property is obtained through the completeness of the subgraph.

Property 4. Whenever |T (σ, J)|= n ≥ 3, then the girth of Γn(T (σ, J)) denoted
as gr(Γn(T (σ, J))) = 3 and the circumference of Γn(T (σ, J)), c(Γn(T (σ, J))) = n.
Proof. Follows from the completeness of Γn(T (σ, J)).

The above property can also be restated as.

Property 5. If |T (σ, J)|= n ≥ 3 if and only if gr(Γn(T (σ, J))) = 3.

In this section we have defined and studied various properties of the total graph.
We have observed that Γ(T (σ, J)) is complete if |Ann(J)|≥ 2. If |T (σ, J)|≥ 2 then
Γ(T (σ, J)) disconnected. Thus Γ(T (σ, J)) is either complete or disconnected.

2.2. Graphs associated with weak Zariski topology ω∗ on Spec(σ,C)

We have shown in [10] that the sets C(n) = {p ∈ Spec(σ,C) : n ≤ p} forms
basis for a topology on prime spectrum Spec(σ,C). Also, if C(n)∪C(l) = C(n∧ l)
the collection ν = {C(n) : n ∈ (σ,C)} will then be the collection of closed sets on
Spec(σ,C) and the topology so formed may be called weak Zariski topology ω∗ on
Spec(σ,C) .
This section deals with graphs associated with this weak Zariski topology ω∗. For
a subset T of Spec(σ,C) we introduce a graph GT (ω

∗). We study some of its prop-
erties and show that it has a bipartite subgraph.

Definition 2.20. Let T be a nonempty subset of Spec(σ,C). The graph GT (ω
∗) has

as vertex set V (GT (ω
∗)) = {n ∈ (σ,C) : ∃ l ∈ (σ,C) such that C(n) ∪ C(l) =

T}. Also, two vertices n and k are adjacent if and only if C(n) ∪ C(k) = T . In
other words, the graph GT (ω

∗) has n as vertex if and only if there exists a l ∈ (σ,C)
such that C(n ∧ l) = T .

Remark. We study the properties of graphs associated with the weak Zariski topol-
ogy. The definition itself gives us two conditions for such a graph to exist. We state
them as our next two propositions.

Proposition 2.21. GT (ω
∗) ̸= ϕ if and only if T is closed and is not an irreducible

subset of Spec(σ,C).
Proof. Follows directly from the definition of GT (ω

∗).

The above proposition can be rephrased as follows.

Proposition 2.22. GT (ω
∗) ̸= ϕ if and only if T = C(

∧
T ) and T is not an irre-

ducible subset of Spec(σ,C).
Proof. Suppose GT (ω

∗) ̸= ϕ. The above proposition shows that T is closed.So
it remains to show that T = C(

∧
T ). We know that T ⊆ C(

∧
T ). Let C(n)
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be any closed subset of Spec(σ,C) containing T . Then n ≤ p ∀p ∈ T implies
that n ≤ ∧

p∈T p = q. Therefore for evey l ∈ C(q) implies l ∈ C(n). That
is, C(n) ⊇ C(q). Hence C(q) is the smallest closed set containing T . Thus
T = C(q) = C(

∧
p∈T p) = C(

∧
T ).

Theorem 2.23. The weak Zariski topology graph GT (ω
∗) is connected and the

diameter of the graph, diam(GT (ω
∗)) ≤ 2.

Proof. If n and k are not adjacent then C(n)∪C(k) ̸= T . Now there exists vertices
l and k such that C(n) ∪ C(l) = C(n ∧ l) = T and C(m) ∪ C(k) = C(m ∧ k) = T .
If l = m then n− l − k is a path of length two. If l ̸= m then n− (l ∧m)− k is a
path of length two. Hence GT (ω

∗) is connected and diam(GT (ω
∗)) ≤ 2.

Corollary 2.24. If GT (ω
∗) contains a cycle then the girth g(GT (ω

∗)) ≤ 3.
Proof. Suppose g(GT (ω

∗)) = k > 3. Let n1 − n2 − n3 − · · · − nk−1 − nk − n1 be a
cycle with length k. Then clearly n1 − (n2 ∧ nk−1)− nk − n1 is a cycle of length 3.
Hence a contradiction. Therefore g(GT (ω

∗)) ≤ 3.

Example 2.25. i) Let C = {1, 2, 3, 4, 5} and (C,≤) be complete lattice with ≤ as
the usual ordering ‘less than or equal to’. Let the locale be (L = {1, 2, 5},≤). The
action σ defined as σ(a, x) = a ⊓ x will make C an L-component (⊓, C).
In this case Spec(σ,C) = {2, 3, 4} and C(1) = Spec(σ,C), C(2) = {2, 3, 4}, C(3) =
{3, 4}, C(4) = {4}, C(5) = ϕ. Also, C(n) ∪ C(m) = C(n ∧ m) for every n,m ∈
(⊓, C). If T = {3, 4} then V (GT (ω

∗)) = {3, 4, 5}. The graph GT (ω
∗) is K1,2.

b b

b
5

3 4

If T = {2, 3, 4} then V (GT (ω
∗)) = {1, 2, 3, 4, 5} and the graph GT (ω

∗) is K2,3.

b b b

b b

3 4 5

1 2

Also if T = {2, 4} then GT (ω
∗ = ϕ)
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ii) Consider the complete lattice

b

b b

b

b

b

1

a b

c

x

0

Let L = {0, a, 1}. The spectrum Spec(σ,C) = {x, a, b}. C(0) = Spec(σ,C),
C(1) = ϕ, C(x) = {x, a, b}, C(c) = {a, b}, C(a) = {a}, C(b) = {b}. It can be
easily verified that C(n) ∪ C(m) = C(n ∧ m) for every pair n,m ∈ (σ,C). For
T = {x, a} then GT (ω

∗) = ϕ. If T = {a, b} then V (GT (ω
∗)) = {1, c, a, b} and the

graph is

b b

b b

b a

c1

If T = {a} then V (GT (ω
∗)) = {1, a} and the graph is

b b
1 a

Remark. Since C(1C) = ∅ the top element 1C will always belong to the vertex set
and deg(1C) ≥ 1. Also deg(1C) is the cardinality of the set {n ∈ (σ,C) : C(n) =
T}.
Proposition 2.26. For any finite set T and GT (ω

∗) ̸= ϕ we have that
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T ∩ V (GT (ω
∗) ̸= ϕ.

Proof. Let p ∈ T then we have C(p) ∪ C(
∧

q∈T,q ̸=p q) = T .Therefore, p ∈
V (GT (ω

∗)).

2.3. The subgraph G
′
T (ω

∗)

Definition 2.27. The subgraph G
′
T (ω

∗) of GT (ω
∗) has vertex set V (G

′
T (ω

∗))
defined as {n ∈ (σ,C) : there exist l ∈ (σ,C) such that C(n) ∪ C(l) = T,
C(n), C(l) ̸= T,C(n) ∩ C(l) = ϕ}, where (u, v) ∈ E(G

′
T (ω

∗)) if and only if
C(u) ∪ C(v) = T,C(u) ∩ C(v) = ϕ.

Note that the degree of u is the number of vertices k with C(v) = C(k).

Proposition 2.28. G
′
T (ω

∗) ̸= ϕ if and only if T = C(
∧

q∈T q) and is disconnected.
Proof. We have already shown GT (ω

∗) ̸= ϕ then T = C(
∧

q∈T q). Let n, l ∈
V (G

′
T (ω

∗)), then C(n)∪C(l) = T,C(n)∩C(l) = ϕ. Thus, T is disconnected. The
converse follows easily from the definition.

Theorem 2.29. G
′
T (ω

∗) is a bipartite graph.
Proof. A graph is bipartite if and only if it does not contain an odd cycle [4]. We
will show that G

′
T (ω

∗) does not have an odd cycle. Suppose g(G
′
T (ω

∗)) = k > 4.
Consider the cycle n1 − n2 − n3 − · · · − nk−1 − nk − n1 of length k. It is evident
that C(nk−1) = C(n1). The cycle n1 − n2 − n3 − · · · − nk−2 − n1 is of length k− 1.
Thus g(G

′
T (ω

∗)) ≤ 4. We show that g(G
′
T (ω

∗)) ̸= 3. Suppose n1 − n2 − n3 − n1 is
3-cycle. Then ϕ = (C(n1)∩C(n2))∪ (C(n3)∩C(n1)) = C(n1)∩ (C(n2)∪C(n3)) =
C(n1) ∩ T = C(n1).Thus we arrive at a contradiction. Hence the graph does not
contain an odd cycle.

Corollary 2.30. If G
′
T (ω

∗) contains a cycle then gr(G
′
T (ω

∗)) = 4.

Remark. G
′
T (ω

∗) is a complete bipartite graph if and only if C(n) = C(l) for
every vertices l, n belonging to same vertex set.

Example 2.31. i) Consider the complete lattice C to be

b

b b

b

b

b

1

a b

c

x

0
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For L = {0, a, 1}, Spec(σ,C) = {x, a, b}.If T = {a, b}, then V (G
′
T (ω

∗)) = {a, b}.
Hence G

′
T (ω

∗) is K1,1.Also if T = {a}, then V (G
′
T (ω

∗)) = ϕ.
ii) Consider the complete lattice C to be

b

b b

b b

b

18

96

32

1

For L = {1, 2, 18}, Spec(σ,C) = {2, 6, 9}.If T = {6, 9},
then V (GT (ω

∗)) = {3, 6, 9, 18} and the corresponding graph is

and V (G
′
T (ω

∗)) = {6, 9} and the graph is K1,1.
iii) Consider the complete lattice C to be

b

b b

b

b

b

1

b e

f

d

0
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L = {0, d, e, 1}, Spec(σ,C) = {b, d, e}. If T = {d, e}, then V (GT (ω
∗)) = {d, e, 1}

and the corresponding graph is

b

b b

1

d e

and V (G
′
T (ω

∗)) = ϕ. If T = {b, e}, then V (GT (ω
∗)) = {f, b, e, 1} and the corre-

sponding graph is

bb b

b b

1 f

eb

V (G
′
T (ω

∗)) = {b, e} and G
′
T (ω

∗) is K1,1.

3. Conclusion
This paper introduces the concepts of total graphs and that of graphs associated

with the weak Zariski topology. The introduction of concepts of algebraic graph
theory into L-slices is initiated through this article. Different types of graphs can
be studied in the background of L-slices. The topological properties of L-slices can
be used to study the graphs associated with them.Graph theoretic development
of L-slices led us to the total graph Γ(T (σ, J)) and GT (ω

∗) on L-slices. We have
shown that if T (σ, J) is a proper ideal of (σ, J) then Γ(T (σ, J)) is disconnected.
Also we showed that Γ(T (σ, J)) is complete if and only if the L-slice (σ, J) is not
faithful. We were also able to prove that the weak Zariski topology graph GT (ω

∗)
is connected and diam(GT (ω

∗)) ≤ 2.
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