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Abstract: A graph G is said to be R-perfect if, for all induced subgraphs H of G,
the induced regular independence number of each induced subgraph H is equal to
its corresponding induced regular cover. Here, the induced regular independence
number is the maximum number of vertices in H such that no two belong to the
same induced regular subgraph in H, and the induced regular cover of H is the
minimum number of induced regular subgraphs in H required to cover the vertex
set of H. This article introduces the notion of induced regular perfect graphs or
R-perfect graphs through which we study the structural properties of R-perfect
graphs and identify a forbidden class of graphs for the same. This further leads
to the characterization of R-perfect biconnected graphs. With these results, we
derive and prove a general characterization for R-perfect graphs.
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1. Introduction
The graphs considered in this paper are finite, simple and undirected unless

stated otherwise. All terminologies not defined in this paper are followed as in [1],
[2] and [7]. Berge [1] defined the concept of perfect graphs in the year 1973. He
defined two types of perfection:
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(i) G is γ-perfect, if χ(H) = ω(H) for every induced subgraph H of G.

(ii) G is α-perfect, if α(H) = θ(H) for every induced subgraph H of G.

Here, χ(H) represents the chromatic number of the graph H, ω(H) denotes the
clique number of the graph H, α(H) is the independence number of H and θ(H)
represents the clique covering number of H. Further, in [7] it was proved that G
is γ-perfect if and only if G is α-perfect (or) equivalently, G is perfect if and only
if G is α-perfect. Ravindra [6] introduced the concept of F -perfect graphs in the
year 2011, as an extension of perfect graphs by Berge. He defined F -perfect graphs
as follows: Assuming that FG is the class of all induced subgraphs in G and F is
any subclass of FG such as complete graphs or their complements, stars, complete
bipartite graphs, cycles etc. A graph G is said to be F-perfect if αF(H) = θF(H) for
all induced subgraph H ⊆ G, where αF(H) denotes the maximum number vertices
in H such that no two of them lie in the same element of F and θF(H) denotes the
minimum number of elements in F required to cover the vertex set of H. It was
also obtained in the paper that αF(G) ≤ θF(G), for any graph G. Gokul et. al. [3]
introduced the concept of induced cycle perfect graphs and characterised them as
series parallel graphs that contains no subdivisions of K2,3 as an induced subgraph
graph. The concept of graph minor was introduced and studied by L. Lovász in
[5]. “An undirected graph H is called a minor of the graph G if H can be formed
from G by deleting edges and vertices and by contracting edges.”

2. Preliminaries
The definitions and results mentioned in this section will be used to provide

more clarity and also to prove certain results presented in the article.

Definition 2.1. [4] An ISK4 is a graph that is an induced subdivision of the
complete graph on four vertices, K4.

Definition 2.2. [3] A graph is said to be ISK2,3-free if it does not contain any
subdivision of K2,3 as an induced subgraph.

Theorem 2.3. [4] If G is ISK4-free, then either G is a series parallel graph or G
contains prism, a wheel or a K3,3 as an induced subgraph.

Considering C to be the class of induced cycles in FG, the concept of induced
cycle perfect graphs or C-perfect graphs has been defined, as follows.

Definition 2.4. [3] A graph G is said to be C-perfect if αC(H) = θC(H) for all
induced subgraphs H of G, where every vertex in H belongs to at least one cycle in
H.

Property P [3] Every graph G (inclusive of its subgraphs H) considered for C-
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perfection is in such a way that every vertex in G (or H) belongs to at least one
cycle in G (or H).

Theorem 2.5. [3] If a graph G is C-perfect, then it is wounded wheel free.

Lemma 2.6. [3] If G is C-perfect, then G is ISK2,3-free.

Lemma 2.7. [3] If G is C-perfect, then G is ISK4-free.

Lemma 2.8. [3] If G is C-perfect, then G is K4 minor free.

Theorem 2.9. [3] Let G be a Hamiltonian graph satisfying property P. Then, G
is C-perfect if and only if G is outerplanar.

Theorem 2.10. [3] A graph G satisfying property P is C-perfect if and only if G
is a series parallel graph having no subdivision of K2,3 as an induced subgraph.

OR

A graph G is C-perfect if and only if G is K4 minor free and has no subdivision of
K2,3 as an induced subgraph.

3. Results on R-perfect graphs
In this article we consider R to be a subclass of FG that contains all induced

regular subgraphs of G, and define the concept of induced regular perfect graphs
or R-perfect graphs.

A min-max equality link between the invariants αR(max) and θR(min) is seen
while investigating R-perfect graphs. We have groups G1, G2, . . . , Gr, r ≥ 2, in a
society, such that there is a person with the same number of acquaintances (regular
relation) in each of the groups Gi. Our goal is to identify the ideal group of people,
referred to as leaders, who can best represent each group. are a few reasons to
investigate R-perfect graphs. Of these motives, the primary one is the desire to
comprehend the structural properties of R-perfect graphs.

(i) An induced regular-independent set or R-independent set of G is
a collection of vertices in G such that no two of them belong to the same
induced regular subgraph and is denoted by IR(G). (It must be noted that
IR(G) is not unique for a graph.)

(ii) The induced regular independence number of G, denoted by αR(G) is
the cardinality of the largest induced regular-independent set of G.

(iii) An induced regular-cover or R-cover of G is a collection of elements in
R of a graph G whose union is G. Let TR(G) denote any smallest set of
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induced regular subgraphs in G that forms an R-cover. (It must be noted
that TR(G) is not unique for a graph.)

(iv) The R-covering number of G, denoted by θR(G), is the minimum number
of elements in R required to cover the vertex set of G.

Also, from [6] we deduce the relation between αR and θR for any graph G, which
is given by,

αR(G) ≤ θR(G) (1)

With the definitions of the parameters, αR and θR in hand, we define induced
regular perfect graphs or R-perfect graphs as follows:

Definition 3.1. A graph G is said to be R-perfect if αR(H) = θR(H) for all
induced subgraphs H of G.

Propositions 3.2, 3.3 and 3.4 provides examples of some basic classes of R-
perfect graphs.

Proposition 3.2. All trees are R-perfect.
Proof. The only regular graphs in a tree are K2s. Therefore R-perfection for trees
is equivalent to K2-perfection or Berge’s perfection. It is known that all trees are
perfect graphs and hence it is obtained that trees are R-perfect.
Through Proposition 3.2 we can conclude that all acyclic graphs are R-perfect.

Proposition 3.3. Cycles and complete graphs and are R-perfect.
Proof. Initially considering cycles, they are 2-regular and all induced subgraphs of
cycles are trees which areR-perfect by Proposition 3.2. This implies that all cycles,
Cn are R-perfect with αR(Cn) = 1 = θR(Cn). Now, complete graphs are regular
graphs and all induced subgraphs of complete graphs are also complete graphs.
Hence it implies that complete graphs are R-perfect, with αR(Kn) = 1 = θR(Kn).

Proposition 3.4. Kn − e is R-perfect for all n ≥ 3(n ∈ N), where e is an edge in
the complete graph Kn.
Proof. Let us consider the graph Kn − e, where e is an edge in the complete
graph Kn that is incident to the vertices i and j. Considering the induced regular
independence set IR(Kn−e), it can be observed that adding both the vertices i and
j, each of degree n− 2, in IR(Kn − e) results in a maximum regular independence
set. Hence obtaining that αR(Kn − e) = 2. Also the induced regular cover of
Kn − e can be obtained by considering a triangle containing the vertex i (or j)
and the clique Kn−1 where i /∈ V (Kn−1) (or j /∈ V (Kn−1)). This implies that
θR(Kn − e) = 2, since Kn − e is not a regular graph. Therefore it is obtained that
αR(Kn−e) = 2 = θR(Kn−e). Now considering all induced subgraphs H of Kn−e,
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Case 1: If i ∈ V (H) and j ∈ V (H), then H ∼= Km − e, where m is the number
of vertices in H. Therefore from the above paragraph, αR(H) = 2 = θR(H) for all
such induced subgraphs of Kn − e.
Case 2: If i /∈ V (H) or j /∈ V (H) or both, then the obtained graph is a complete
graph and therefore is R-perfect. From Cases 1 and 2 it is obtained that αR(H) =
2 = θR(H) for all induced subgraphs of Kn − e. Therefore Kn − e is R-perfect.

In the following Proposition 3.5 and Corollary 3.6 we identify a couple of ex-
amples for graphs that are not R-perfect for higher orders. To be specific both the
classes of graphs mentioned in theses results are not R-perfect for n ≥ 4.

Proposition 3.5. A wheel graph W1,n is R-perfect if and only if n = 3.
Proof. If n = 3, the wheel graph is a K4. The result is a direct consequence.
Conversely let G = W1,n be a wheel graph on n + 1 vertices, where n ≥ 4, and
let Cn be the induced cycle on n vertices in G. The regular induced subgraph of
largest degree in G are cycles. Here, considering any vertex in G to IR(G) it can be
identified that no other vertex in G can be added to IR(G) as every other vertex
in G would share at least two induced cycles with the vertex v. Since the selection
of v is arbitrary it can be observed that αR(G) = 1. But since G is not a regular
graph it is clear that θR(G) > 1. Hence αR(G) ̸= θR(G) implying that W1,n is not
R-perfect for all n ≥ 4. Hence the Proposition.

Corollary 3.6. Helm graph Hn is R-perfect if and only if n = 3.
Proof. A helm graph Hn is formed by adjoining a pendant edge at each node of
the cycle Cn in a wheel graph W1,n. Therefore it is can be obtained from Propo-
sition 3.5 and the definition of R-perfect graphs that Hn is not R-perfect for all
n ≥ 4 as it contains an induced wheel graph with n ≥ 4. Now, the only remaining
possibility is n = 3. The R-perfection of H3 can be easily identified by analysing
IR(H3) and TR(H3). Since H3 is a graph formed by adjoining a pendant edge to
every vertex of a C3 in K4, we are forced to consider the three pendant vertices
in H3 to IR(H3), this selection leaves us with a single vertex which does not share
an induced regular graph with any of these pendant vertices, that is the central
vertex. Therefore, we add the central vertex of H3 to complete the largest IR(H3).
Hence, αR(H3) = 4. Similarly, TR(H3) is formed by adding K4 so as to cover the
central vertex and all the three pendant edges to cover the pendant vertices. This
results in θR(H3) = 4 = αR(H3). Now all induced subgraphs of H3 are either trees
or cycles with pendant vertices or cycles or K4 or K4 with pendant vertices, all of
which are R-perfect. Therefore it is concluded that H3 is R-perfect. This proves
the Corollary.

As mentioned in Section 2, we use the notation ISK4 and ISK2,3 to denote



290 South East Asian J. of Mathematics and Mathematical Sciences

the induced subdivisions of K4 and K2,3 respectively. Now, let ISK4 denote all
non trivial induced subdivisions of K4, that is, all induced subdivisions of K4 other
than K4 itself.

The following couple of results involve these notations and proves necessary
conditions for a graph to be R-perfect.

Lemma 3.7. A graph G is R-perfect only if G is ISK4-free.
Proof. Considering any non trivial subdivision of K4 it can be observed that
the resulting graph would satisfy Property P and has no regular graphs of degree
greater than 2, hence the induced regular subgraphs with highest degree are cycles.
This implies that R-perfection in ISK4 is equivalent to C-perfection. But it can
be deduced from Lemma 2.7 that any graph containing ISK4 is not C-perfect,
implying that ISK4 is not R-perfect and hence by the definition of R-perfect
graphs, any graph G containing ISK4 is not R-perfect.

Lemma 3.8. A graph G is R-perfect only if G is ISK2,3-free.
Proof. Similar to the approach in the previous lemma it is obtained that any
subdivision of K2,3 satisfies Property P and has no regular graphs of degree greater
than 2, hence the regular subgraphs with highest degree are cycles. This implies
thatR-perfection in ISK2,3 is equivalent to C-perfection. But it is proved in Lemma
2.6 that any graph containing ISK2,3 is not C-perfect, implying that it is not R-
perfect and hence by the definition of R-perfect graphs, any graph G containing
ISK2,3 is not R-perfect.

The converse of Lemma 3.8 is not true. The wounded wheel graph on 5 vertices,
W 1,4

{v1} is an example of an ISK4-free graph which is not R-perfect.

From Lemmas 3.8, and 3.7 it can be inferred that ISK4 and ISK2,3 are minimal
R-imperfect graphs, since all their induced subgraphs are paths, or cycles, or cycles
connected to paths all of which are R-perfect from Propositions 3.2 and 3.3. The
method of proof in Lemmas 3.7 and 3.8 lead to the following theorem.

Proposition 3.9. All C-perfect graphs are R-perfect.
Proof. Initially considering G to be Hamiltonian C-perfect graph, it is obtained
from Theorem 2.9 that G is outerplanar as it is C-perfect. Since G is C-perfect
it is K4-minor free and ISK2,3-free (Refer Theorems 2.6 and 2.8). Hence it can
be deduced that the regular subgraph of largest degree are cycles. Therefore,
R-perfection here is equivalent to C-perfection when considering all graphs and
subgraphs satisfying property P (Refer Property 2 in Section 3). This implies that
for G and all its induced subgraphs satisfying Property P , G is R-perfect.
Now let us consider all induced subgraphs H of G, not satisfying Property P . We
prove R-perfection for all such graphs. This gives rise to two cases:
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Case 1: If H is a tree, then by Proposition 3.2 H is R-perfect.
Case 2: Suppose H is a cyclic graph. The C-perfection of G implies that the
biconnected components of H is also C-perfect and hence is R-perfect as it satisfies
Property P . Also by Proposition 3.2, trees are R-perfect. Clearly, the biconnected
components are connected to the tree by a cut vertices. Assuming H ′ to be a
biconnected component of H and T to be a tree connected to it, we prove the
R-perfection of it by analysing IR(H) and TR(H). This further can be extended
to the graph H. Assuming that v ∈ V (H) is the common cut-vertex that connects
H ′ to T , we observe the following conditions:
Subcase 1: If v ∈ IR(H

′) and v ∈ IR(T ), then αR(H) = αR(H
′) + αR(T ) −

|IR(H ′)∩ IR(T )|. This implies that αR(H) = αR(H
′)+αR(T )−1. Since v ∈ IR(T )

and since H ′ and T are connected by cut vertices we can form TR(H) by adding
all cycles from TR(H

′) and all K2s from TR(T ) except for the K2 containing
v as it is already covered by TR(H

′). Therefore it is obtained that θR(H) =
θR(H

′) + θR(T )− 1 = αR(H
′) + αR(T )− 1 = αR(H).

Subcase 2: Let v ∈ IR(H
′) and v /∈ IR(T ), or vice versa, then αR(H) = αR(H

′)+
αR(T ), since IR(H

′) and IR(T ) are disjoint sets. Now, forming the set TR(H), it
can be observed that since TR(H

′) covers the vertex set of H ′ and TR(T ) covers the
vertex set of T , the union of the sets TR(H

′) and TR(T ) forms a vertex cover for
H. That is, TR(H) ⊆ TR(H

′)
⋃

TR(T ). Therefore, θR(H) ≤ θR(H
′) + θR(T ) =

αR(H
′) + αR(T ) = αR(H) (Since H ′ and T are R-perfect). That is, θR(H) ≤

αR(H). But it is obtained from Equation 1, that αR(H) ≤ θR(H) for all H.
Hence, αR(H) = θR(H). In both the above cases the graph is R-perfect. Now
with a similar approach followed in Subcases 1 and 2 we can extend the same
result to the graph H and hence all induced subgraphs not satisfying Property P
is also R-perfect. Hence the Theorem.

As a consequence of Theorem 3.9 we arrive at the Corollaries 3.10 and 3.11.

Corollary 3.10. If G is a graph formed by adjoining trees to the vertices of a
biconnected, R-perfect graph, then G is R-perfect.

The proof to Corollary 3.10 is the direct consequence of Subcases 1 and 2 of
Theorem 3.9.

Corollary 3.11. If G is a graph satisfying property P and having no regular
subgraphs of degree greater than 2, then G is R-perfect if and only if G is C-perfect.

Wounded wheel graphs are derived graphs obtained from wheel graphs as de-
fined in Paper [3]. It is defined as follows: Let Cn : {v1, v2, ..., vn, v1} be a cycle of
length n. Then a wounded wheel graph, denoted by W 1,n

{vi|vi↔v}, is a graph on n+ 1
vertices obtained by adding a new vertex say v to Cn and making v adjacent to
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either a pair of non-adjacent vertices of Cn or to any k vertices lying on Cn, where
3 ≤ k ≤ n − 1. Here, {vi|vi ↔ v} is the set of vertices in Cn which are adjacent
to the central vertex v. Figure 1 illustrates a wounded wheel graph on 9 vertices
obtained using C8.
The following lemma involves this class of graphs and also is a necessary condition
for R-perfection.

Lemma 3.12. A graph G is R-perfect only if it is wounded wheel-free.

v
v7

v8

v1

v2

v3

v4

v5

v6

Figure 1: Wounded wheel graph, W 1,8
{v2,v3,v5,v7,v8}

1

Proof. From the definition of wounded wheel graphs it can be observed that
it satisfies Property P and has no regular subgraphs of degree greater that two.
This implies from Corollary 3.11, that R-perfection in wounded wheel graphs is
equivalent to C-perfection. But from Theorem 2.5, wounded wheel graphs are not
C-perfect and hence are not R-perfect. Therefore by the definition of R-perfect
graphs, any graph G containing wounded wheel graphs are not R-perfect.

Now we define a new class of minimal R-imperfect graphs which will be proved
to be a forbidden class for R-perfect graphs in this article. Let C and C ′ be two
cycles in a graph G, that shares a common path P of length at least 2. Then the
graph G is said to belong to the class ISK4+ if;

1. G has two edges e1 and e2, which are formed by connecting vertices from P
to vertices from C \ P or C ′ \ P such that both e1 and e2 forms a K3 with
one or both end vertices of P .

2. G is a wounded wheel graph or a wheel graph on at least 5 vertices.

If both e1 and e2 have a common end vertex in ISK4+, then the path P in the so
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formed ISK4+ has length 2, (else the graph would contain an ISK2,3 contradicting
the minimality of it) and it is a wounded wheel graph.

e1

e2

e1

e2

Figure 1: ISK4+ type 1

1

Figure 2: ISK4+ type 1

Lemma 3.13. ISK4+ is minimal R-imperfect.
Proof. It can be easily observed that αR(ISK4+) = 1 and θR(ISK4+) = 2 for
all classes of graphs in ISK4+. Now all proper subgraphs of any graphs in ISK4+

are cycles, subdivision of a pan, subdivision of a bull, paths or C-perfect graphs,
all of which are R-perfect by Propositions 3.2, 3.3, 3.9 and Corollary 3.10. Hence
all graphs in ISK4+ are minimal R-imperfect.

Theorem 2.3 states that if a graph G is ISK4-free then G is series-parallel or
contains K3,3, prism or wheel as an induced subgraph. Now if G is ISK4-free then
G is ISK4-free or contains K4 as an induced subgraph. This implies that G is
series-parallel or contains K3,3, prism or wheel as an induced subgraph or contains
K4. That is if G is ISK4-free, then G is series-parallel or contains K3,3, prism or
wheel as an induced subgraph or contains K4. Now, since K4 is a wheel graph we
modify the above statement as given in Corollary 3.14.

Corollary 3.14. If G is ISK4-free then either G is series-parallel or contains
K3,3, prism or wheel as an induced subgraph.

The above result is a Corollary to the Theorem 2.3. The Theorem 3.15 given
below is used to characterise R-perfect graphs.

Theorem 3.15. A graph G is R-perfect if and only if all its biconnected compo-
nents are R-perfect.
Proof. The forward implication is a direct consequence of the definition of R-
perfect graphs, since every biconnected component is also an induced subgraph of
G.
Conversely, let every biconnected component of G be R-perfect. It is to be proved
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that G is R-perfect. This is done by method of induction on the number of bicon-
nected components in G, say b(G).
Initially, let b(G) = 1, that is G is a graph with exactly one biconnected compo-
nent. This implies that either G is a biconnected graph, in which case G is trivially
R-perfect or G is formed by adjoining trees to the vertices of a biconnected graph.
If G is a such a graph then by Corollary 3.10 and the fact that the biconnected
component in G is R-perfect, it is obtained that G is R-perfect.
Now, let G be a graph with k biconnected components, all of which are R-perfect,
then assume that G is R-perfect. It is to be proved that, if G is a graph with k+1
biconnected components, all of which are R-perfect, then G is R-perfect. Let H
be a biconnected component of G. Clearly, H is connected to G by cut vertices as
it is a maximal biconnected subgraph of G. Now, removing H from G results in a
graph G′ that has k biconnected components, all of which are R-perfect. Therefore
by induction hypothesis it is obtained that G′ is R-perfect. Also H is R-perfect as
it is also a biconnected component of G.
Now we connect H to G′ to get G and prove that G is R-perfect. Since H and G
are R-perfect it is obtained that αR(H) = p = θR(H) and αR(G

′) = q = θR(G
′),

respectively.
Case 1: Let H be connected to G′ by trees. We prove R-perfection when H is
connected to G′ by one such tree and R-perfection would follow for H being con-
nected to G′ by multiple trees. Let v be the common vertex in H and G′.
Subcase 1: Let v ∈ IR(H) and v ∈ IR(G

′). Since v belongs to a tree in G′ and
it also belongs to the induced regular independent set of G′ we can observe that v
belongs to the induced regular independent set of the tree, containing v, as well.
Therefore, IR(G) can be formed by using all vertices in IR(H) and every vertex in
IR(G

′) so as to form a maximum induced regular independent set for G.
That is, αR(G) = |IR(G′)

⋃
IR(H)|. This implies that, αR(G) = αR(G

′)+αR(H)−
|IR(G′) ∩ IR(H)| = αR(G

′) + αR(H)− 1.
Now in order to form TR(G), every regular subgraph from TR(H) must be consid-
ered into the set so as to cover the vertex set of H and also we must include every
regular subgraph from TR(G

′), other than the K2 containing v into TR(G), as v is
already covered by TR(H). Therefore, TR(G) ⊆ TR(H)

⋃
TR(G

′) \ {K2}.
⇒ θR(G) ≤ θR(H)+θR(G

′)−1. Now, by induction hypothesis; θR(G) ≤ αR(H)+
αR(G

′) − 1 = αR(G). But from Equation 1, αR(G) ≤ θR(G) for all G. Therefore
it is obtained that αR(G) = θR(G).
Subcase 2: Let v ∈ IR(H) and v /∈ IR(G

′) or vice versa. Then IR(G) can be
obtained simply by taking the union of IR(H) and IR(G

′) since both are disjoint
sets, hence obtaining the maximum induced regular independence set for G. That
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is, αR(G) = αR(G
′) + αR(H). Now it can be easily observed that an induced reg-

ular cover of V (G) can be formed by taking the disjoint union of the sets TR(G
′)

and TR(H) as they form the minimum induced regular covers of V (G′) and V (H)
respectively. That is, TR(G) ⊆ TR(H)

⋃
TR(G

′).
⇒ θR(G) ≤ θR(H)+θR(G

′) = αR(H)+αR(G
′) = αR(G) (by induction hypothesis).

That is, θR(G) ≤ αR(G). But it is obtained from Equation 1 that, αR(G) ≤ θR(G)
for all G. Therefore, αR(G) = θR(G).
Case 2: LetH be connected toG′ by another biconnected component inG′. IfG′ is
connected toH by a bridge, then IR(G) can be formed by taking the union of IR(H)
and IR(G

′) as they are disjoint. Therefore, αR(G) = αR(H) + αR(G
′). Now, since

the union of TR(H) and TR(G
′) forms a cover for V (G) and also since these sets are

disjoint it is obtained that θR(G) ≤ θR(H) + θR(G
′) = αR(H) + αR(G

′) = αR(G)
(by induction hypothesis). That is θR(G) ≤ αR(G). But it is obtained from
Equation 1 that, αR(G) ≤ θR(G) for all G. Therefore, θR(G) = αR(G). Now we
consider the condition where H is connected to G′ by a common vertex, say v.
Let Rdi

i denote induced regular subgraphs in G′ containing v such that it also
contains a vertex ui, where i denotes the label given to the regular graph, di is the
degree of the vertices in the regular graph with label i and degG(ui) = di. Similarly,
let Rdj

j represent such regular graphs in H that contains v.
Subcase 1: Let v belong to at least one induced regular subgraph in both G′ and
H such that, there exist a vertex ui(or wj) in each Rdi

i(or Rdj
j) where ui(or wj) is

a vertex of degree di(or dj) in G. Computing for IR(G), let us initially consider all
vertices of IR(G

′) into IR(G). Clearly the vertices ui in G belongs exclusively to the
induced regular subgraphs Rdi

i in G. Hence all such vertices ui must be included in
IR(G

′) so as to maximise the number of elements in it. This implies that v /∈ IR(G
′)

as v ∈ Rdi
i for all i. Similarly, since wjs are vertices that exclusively belong to the

induced regular subgraphs Rdj
j, all these vertices must be considered in IR(H).

This implies that v /∈ IR(H) as v ∈ Rdj
j for all j. Therefore, v /∈ IR(G

′) and
v /∈ IR(H), implying that IR(G

′) and IR(H) are disjoint. With this information
in hand, to maximise the number of vertices in IR(G) we take the union of IR(G

′)
and IR(H). Therefore, αR(G) = αR(H) + αR(G

′). Now, since TR(G
′) and TR(H)

covers the vertex set of G′ and H respectively, the union of these two disjoint sets
forms a vertex cover of G. That is, TR(G) ⊆ TR(G

′)
⋃
TR(H). This implies that,

θR(G) ≤ θR(H) + θR(G
′) = αR(H) + αR(G

′) = αR(G) (by induction hypothesis).
That is, θR(G) ≤ αR(G). But by Equation 1, αR(G) ≤ θR(G) for all G. Therefore,
αR(G) = θR(G).
Subcase 2: Let v belong to no such induced regular subgraph Rdi

i which contains
a vertex ui that has degree di in G. To be more clear, every vertex that share
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an induced regular subgraph with v has a degree greater than that of the induced
regular subgraph it is contained in.
Since V (G′) ∩ V (H) = {v}, we need to analyse only the selection of vertices from
the induced regular subgraphs containing v, to IR(G). All other vertices in IR(G)
are taken directly from the union of IR(G

′) and IR(H) so as to maximise the set.
Subcase 2.1: Let u′ be a vertex in G′ that shares an induced regular subgraph
with v, such that no other vertex that shares an induced regular subgraph with
u′ is contained in IR(G

′), hence implying that either u′ ∈ IR(G
′) or v ∈ IR(G

′).
Therefore while forming the maximum induced regular independence set of G, ei-
ther one of u′ or v can be considered along with all other vertices in IR(G

′) and
IR(H). This selection of u′ or v, into IR(G), depends on availability of v in IR(H).
If v ∈ IR(H) ⊂ IR(G), then u′ cannot be taken into IR(G), since u′ and v share
the same induced regular subgraph. Therefore, v ∈ IR(G

′) ⊂ IR(G). Hence, max-
imising the induced regular independence set of G, it is obtained that IR(G) =
IR(H)

⋃
IR(G

′).
⇒ αR(G) = αR(H) + αR(G

′)− |IR(H) ∩ IR(G
′)|.

⇒ αR(G) = αR(H) + αR(G
′)− |{v}|

⇒ αR(G) = αR(H) + αR(G
′)− 1.

Now, θR(G) is to be analysed for the above condition. In order to form TR(G), all
elements from TR(G

′) are included so as to cover V (G′) including v. Now, since
v ∈ IR(H) and also every vertex that share an induced regular subgraph with v
also belongs to other induced regular subgraphs, it can be inferred that all these
vertices can be covered by these induced regular graphs in H that does not contain
v. That is, we need not consider the induced regular graph from TR(H) which
contains v, say Rv, while forming an induced regular cover for V (G). Therefore, it
can be observed that TR(G) ⊆ TR(G

′)
⋃
TR(H) \ {Rv}.

⇒ θR(G) ≤ θR(G
′) + θR(H) − 1 = αR(G

′) + αR(H) − 1 = αR(G) (by induction
hypothesis). That is, θR(G) ≤ αR(G). But it is observed from Equation 1 that,
αR(G) ≤ θR(G) for all G, implying that αR(G) = θR(G).
If v /∈ IR(H) ⊆ IR(G). Then there exists a vertex w that shares an induced regular
subgraph of H with v such that w ∈ IR(H) ⊆ IR(G). Therefore, v cannot be
included in IR(G), hence we can consider u′ into IR(G

′) and also it forces u′ into
IR(G). This implies that IR(G

′) and IR(H) are disjoint, as neither of these sets con-
tain v. Also since these sets form the maximum induced regular independent sets
of G′ and H respectively, we can form the IR(G) set by taking the disjoint union
of these two sets. That is, IR(G) = IR(H)

⋃
IR(G

′) ⇒ αR(G) = αR(H) + αR(G
′).

Now, since TR(G
′) and TR(H) covers the vertex set of G′ and H respectively,

the union of these two disjoint sets forms a vertex cover of G. That is, TR(G) ⊆
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TR(G
′)
⋃

TR(H). This implies that, θR(G) ≤ θR(H)+θR(G
′) = αR(H)+αR(G

′) =
αR(G) (by induction hypothesis). That is, θR(G) ≤ αR(G). But it is observed from
Equation 1 that αR(G) ≤ θR(G) for all G. Therefore, αR(G) = θR(G).
Subcase 2.2: Let there exist no such vertex u′. That is, for every vertex u′ that
shares an induced regular subgraph with v, there exist a vertices w′ that shares
an induced regular subgraph with u′, not containing v, such that w′ ∈ IR(G

′).
This implies that v ∈ IR(G

′) and also v is forced into IR(G). Now if v ∈ IR(H)
then a similar approach used in Subcase 1.1 can be used to obtain the result that
αR(G) = αR(G

′) + αR(H)− 1 = θR(G
′) + θR(H)− 1 = θR(G). Also if v /∈ IR(H)

then the disjoint union of IR(G
′) and IR(H) form the maximum induced regular

independent set of G. That is, αR(G) = αR(G
′) + αR(H). Also since TR(G

′)
and TR(H) covers the vertex set of G′ and H respectively, the union of these two
disjoint sets forms a vertex cover of G. That is, TR(G) ⊆ TR(G

′)
⋃
TR(H). This

implies that, θR(G) ≤ θR(H) + θR(G
′) = αR(H) + αR(G

′) = αR(G) (by induction
hypothesis). That is, θR(G) ≤ αR(G). But it is observed from Equation 1 that
αR(G) ≤ θR(G) for all G. Therefore, αR(G) = θR(G).
From all the above Cases it is obtained that a graph G with k + 1 biconnected
components, all of which are R-perfect, is R-perfect. Hence by induction method,
the theorem is proved.

The following Theorem characterises 2-connected, R-perfect graphs. This is
obtained by identifying the forbidden class: {ISK4, ISK+

4 , ISK2,3}. For conve-
nience, let us denote the above forbidden class by A. This theorem is further used
to characterise R-perfect graphs.

Corollary 3.16. A 2-connected graph is R-perfect if and only if it is A-free.
Proof. Given that G is a 2-connected, R-perfect graph it can be obtained as a
direct consequence of Lemmas 3.7, 3.8, and 3.13, that G is ISK4-free, ISK2,3-free
and ISK4+-free. This proves the forward implication.
Conversely, assume that G is A-free that is, G is {ISK4, ISK+

4 , ISK2,3}-free. It
is to be proved that the biconnected graph G is R-perfect. Since G is ISK4-free,
Corollary 3.14 implies that G is either series parallel or contains K3,3, prism or
wheel as an induced subgraph. Since K2,3 ∈ K3,3 and G is K2,3-free, G is K3,3-free.
Also G is W1,n-free for all n ≥ 4. Therefore the only wheel graph in G is K4. Let
G contain a prism graph, Cn□P2 it can be easily observed that the prism graphs
contains an ISK4 for all n ≥ 4, and contains ISK4+ for all n ≥ 5 as an induced
subgraph. Therefore G is prism free for all n ≥ 4. Hence the only prism in G is
C3□P2, which is R-perfect.
Now, let G be a series parallel graph. Since G is a biconnected, ISK2,3-free graph,
Theorem 2.10 implies that G is C-perfect and hence by Theorem 3.9, G is R-
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perfect.
From all the above inferences, we obtain that G is a series parallel, ISK2,3-free
graph or may contain K4s or C3□P2 as induced subgraphs, all of which are ob-
tained to be R-perfect. Hence the theorem.

With the help of Theorems 3.16 and 3.15 we prove the characterization of R-
perfect graphs.

Corollary 3.17. A graph G is R-perfect if and only if G is A-free.
Proof. Given G is an R-perfect graph it is obtained from Theorem 3.15 that every
biconnected component of G is R-perfect. Further, Theorem 3.16 implies that all
these biconnected components are A-free. This proves the forward implication.
Conversely, let G be A-free, that is, G is a graph such that every biconnected
component in G is {ISK4, ISK+

4 , ISK2,3}-free. Theorem 3.16 implies that every
biconnected component in G is R-perfect. Further, since every biconnected com-
ponent in G is R-perfect, Theorem 3.15 implies that G is R-perfect.

4. Summary and Conclusion
In this paper we have extended the notion of C-perfect graphs and introduced

a super class for it in R-perfect graphs. The main objective and inspiration that
lead to the birth of this topic was the interest in extending the concept of C-perfect
graphs to all possible classes of graphs. Through this paper we have studied the
structural properties of R-perfect graphs, which lead to identifying a forbidden
class for the same. We have characterised biconnected R-perfect graphs as ei-
ther series parallel or containing K4 or prism as induced subgraphs, which further
helped in deriving a general characterization for induced regular perfect graphs.
Series parallel graphs have wide range of applications in electronics. The scope of
applications for R-perfect graphs can be explored. The future scope of this topic
lay vast and works on studying the structural properties of R-perfect graphs for
various derived graphs are in progress.
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