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Abstract: The generalization of the ring of ordinary integers and their properties
into an Euclidean ring is well known. Every ideal in an Euclidean ring is a principal
ideal, as is also widely known. That is, the Euclidean ring is a principal ideal ring.
This paper aims to generalize the Γ−semiring of non-negative integers and their
properties by defining Euclidean Γ−semiring. A Euclidean Γ−semiring is one of
the many special classes of Γ−semirings. Finally, the special class of Γ−semirings
discussed in this paper is the class of almost principal ideal Γ−semirings.
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1. Introduction
Semirings were first considered explicitly by Vandiver in (1934) [15] in con-

nection with the axiomatization of the arithmetic of the natural numbers. Many
scholars have investigated semirings, either independently or as part of an effort
to branch out from ring theory or semigroup theory, or in connection with appli-
cations. Semirings never gained widespread acceptance, and although interest in
them never fully waned among algebraists, it did gradually. Redei [8] and Almeida
Costa [1] are the only authors to attempt to explain how the algebraic theory of
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semirings fits into modern algebra. The theory of rings and semigroups substan-
tially impacted the development of the theory of semirings. Since ideals play an
important role in advanced studies, generalizing ideals in algebraic structures is
necessary for further study of algebraic structure.

As a generalization of the ring, the notion of a Γ− ring was introduced by Nobu-
sawa in (1964) [5]. The notion of Γ− semigroup was introduced by Sen in (1981)
[9] as a generalization of Γ− groups. Murali Krishna Rao(1995) [6] introduced the
notion of Γ−semiring as a generalization of Γ− ring, ring, ternary semiring and
semiring. The important reason for developing Γ− semiring is a generalization of
the results of rings, Γ− rings, semirings, semigroup, and ternary semirings. Later
on, much has been developed on this concept by different researchers.

The motivation for this paper is [2, 3, 4], in which Euclidean semiring is defined
and the structure of ideals, as well as almost principal ideals, are given. This
paper aims to generalize/characterize the Γ− semiring of non-negative integers
and their properties by defining Euclidean Γ− semirings. Since the set of non-
negative integers is not a principal ideal Γ− semiring, a Euclidean Γ− semiring is
not expected to be a principal ideal Γ− semiring. The structure of ideals in an
Euclidean Γ− semiring R is closely related to the function f with R. We will show
that if B is a basis for an ideal in R, then f is restricted to B is bounded. Further,
we prove an analogue of some of the well-known results for Euclidean Γ− semirings
by showing that a Euclidean Γ− semiring is a principal Γ− semiring and almost
principal ideal Γ− semiring. The final special class of Γ− semirings is the class
of almost principal ideal Γ− semirings(APIS). Recall that an ideal is a principal
ideal if a single element generates it.

2. Preliminaries
First, we recall some definitions of the basic concepts of Γ−semirings with

examples and their ideals that we need in the sequel. For this, we follow [6, 7, 10,
11, 12].

Definition 2.1. Let R and Γ be two additive commutative semigroups. Then R is
called a Γ− semiring if there exists a mapping R×Γ×R → R denoted by xαy for
all x, y ∈ R and α ∈ Γ satisfying the following conditions:

(i) (x+ y)αz = xαz + yαz.

(ii) xα(y + z) = xαy + xαz.

(iii) x(α + β)z = xαz + xβz.

(iv) (xαy)βz = xα(yβz) for all x, y, z ∈ R and α, β ∈ Γ.
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Example 2.2. Let A and B be semirings and let R = Hom(A,B) and Γ =
Hom(B,A) denote the sets of homomorphisms from A to B and B to A respec-
tively. Then R is a Γ− semiring with operations of pointwise addition and compo-
sition of mappings.

Example 2.3. Let M be a Γ− ring and let R be the set of ideals of M . Define
addition in the natural way and if A,B ∈ R , γ ∈ Γ, let AγB denote the ideal
generated by {xγy|x, y ∈ M}. Then R is a Γ− semiring.

Example 2.4. Let R = {x1, x2, x3, x4} and Γ = {α, β}. We define operations with
the following tables.

+ x1 x2 x3 x4

x1 x1 x2 x3 x4

x2 x2 x3 x4 x1

x3 x3 x4 x1 x2

x4 x4 x1 x2 x3

+ α β

α α β

β β α

One can easily see that R and Γ are commutative semigroups.
Further,

α x1 x2 x3 x4

x1 x1 x1 x1 x1

x2 x1 x1 x1 x1

x3 x1 x1 x1 x1

x4 x1 x1 x1 x1

β x1 x2 x3 x4

x1 x1 x1 x1 x1

x2 x1 x2 x3 x4

x3 x1 x3 x1 x3

x4 x1 x4 x3 x2

Then R is a Γ−semiring.

The following definitions are from [6, 10, 12, 13, 14].

Definition 2.5. A Γ−semiring R is said to have a zero element if 0γx = 0 = xγ0
and x+ 0 = x = 0 + x for all x ∈ R and γ ∈ Γ.

Definition 2.6. A Γ−semiring R is said to have an identity element e if for all
x ∈ R there exists α ∈ Γ such that eαx = x = xαe.

Definition 2.7. A Γ−semiring R is said to have a strong identity element e, if
for all x ∈ R, eαx = x = xαe, for all α ∈ Γ.

Definition 2.8. A Γ−semiring R is commutative if xγy = yγx for all x, y ∈ R
and for all γ ∈ Γ.

Definition 2.9. A non empty subset S of a Γ−semiring R is said to be a sub
Γ−semiring of R if (S,+) is a sub semi group of (R,+) and xγy ∈ S for all
x, y ∈ S and γ ∈ Γ.
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Definition 2.10. A non-empty subset I of R is said to be the left (right) ideal of
R if I is sub semigroup of (R,+) and xαy ∈ I(yαx ∈ I) for all y ∈ I, x ∈ R and
α ∈ Γ.

If R is a Γ−semiring with zero elements, then it is easy to verify that every
ideal of R has zero elements.

Definition 2.11. If I is the left and right ideal of R, then I is known to be an
ideal of R.

Definition 2.12. A proper ideal M of a Γ− semiring R is said to be a maximal
ideal if there does not exist any other proper ideal of R containing M properly.

Definition 2.13. A non-zero element x in a Γ− semiring R is a left zero divisor
if and only if there exists a non-zero element y ∈ R and α ∈ Γ satisfying xαy = 0.
It is a right zero divisor if and only if non-zero y ∈ R exists and α ∈ Γ satisfying
yαx = 0. It is a zero divisor if and only if it is both a left and right zero divisor.

Definition 2.14. let R be a Γ−semiring. Then x, y ∈ R are associates if there
exists an element u ∈ U(ΓR) and α ∈ Γ such that x = uαy.

Note that if R is a Γ−semiring with strong identity then y = u−1βx for some
β ∈ Γ and RΓx = RΓy.

Definition 2.15. A function f : R → S, where R and S are Γ−semirings is said
to be a Γ−morphism of Γ−semirings if

(i) f(x+ y) = f(x) + f(y),

(ii) f(xαy) = f(x)αf(y) for all x, y ∈ R and α ∈ Γ.

Throughout this paper, we will consider R as an Euclidean Γ−semiring, with
strong identity e.

3. Ideals in Euclidean Γ−semirings

The problem of generalizing the non-negative integers and their characteristics is
interesting. In an ordinary Euclidean ring, the function defined on the ring satisfies
specific properties for the division algorithm and the product of two elements.
However, there is no connection between the sum of the two components. It is
essential to set a condition on the function related to the sum of two elements to
study the ideals in Euclidean semirings. In case of non-negative integers, we have
|x + y| = |x| + |y| ≥ |x|. Dale and Hanson [2] have defined Euclidean semiring by
adding this property to the definition of an Euclidean ring. Analogously, we define
Euclidean Γ−semiring in definition 3.6.
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The following definition of antisimple(principal) Γ−semiring is similar to the
definition defined for principal semirings in [2].

Definition 3.1. Let R be a commutative Γ−semiring with strong identity e. Define
the Principal part of R as P (R) = {r ∈ R | there exists x ∈ R such that r =
x+ e} ∪ {0}. If R = P (R) then R is called an antisimple(principal) Γ−semiring.

It is noted that the identity e may or may not be in P (R). However, 0 ∈ P (R).

Example 3.2. [2] Let R = N be a Γ−semiring , N be a set of non negative integers.
Let x ∈ R. Since 0 ∈ P (R) and 1 = 0 + 1 ∈ P (R), so take x ̸= 0, x ̸= 1. As x is
not an identity, so, to Peano’s postulates, there exists y ∈ R such that x = y + 1.
Hence, R is a principal Γ−semiring.

Example 3.3. [2] Let a, b ∈ N,N be a set of non negative integers such that b > a
and R = [a, b] . Let us define x+ y = max(x, y) and xαy = min(x, y) in R. Then,
R is closed, commutative, and associative under the operations of addition and
multiplication. Also for all x ∈ R, a+x = max(a, x) = x and xαb = min(x, b) = x.
Therefore, a and b are additive and multiplicative identities of R. Hence R is a
commutative Γ−semiring with identities a and b. Now let x ̸= b ∈ R and let there
exists y ∈ R such that x = y + b = max(y, b) = b, which is a contradiction. Hence
P (R) = b ∪ a = {b, a} and R is not a principal Γ−semiring.

The above examples indicate that the principal part of a Γ−semiring may be
trivial or non-trivial. In this paper, we consider the case when R = P (R) is
principal Γ−semirings.

Theorem 3.4. Let R be a commutative Γ−semiring with a strong identity e, then
P (R) is a sub-Γ−semiring of R.

Free of zero divisors property of a Euclidean Γ−semiring R is directly follows
from the definition of zero divisors as follows:
Let xαy = 0 with y ̸= 0 for all x, y ∈ R, and for all α ∈ Γ. Then f(x)g(α)f(y) =
f(xαy) = f(0) = 0. Since y ̸= 0 so f(y) ̸= 0. Therefore, f(x) = 0 implies that
x = 0.

Definition 3.5. Let R be a Euclidean Γ−semiring and 0 ̸= x ∈ R. Then an
element y ∈ R is divisor of x, if there exists r ∈ R,α ∈ Γ such that x = rαy.

The following definition is analogous to the definition given in [2, 4].

Definition 3.6. Let R be a principal Γ−semiring and free of zero divisors with a
function f : R → N, N the set of non negative integers and g : Γ → {1} then R is
called a Euclidean Γ−semiring if it satisfies the following properties:

(i) for x ∈ R, f(x) = 0 if and only if x = 0,
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(ii) for all x, y ∈ R, if x+ y ̸= 0 then f(x+ y) ≥ f(x).

(iii) for all x, y ∈ R and α ∈ Γ, f(xαy) = f(x)g(α)f(y)),

(iv) for all x, y ̸= 0 ∈ R, there exists q, r ∈ R,α ∈ Γ such that x = qαy + r where
either r = 0 or f(r) < f(y).

Example 3.7. The set of non-negative integers N with Γ = {1}, is a Euclidean
Γ−semiring. For, let f(n) = n for all n ∈ N. The four properties of Euclidean
Γ−semirings are satisfied.

We now characterize the ideals in a Euclidean Γ−semiring.
Let R be a Euclidean Γ−semiring and a ∈ R, then we denote the set Ta = {0}∪{x ∈
R | f(x) ≥ f(a)}.
Theorem 3.8. Let R be a Euclidean Γ−semiring and a ∈ R, then Ta is an ideal
of R.

Remark 3.9. Let R be an Euclidean Γ−semiring with strong identity e. Since
f(a) = 0 if and only if a = 0 and f(e) = 1, it is clear that T0 = Te = R. Similarly,
we give some properties of ideals of the form Ta in the following theorem, which is
proved in [2] and holds for Γ−semirings.

Theorem 3.10. Let R be a Euclidean Γ−semiring and a, b ∈ R. Then

(i) Ta ⊆ Tb if and only if f(a) ≥ f(b),

(ii) Ta ∪ Tb = Tc where f(c) = min{f(a), f(b)}.

(iii) Ta ∩ Tb = Tc, where f(c) = max{f(a), f(b)},

(iv) If {ai} is a sequence of elements in R such that f(ai) < f(ai+1), then ∩Tai = ϕ

Proof. The proofs of (i)− (iii) are simple and straightforward.
(iv) Let x ∈ Tai and f(x) = n. Since {f(ai)} is an increasing sequence of positive
integers, therefore there is an aj such that f(aj) > n = f(x). This implies that
x /∈ ∩Ta, and so ∩Tai = ϕ.

Theorem 3.11. Let R be an Euclidean Γ−semiring with strong identity e. Let
Ta be an ideal of R and Ba = {x ∈ Ta | x = a + y, y ∈ R and f(y) < f(a)}. For
a, b ∈ R, let R[a, b) = {x ∈ R |f(a) ≤ f(x) ≤ f(b)}. Then Ba = R[a, 2a).
Proof. First, we will show that f(Ba) is bounded. Let x = a + y ∈ Ba. Then
f(y) < f(a) and for all a, y ∈ R there exist q, r ∈ R,α ∈ Γ such that a = qαy + r,
where either r = 0 or f(r) < f(y). Since R is a principal Γ−semiring, q = q′ + e
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for some q′ ∈ R, so f(2a) = f(a + a) = f(a + qαy + r) = f(a + (q′ + e)αy + r) =
f(a+ y + q′αy + r) ≥ f(a+ y) = f(x). Thus, f(Ba) is bounded by f(2a). But by
definition of Ba, x ̸= 2a and it follows that Ba ⊆ R[a, 2a). Now let t ∈ R[a, 2a).
Then f(a) ≤ f(t) ≤ f(2a). Therefore, for all a, t ∈ R there exist p, r ∈ R, β ∈ Γ
such that t = pβa+r, where either r = 0 or f(r) < f(a). If p ̸= e, then there exists p′

such that p = p′+e. Therefore, t = pβa+r gives that t = (p′+e)βa+r = p′βa+a+r
If p′ = e, then f(t) = f(a+ a+ r) ≥ f(a+ a) = f(2a), which is a contradiction. If
p′ ̸= e, then p′ = p′′+e for some p′′ ∈ R. Then, t = p′βa+a+r = (p′′+e)βa+a+r =
p′′βa+ a+ a+ r and f(t) = f(p′′βa+ a+ a+ r) ≥ f(a+ a) = f(2a),which is again
a contradiction. Therefore, p = e and t = a + r ∈ Ba. Thus, R[a, 2a) ⊆ Ba and it
follows that Ba = R[a, 2a).

Theorem 3.12. Let R be an Euclidean Γ−semiring with strong identity e. Then
R[a, 2a) is a basis for Ta.
Proof. Let x ∈ Ta. Then for all a, x ∈ R there exists q, r ∈ R,α ∈ Γ such that
x = qαa+ r where either r = 0 or f(r) ≤ f(a). If r = 0 or q = e, then the result is
obvious. Again, let r ̸= 0 and q ̸= e. Since R is a principal Γ−semiring, therefore
q = q′ + e for some q′ ∈ R. Then x = qαa + r = (q′ + e)αa + r = q′αa + (a + r),
where a+ r ∈ R[a, 2a). Hence, R[a, 2a) is a basis for Ta.

Let I be an ideal of R and R[a, 2a) ⊆ I for some a ∈ I, then it is clear that
Ta ⊆ I. We will find some more conditions which will guarantee that Ta ⊆ I for
some a ∈ I. Some of such conditions are given in the following three results:

Theorem 3.13. Let R be an Euclidean Γ−semiring with strong identity e and I
be an ideal of R. If a ∈ I and R[kαa, (k + e)αa] ⊆ I for some k ∈ I, α ∈ Γ, then
Tkαa ⊆ I.
Proof. Let x ∈ R[kαa, 2(kαa)] − R[kαa, (k + e)αa]. Then f(kαa + a) < f(x) <
f(2(kαa)). Also, for all a, x ∈ R there exist p, r ∈ R,α, β ∈ Γ such that x =
pβ(k + e)αa + r, where either r = 0 or f(r) ≤ f(kαa + a). Again, for all
a, r ∈ R there exist s, t ∈ R, γ, β ∈ Γ such that r = sγa + t where either t = 0
or f(t) < f(a). Since R is a principal Γ−semiring, so there exists q ∈ R such
that p = q + e. Now, x = pβ(k + e)αa + r = (q + e)β(kαa + a) + (sγa + t) =
qβ(kαa + a) + (kαa + a) + (sγa + t) = qβ(kαa + a) + (sγa + a) + (kαa + t) =
qβ(kαa + a) + (s + e)γa + (kαa + t). Now, qβ(kαa + a) ∈ I, (s + e)γa ∈ I and
kαa+ t ∈ I, since f(kαa) ≤ f(kαa+ t) < f(kαa+ a) = f((k + e)αa) This implies
that x ∈ I and R[kαa, 2(kαa)) ⊆ I. Hence, by Theorem 3.12, Tkαa ⊆ I.

Theorem 3.14. Let R be a commutative Euclidean Γ−semiring with strong iden-
tity e and I be an ideal of R. If there exists a ∈ I such that a + e ∈ I then
Taαa ⊆ I.
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Proof. Let a, a + e ∈ I and x ∈ R(aαa, aαa + a). Then x = aαa + z where
f(z) < f(a). Now, for all a, z ∈ R there exists p, r ∈ R, β ∈ Γ such that a = pβz+r,
where either r = 0 or f(r) < f(z). Since R is a principal Γ−semiring, so p = q+ e
for some q ∈ R. Thus, x = aαa + z = (pβz + r)αa + z = pβzαa + rαa + z =
zβ(pαa+ e) + rαa = zβ[(q+ e)αa+ e] + rαa = zβ[qαa+ (a+ e)] + rαa ∈ I. Thus,
R[aαa, aαa+ a) ⊆ I, so by theorem 3.13, Taαa ⊆ I.

The following definition is analogous to the definition in [2].

Definition 3.15. Let R be a Euclidean Γ−semiring and x ̸= 0, y ∈ R. An element
d ∈ R will be called the greatest common divisor of x and y if:

(i) d is a common divisor of both x and y.

(ii) If c is another common divisor of both x and y, then f(c) ≤ f(d).

Definition 3.16. Let R be an Euclidean Γ−semiring, then for any ab ∈ R. We
say a and b are relatively prime if their greatest common divisor is identity e.

In Euclidean rings, for any two integers a and b, we know that there exists a
greatest common divisor d, for which there are integers s and t such that d = sa+tb.
Moreover, for Euclidean semirings, we will assume that if a, b ∈ N, a set of non-
negative integers, then either sa = tb + d or tb = sa + d. We now extend this
property to Euclidean Γ−semirings.

It is easy to check that in a Euclidean Γ− semiring, the greatest common divisor
of two elements a and b can be written in the form d = sαa+ tβb, where s, t ∈ R,
and some α, β ∈ Γ. Consequently for Euclidean Γ−semrings, we will assume that
either sαa = tβb + d or tβb = sαa + d. Studying several forms of the division
algorithm in Euclidean semirings is necessary. It will be seen that this is true also
for the study of Euclidean Γ−semirings.

Theorem 3.17. Let R be an Euclidean Γ−semiring with strong identity e and I
be an ideal of R. If a, b ∈ I, such that a and b are relatively prime, then there
exists c ∈ I such that Tc ⊆ I.
Proof. Let a and b be relatively prime, then there exist x, y ∈ R and α, β ∈ Γ,
such that either xαa = yβb + e or yβb = xαa + e. Suppose xαa = yβb + e. Now,
yβb ∈ I and yβb + e = xαa ∈ I. So by theorem 3.13, Tyβb ⊆ I. Similarly, if
yβb = xαa+ e then it follows that Txαa ⊆ I. Therefore, in either case, there exists
c such that Tc ⊆ I.

If f(x) ̸= f(y), then it is clear that f(Tx) and f(Ty) can differ by only a finite
number of non-negative integers. Therefore, if I is an ideal containing Ta, then
R ⊇ I ⊇ Ta. Thus, f(R) and f(I) can differ by only finitely many numbers of
non-negative integers.
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Theorem 3.18. Let R be an Euclidean Γ−semiring with strong identity e and I
be an ideal of R such that Ta ⊆ I for some a ∈ I. Then there exists x ∈ I such
that Tx is maximal in I and I = L ∪ Tx, where L = {y ∈ I | 0 < f(y) < f(x)}.
Proof. The result follows the principle of well-ordering and Theorem 3.10.

It is easy to show that if Ta is an ideal of R, b ∈ R, then bΓTa is an ideal of R.
From the above theorem, it is clear that any basis of I in L ∪ R[x, 2x). If I is an
ideal of R, then it may not contain any ideal of the form Ta. For this, if a ∈ I with
f(a) > 1, then for any x, there is no ideal of the form Tx in principal ideal (a).
This is obvious as (a) = {aαx | x ∈ R} and f(aαx) = f(a)g(α)f(x). Therefore,
f((a)) has elements only, multiples of f(a). Thus, (a) = aΓTe. By considering the
ideal of the form bΓTa, we want to generalize this case. It is easy to show that if
Ta is an ideal of R, b ∈ R, then bΓTa is an ideal of R. By theorem 3.10, it follows
that bΓTa ⊆ bΓTc if and only if f(a) ≥ f(b).

Now, we want to show that if I is an ideal of R such that I contains no ideal
of the form Ta, then I has an ideal of the form bΓTa. For this, we need some
properties for this type of ideal.

Theorem 3.19. Let R be an Euclidean Γ−semiring with strong identity e. Then
bΓR[a, 2a) is a basis for bΓTa.
Proof. This proof directly follows from Theorem 3.12.

It is clear now that for any a ∈ I, the ideal (a) = aΓTe ⊆ I. But we want to find
ideals of the form bΓTa such that a ̸= e, and also find conditions that will ensure
that an ideal I will contain bΓTa. As R[a, 2a) = Ba = {y | y = a+ r where f(r) <
f(a)}, therefore for any α ∈ Γ, we have dαR[a, 2a) = {y | y = dαa+r where f(r) <
f(dαa) and d divides r}.
Theorem 3.20. Let R be an Euclidean Γ−semiring with strong identity e and I
be an ideal of R. If a ∈ I and dΓR[kαa, (k + e)αa] ⊆ I, then dΓTkαa ⊆ I.

Theorem 3.21. Let R be a commutative Euclidean Γ−semiring with strong iden-
tity e and I be an ideal of R. If d is a divisor of a and a+ d ∈ I then dΓTa ⊆ I.
Proof. If d is divisor of a, then there exists k ∈ R and α ∈ Γ such that a = dαk.
Let x ∈ dΓR[a, a + d]. Then dΓR[a, a + d] = dΓR[dαk, (k + e)αd]. This implies
that for some β ∈ Γ, we have x = dβ(dαk)+ z, where f(z) < f(dαk) and d divisor
of z. Therefore, there exists y ∈ R and δ ∈ Γ such that z = yδd. Further, for all
d, z ∈ R, there exist p, r ∈ R, γ ∈ Γ such that d = pγz + r, where either r = 0 or
f(r) < f(z). Since R is a principal Γ−semiring, we have d = t + e and p = q + e.
From all this, we have, x = dβ(dαk) + z = (dαk)βd+ z = (dαk)β(pγz + r) + z =
(aβpγz + z) + aβr = yδ(aβpγd + d) + aβr = yδ(aβ(q + e)γ(t + e) + d) + aβr =
yδ(aβ(qγt+q+t+e)+d)+aβr = yδ(aβ(qγt+q+t)+(a+d))+aβr But a, a+d ∈ I,
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therefore it follows that x ∈ I. Thus, dΓR[a, a + d] ⊆ I and from Lemma 3.20 it
follows that dΓTa ⊆ I.

Corollary 3.22. Let R be a commutative Euclidean Γ−semiring and I be an ideal
of R. Let a, b ∈ R and d be a greatest common divisor of a, b, then dΓTc ⊆ I for
some c ∈ I.

The proof of the following theorem is simple.

Theorem 3.23. Let R be a commutative Euclidean Γ−semiring and p, q, c, d ∈ R.
Then

(i) If p is divisor of q, then dΓTq ⊆ dΓTp.

(ii) If c is divisor of d, then dΓTp ⊆ cΓTp.

Finally, we have the structure theorem whose semiring version is in [2].

Structure Theorem
Let I be an ideal of R such that it does not contain any ideal of the form

Tx for any x ∈ I. Let a, b ∈ R with d as the greatest common divisor. Now,
d ̸= e, otherwise from theorem 3.17, we get Tc ⊆ I for some c ∈ I, which is a
contradiction. By Corollary 3.22 it follows that dΓTp ⊆ I for some p ∈ I. Now,
let U = {d | d is the greatest common divisor of some a, b ∈ I} and let k ∈ U such
that f(k) is minimum. Let V = {p | dΓTp ⊆ I} and q ∈ V is such that f(q) is
minimum. As no two elements in I are co-prime, k ̸= e and k divide d for all d ∈ U .
Then, by applying theorem 3.23 and theorem 3.10, we get kΓTa is maximal in I.
Now if we set L = {t ∈ I|f(t) < f(kαq)} for all α ∈ Γ we get I = L∪ kΓTq, where
L ∩ kΓTq = {0}. Now kΓR[q, 2q) is a basis for kΓTa. Therefore, L ∪ kΓR[q, 2q) is
a basis for I and moreover this basis is bounded by Min

α∈Γ
{f(2(kαq)}.

Now, the theorem 3.18 proves the following structure theorem for ideals in a
Euclidean Γ−semiring.

Theorem 3.24. Let R be an Euclidean Γ−semiring and I be an ideal of R. Let
L = {t ∈ I | f(t) < f(dαp)}, for all α ∈ Γ, then I = L ∪ dΓTp, where dΓTp is
maximal in I and L∩ dΓTp = {0}. Moreover, L∪ dΓR[p, 2p) is a basis for I whose
images are bounded by Min

α∈Γ
{f(2(dαp)}.

4. Almost Principal Ideals in Euclidean Γ− Semirings
A Euclidean Γ−semiring is one of the many special classes of Γ−semirings. The

classes of Γ−semirings discussed in this section are analogous to some of the semir-
ings discussed in [3]. In Γ−semiring R, an element u is called a unit if there exists
a ∈ R,α ∈ Γ such that uαa = e. We denote the set of all units in R by U(ΓR).



Ideals and Almost Principal Ideals in Euclidean Γ−Semirings 271

The set U(ΓR) is multiplicatively closed. Let R∗ = R − {0}. A Γ−semiring R is
called Γ− division semiring if R∗ = U(ΓR).

Definition 4.1. Let R be a Γ−semiring. An ideal I of R is an almost principal
ideal of R if a finite set F exists such that I ∪F is a principal ideal. A Γ−semiring
R is called an almost principal ideal Γ−semiring(APIS) if every ideal in R is an
almost principal ideal.

Example 4.2. Every principal ideal domain is an almost principal ideal Γ−semiring.
The set of non-negative integers N is an almost principal ideal Γ−semiring.

Theorem 4.3. Let R be a Euclidean Γ−semiring and u ∈ R. Then u is a unit in
R if and only if f(u) = 1.
Proof. Let u ∈ R be a unit. Then there exists u′ ∈ R,α ∈ Γ such that uαu′ = e.
Therefore f(u)g(α)f(u′) = f(uαu′) = f(e) = 1 . Since f(u) and f(u′) are non-
negative integers. Therefore it follows that f(u) = 1. Conversely, suppose that
f(u) = 1. Then by applying the division algorithm, there exists q, r ∈ R, β ∈ Γ
such that e = qβu + r where r = 0 or f(u) > f(r). But 1 = f(u) > f(r) implies
that f(r) = 0 and thus r = 0. Therefore, e = qβu, and hence u is a unit.

Corollary 4.4. Let R be a Euclidean Γ−semiring. If u is a unit and a ∈ R then
u divides a.

Theorem 4.5. Let R be a Euclidean Γ−semiring. Then R is a Γ− division semir-
ing if and only if f is bounded on R.
Proof. If R be a Γ− division semiring and a ∈ R. Then, either a = 0 or a is a
unit. Therefore f(a) = 0 or f(a) = 1 and f is bounded on R. Conversely, let f be
bounded on R. Then there exists an integer m such that f(a) ≤ m for all a ∈ R.
Let y ∈ R such that y ̸= 0. If f(y) = k > 1, then there exists an integer, say n such
that f [(yα)n−1y] = [f(y)]n−1αf(y) > m, which contradicts the assumption that f
is bounded on R. Therefore, f(y) = 1. So y is a unit. Hence, R is a Γ−division
semiring.

We introduce the cancellation property relative to the function f defined on
Γ−semiring.

Definition 4.6. A Euclidean Γ-semiring R is said to have f -cancellation if a, b, c, d ∈
R, a+ b = c+ d and f(a) = f(c), then f(b) = f(d).

Example 4.7. Clearly, the Euclidean Γ− semiring N, the set of non negative
integer has the f− cancellation property.

Theorem 4.8. Let R be a Euclidean Γ−semiring with f−cancellation and strong
identity e. Then f(a) = f(b) if and only if a and b are associates.



272 South East Asian J. of Mathematics and Mathematical Sciences

Proof. Let a and b be associates, then there exists α ∈ Γ and a unit u such that
a = bαu. Now, f(a) = f(bαu) = f(b)g(α)f(u) = f(b). Conversely, let f(a) = f(b).
Then by division algorithm we have a = bβq + r for some q ∈ R, β ∈ Γ where
r = 0 or f(r) < f(b). Therefore, f(a) = f(bβq + r) ≥ f(bβq) = f(b)g(β)f(q)
Consequently, f(q) = 1. This implies that q is a unit. Therefore f(a) = f(bβq).
Now as a + 0 = bβq + r, therefore f−cancellation property gives that f(r) = 0.
Thus r = 0. Hence, a and b are associates.

Remark 4.9. Let Γ be finite and consider two classes of Γ−semirings, the class
with finite elements of units and the class in which every non-zero element is a unit
(the class of Γ−division semirings, in which the only ideals are the trivial ideals.
Hence these are principal ideal Γ−semirings and therefore almost principal ideal
Γ−semirings.

Now we restrict our attention to the former class of Γ−semirings and show that
every Euclidean Γ−semiring, with finite Γ and U(ΓR) is an almost principal ideal
Γ−semiring.

Theorem 4.10. Let R be a Euclidean Γ−semiring with f− cancellation. If Γ and
U(ΓR) are finite, then for all a, d ∈ R, dΓTa is an almost principal ideal.
Proof. We first show that R − Ta is finite. If x ∈ R − Ta, then f(x) < f(a).
Let us suppose that R− Ta is not finite. Then R− Ta must have a infinite subset
with distinct elements, say K = {x0, x1, . . . , xn, . . .} such that f(xi) = f(xj) =
m < f(a) for all non-negative integers i and j. Since U(ΓR) is finite, so let
U(ΓR) = {u1, u2, . . . , ut}. Again, f(x0) = f(x1), it follows from theorem 4.8
that x0 = ui1α1x1 where α1 ∈ Γ and 1 ≤ i1 ≤ t. Continuing this way, we get
x0 = uikαkxk for each positive k and αk ∈ Γ. Let s > t, then x0 = uisαsxs where
αs ∈ Γ and 1 ≤ is ≤ t. But U(ΓR) has only t elements, therefore uis = uir for
some ir with 1 ≤ ir ≤ t. Hence uisαsxs = x0 = uirαrxr = uisαrxr and since uis

is a unit, this implies that xr = xs. But this contradicts the hypothesis that K
has distinct elements. Therefore, R − Ta is finite. Consequently, dΓ[R − Ta] is
finite. Let (d) − dΓTa = dΓR − dΓTa = dΓ[R − Ta]. Hence (d) − dΓTa is finite
and dΓTa ∪ [(d)−Ta] = (d) is a principal ideal. Hence, dΓTa is an almost principal
ideal.

Theorem 4.11. Let R be a Euclidean Γ−semiring with f−cancellation and U(ΓR)
and Γ are finite, then R is an almost principal ideal Γ−semiring.
Proof. Let I be an ideal in R such that I ̸= {0}. Then By Theorem 3.24 I =
L∪ dΓTa, where dΓTa is maximal in I, L = {t ∈ I|f(t) < f(d)g(α)f(a) = f(dαa)}
and L ∩ dΓTa = {0}. Let y ∈ L. Therefore f(y) < f(dαa), for all α ∈ Γ. Let g
be the greatest common divisor of y and dαa. Then, by Corollary 3.22, it follows
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that there exists c ∈ I such that gΓTc ⊆ I. Now as dΓTa is maximal in I, therefore
gΓTc ⊆ dΓTa and this implies that d divides g. But g divides y, therefore d is a
divisor of y. Therefore we have y = dβx for some x ∈ R, β ∈ Γ. Hence y ∈ (d).
Moreover f(d)g(β)f(x) = f(dβx) = f(y) < f(d)g(β)f(a). Therefore it follows
that f(x) < f(a) and y ∈ (d)−dΓTa. Then L ⊆ (d)−dΓTa. Also (d)−Ta is finite,
therefore L is finite. So by theorem 4.10 dΓTa is an almost principal ideal. Now
dΓTa ⊆ I = L ∪ dΓTa ⊆ (d) implies that I is an almost principal ideal.

Hence, Euclidean Γ−semirings, with finite Γ and have finite units, as well as
those Euclidean Γ−semirings in which every non-zero element is a unit, are almost
principal ideal Γ−semirings.
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