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Abstract: In this paper, we study the relation between numerable Lie algebra
bundle and Lie algebra bundle of finite type. The effect of finite type on shrinkable
maps and homotopy equivalence are examined. Further, we obtain some results
on Section Extension Property, Covering Homotopy Property and Weak Covering
Homotopy Property for Lie algebra bundles of finite type.
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1. Introduction
Following the procedure of Huebsch [5] and Hurewicz [6], Dold got the re-

sults on Covering Homotopy property(CHP) as a consequence of section extension
theorem [3]. The necessary and sufficient condition for Covering Homotopy Prop-
erty(CHP) was examined and CHP for induced spaces has been studied in [3].
To study fibre homotopy equivalence, Dold considered Weak Covering Homotopy
Property(WCHP). The results were customised for spaces with numerable cover-
ing. The notions of numerable covering and numerable bundles introduced by Dold
in [3] pave the way for some results on bundles of finite type, that we examine in
this paper. Here all underlying vector spaces are real and finite dimensional.
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Let ξ and ξ′ be vector bundles over a space X. If P is a property of continuous
maps, then we say that p : ξ → X (resp. f : ξ → ξ′) has the property P over
Y ⊂ X if pY (resp. fY ) has the property P . For example, p is trivial over Y , f is
a fibre homotopy equivalence over Y , etc. The map f has the property P locally
if every x ∈ X has a neighborhood U such that f has the property P over U .

We recall the following definitions:

Definition 1.1. A Lie algebra bundle is a vector bundle ξ = (ξ, p,X) together with
a morphism θ : ξ ⊕ ξ → ξ which induces a Lie algebra structure on each fibre ξx.

Definition 1.2. A locally trivial Lie algebra bundle is a s vector bundle ξ in which
each fibre is a Lie algebra and for each x in X, there is an open set U in X con-
taining x, a Lie algebra L and a homeomorphism ϕ : U × L → p−1(U) such that
for each x in U , ϕx : {x} × L → p−1(x) is a Lie algebra isomorphism.

Definition 1.3. A section of a Lie algebra bundle (ξ, p,X) is a map s : X → ξ
such that p ◦ s = idX . Γ(ξ) denote the set of all sections of ξ.

Definition 1.4. Let ξ = (ξ, p,X) and η = (η, q,X) be two Lie algebra bundles
over the same base space X. A Lie algebra bundle morphism f : ξ → η is contin-
uous map such that p = qf and for each x in X, fx : ξx → ηx is a Lie algebra
homomorphism. We say that a morphism is an isomorphism if f is bijective and
f−1 is a continuous map.

Definition 1.5. A Lie algebra bundle ξ over an arbitrary space X is of finite type
if there is a finite partition S of unity on X (that is a finite set S of non-negative
continuous functions on X whose sum is 1) such that the restriction of the bundle
to the set {x ∈ X | f(x) ̸= 0} is a trivial Lie algebra bundle for each f in S.

Definition 1.6. A covering {Uλ}λ∈Λ of a space X is called numerable if it admits
a refinement by a locally finite partition of unity. That is, if there exists a locally
finite partition of unity {fi : X → [0, 1]}i∈S such that every set f−1

i (0, 1] is con-
tained in some Uλ.

Remark 1.7. If ξ is a Lie algebra bundle of finite type over X and {Ui} is an
open cover corresponding to the partition of unity {fi} (i.e., Ui = f−1

i (0, 1]), then
{Ui} is numerable.

Definition 1.8. A Lie algebra bundle ξ = (ξ, p,X) is said to be numerable if X
has a numerable covering {Vλ}λ∈Λ such that ξ|Vλ

is trivial for each λ ∈ Λ.

Remark 1.9. Any Lie algebra bundle over compact space is of finite type and any
Lie algebra bundle over paracompact space is numerable. A Lie algebra bundle of
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finite type is always numerable. Converse is not true. For, consider the paracom-
pact space Rl (R), with the lower limit topology. Any Lie algebra bundle over Rl

is numerable as Rl is paracompact. But it is not of finite type, since finitely many
open sets cannot cover Rl.

For each space X, let kG(X) denote the set of isomorphism classes of numerable
principal G-bundles over X. Let {ξ} denote the isomrphism class of principal G-
bundles ξ over X. For a homotopy class [f ] : B → C, we define a function
kG([f ]) : kG(C) → kG(B) by the relation kG([f ]){ξ} = {f ∗(ξ)}.

Let H denote the category of all spaces and homotopy classes of maps. We
observe that the collection of functions kG: H → ens is a cofunctor (ens is the
category of sets and functions [7, Theorem 10.1]). Let ξ = (ξ, p,X) be a fixed
numerable principal G-bundle. For each space B we define a function ϕξ(B) :
[B,X] → kG(B) by the relation ϕξ(X)[u] = {u∗(ξ)}.
Definition 1.10. A principal G-bundle ξ = (ξ, p,X) is said to be universal if ξ
is numerable and ϕξ : [−, X] → kG is an isomorphism. The space X is called a
classifying space of G.

Under ordinary composition, the maps overX form a category, which is denoted
by CX .
Definition 1.11. A homotopy Θ : ξ × I → ξ′ is called a homotopy over X or
vertical homotopy if Θt : ξ → ξ′, Θt(e) = Θ(e, t) is a map over X for every t ∈ I.
Two maps f0, f1 : ξ → ξ′ are vertically homotiopic, f0 ≃X f1, if there exists a
vertical homotopy Θ with Θ0 = f0, Θ1 = f1. The relation ≃X is an equivalence
relation between maps over X which is compatible with composition. By identifying
equivalent maps, we get a new category C̄X whose elements are those of CX and
whose morphisms are vertical homotopy classes of maps over X.

Definition 1.12. A halo around Y ⊂ X is a subset V of X such that there exists
a continuous function f : X → [0, 1] with Y ⊂ f−1(1), CV ⊂ f−1(0), (CV is the
complement of V ).

Definition 1.13. Let ξ and ξ′ be two Lie algebra bundles over X. We say p : ξ →
X is dominated by p′ : ξ′ → X (or p′ dominates p) if there exist maps f : ξ → ξ′,
g : ξ′ → ξ over X such that gf ≃X idξ(i.e., p is a retract of p′ in the category C̄B).

We observe that the following properties of a Lie algebra bundle p : ξ → X are
equivalent:

(a) p is a fibre homotopy equivalence( treated as a map over X into idX)

(b) p is dominated by idX
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(c) there exists a section s and a vertical homotopy Θ : sp ∼=X idξ.

If any one of the above properties holds, then p is called shrinkable.

2. Section Extension Property

In this section, we discuss the section extension property for Lie algebra bundles.

Definition 2.1. A Lie algebra bundle p : ξ → X has the section extension property
(SEP) if the following holds:
For every Y ⊂ X and every section s over Y which admits an extension to halo
V around Y , there exists an extension S over X, i.e., a section S : X → ξ with
S|Y = s.

Theorem 2.2. (Section Extension Theorem) Let p : ξ → X be a Lie algebra
bundle of finite type and let {fαi

}i∈S be a finite partition of unity, Uαi
= {x ∈ X |

fαi
(x) ̸= 0} with ξ|Uαi

is trivial such that p has SEP over each Uαi
. Then p has the

SEP.
Proof. We have fαi

: X → [0, 1] and Uαi
= f−1

αi
(0, 1]. Take a section s over Y ⊂ X

which admits an extension to a halo V . Let f : X → [0, 1] be a haloing function
and denote the extension s by the same letter, s : V → E. We have to find a section
S : X → ξ such that S|Y = s|Y . We observe that V ∩Uαi

is a halo around Y ∩Uαi

and s : V ∩ Uαi
→ ξ is an extension of the section s on Y ∩ Uαi

. Since p has SEP
over each Uαi

, there exists a section Sαi
: Uαi

→ ξ such that Sαi
|Y ∩Uαi

= s|Y ∩Uαi
.

Now define a section S on X by, S(x) = Sαk
(x), where k is the maximum such

that x ∈ Uαk
. We have, S|Y = s|Y .

Corollary 2.3. Let ξ → X be a Lie algebra bundle of finite type. Take a section
s over Y ⊂ X which admits an extension to a halo V around Y . Let {fαi

}i∈S be
a finite partition of unity, Uαi

= {x ∈ X | fαi
(x) ̸= 0} with ξ|Uαi

is trivial such
that pUαi

is shrinkable for each αi (i.e., fibre homotopy equivalent to a trivial space
Uαi

×W with contractible W ). Then there exists a section S : X → ξ with S|Y = s.
Proof. Proof follows from above theorem and Corollary 2.8 in [3], as {Uαi

} is a
numerable covering.

Theorem 2.4. Let p : ξ → X be a Lie algebra bundle of finite type. Let {fαi
}i∈S

be a finite partition of unity, Uαi
= {x ∈ X | fαi

(x) ̸= 0} with ξ|Uαi
is trivial. If p

is shrinkable over each Uαi
, then p is shrinkable.

Proof. Proof follows from Corollary 3.2 in [3], as {Uαi
} is a numerable covering.

3. Covering Homotopy Property

In this section, we discuss the covering homotopy property for Lie algebra bun-
dles.
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Definition 3.1. Let p : ξ → X be a Lie algebra bundle over X and H̄ : A×I → X
be a homotopy. We say p has the covering homotopy property (CHP) for H̄ if the
following holds:
Given h : A → ξ with ph(a) = H̄(a, 0), given further f : A → I and H ′ : f−1(0, 1]×
I → ξ with pH ′(a, t) = H̄(a, t), H ′(a, 0) = h(a), a ∈ f−1(0, 1], t ∈ I, there exists
H : A× I → ξ with pH = H̄,H|f−1(1) = H ′|f−1(1), H(a, 0) = h(a), a ∈ A.
We use analogous terminology if I is replaced by an arbitrary interval [b, c], b < c.

We say that p has CHP for A, if it has the CHP for all homotopies H̄ with
range A× I. If it has the CHP for all spaces, then we say it has the CHP.

Definition 3.2. Let ξI denote the space of all the paths in ξ. For every H̄ :
A × I → X, h : A → ξ with ph(a) = H̄(a, 0), we define a fibre bundle q : η → A
over A as follows:

η = {(a, w) ∈ A× ξI | h(a) = w(0) and pw(t) = H̄(a, t)}, q(a, w) = a.

A covering homotopy gives a section S for q by S(a) = (a,Ha), where Ha(t) =
H(a, t).

We recall the following two lemmas from [3]:

Lemma 3.3. [3, Lemma 4.5] The map p has the CHP for H̄ if and only if q = qh
has the SEP for all h : A → ξ with ph(a) = H̄(a, 0).

Lemma 3.4. [3, Lemma 4.6] Let b < c < d be real numbers and H̄ : A×[b, d] → X.
If p has the CHP for H̄|A×[b,c] and H̄|A×[c,d], then for H̄ itself.

Theorem 3.5. Let p : ξ → X be a Lie algebra bundle of finite type and H̄ :
A × I → X be a homotopy. Suppose {fαi

}ni=1 is a partition of unity on A, with
Uαi

= f−1
αi

(0, 1] and {Uαi
} cover A. If for every αi, real numbers 0 = tαi

0 < tαi
1 <

· · · < tαi
rαi

= 1 such that p has the CHP for H̄|Uαi×[t
αi
k ,t

αi
k+1]

, then p has the CHP for

H̄.
Proof. By Lemma 3.4, p has the CHP for H̄|Uαi×I for all αi. Then q : η → A has
the SEP over each Uαi

, by Lemma 3.3. Hence q itself has the SEP (Theorem 2.2).
Thus, again by Lemma 3.3, p has the CHP for H̄.

Theorem 3.6. Let p : ξ → X be a Lie algebra bundle of finite type. Suppose
{fα}α∈S is a partition of unity, with Uα = f−1

α (0, 1] and ξ|Uα is trivial. If p has the
CHP over every set Uα, then p has the CHP for all spaces A.
Proof. Let H̄ : A× I → X be a homotopy. We need to show that p has the CHP

for H̄. Let a ∈ A. Then H̄(a, t) ∈ X =
⋃
α∈S

Uα,∀t ∈ I. Let H̄(a, t) ∈
k⋃

i=1

Uαi
. Then
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fαi
H̄(a, t) ̸= 0, ∀i = 1, . . . , k. Define

gα1...αk
(a) =

k∏
i=1

Min{fαi
H̄(a, t) | t ∈ [i− 1/k, i/k]}.

Note that gα1...αk
(a) ̸= 0 if and only if H̄(a × [i − 1/k, i/k]) ⊂ Uαi

,∀i. Then the
functions in {gα1...αk

} are well defined and {Vα1...αk
= g−1

α1...αk
(0, 1]} covers A. We

observe that p has the CHP for all H̄|Vα1...αk
×[i−1/k,i/k] and hence the result follows

from Theorem 3.5 (If needed, divide each function in {gα1...αk
} by sum of all the

functions to get the partition of unity).

4. Weak Covering Homotopy Property
In this section, we discuss the weak covering homotopy property for Lie algebra

bundles.

Definition 4.1. Let p : ξ → X be a Lie algebra bundle over X and H̄ : A×[0, 1] →
X be a homotopy. We say that p has the weak covering homotopy property (WCHP)
for H̄, if it has the ordinary CHP for the following:

Ĥ : A× [−1, 1] → X, Ĥ(a× [−1, 0]) = H̄(a, 0), Ĥ|A×[0,1] = H̄.

Every map H : A × [−1, 1] → ξ with pH = Ĥ will be called a weak covering
homotopy of H̄.

We use analogous terminology if [0, 1], [−1, 1] is replaced by [c, d], [b, d] (b < c <
d). We say p has the WCHP for X if it has the WCHP for all H̄ with range A×I.

Theorem 4.2. Let p : ξ → X be a Lie algebra bundle of finite type. Suppose
{fαi

}ni=1 is a partition of unity, with Uαi
= f−1

αi
(0, 1] and ξ|Uαi

is trivial. If p has
the WCHP over every set Uαi

, then p has the WCHP for all spaces A.
Proof. Proof follows from [3, Theorem 5.12], since {Uαi

} is a numerable covering.

Theorem 4.3. Let p : ξ → X be a Lie algebra bundle of finite type. Suppose
{fαi

}ni=1 is a partition of unity, with Uαi
= f−1

αi
(0, 1], ξ|Uαi

is trivial and the inclu-
sion map Uαi

→ X is null-homotopic for every αi. Then p : ξ → X has the WCHP
if and only if p is fibre homotopy equivalent over each Uαi

to a trivial space.
Proof. We have {Uαi

} is a numerable covering. Therefore, proof follows from [3,
Theorem 6.4].

Theorem 4.4. (Classification theorem) A principal G-bundle η = (η, p,X) of fi-
nite type is universal if and only if its bundle space X is contractible.
Proof. Since every bundle of finite type is numerable, the result follows from [3,
Theorem 7.5].
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Theorem 4.5. (Covering Homotopy theorem for Bundle maps) Let ξ and η be
principal G-bundles of finite type, ϕ : ξ → η be a bundle map, and D : Xξ× [0, 1] →
Xη a deformation of Xϕ (i.e., D(x, 0) = Xϕ(x)). Then there exists a bundle map
Φ : ξ × [0, 1] → η such that XΦ = D and Φ(z, 0) = ϕ(z), z ∈ ξ.
Proof. Proof follows from [3, Theorem 7.8], as any Lie algebra bundle of finite
type is numerable.

Corollary 4.6. If η is a Lie algebra bundle of finite type over X and f0, f1 : B →
Xη are homotopic maps, then the induced bundles f−1

0 (η), f−1
1 (η) are equivalent.

Proof. Since every Lie algebra bundle of finite type is numerable, result follows
from [3, Theorem 7.10].
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