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1. Introduction
In 2015, Khojasteh, Shukla and Radenović [11] introduced the concept of sim-

ulation function ζ, and the notion of Z-contraction with respect to ζ, which gener-
alizes the Banach contraction principle and unifies several known types of contrac-
tions in complete metric spaces. The technique of using a simulation function in
establishing the existence of fixed points became famous by the works of Karapınar
[9], Olgun, Bicer and Alyildiz [13], Dolićanin-Dekić [6], Karapınar and Agarwal [10],
Alqahtani and Karapınar [1], Aydi, Karapınar and Rakočević [3], Roldán López de
Hierro, Karapınar, Roldán López de Hierro and Mart́ınez-Moreno [16].

In this paper, we denote R+ = [0,+∞) and N= the set of all natural numbers.
Ψ = {ψ | ψ : R+ → R+ is continuous, monotonically increasing and ψ(t) = 0 if
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and only if t = 0}.
Definition 1.1. A function η : R+ ×R+ → R is called a Ψ− simulation function
if there exists ψ ∈ Ψ such that

(η1) η(0, 0) = 0;
(η2) η(t, s) < ψ(s)− ψ(t) for all s, t > 0;
(η3) If {tn}, {sn} are sequences in (0,+∞) such that lim

n→+∞
tn = lim

n→+∞
sn > 0,

then lim sup
n→+∞

η(tn, sn) < 0.

Here we note that if ψ is the identity map in (η2), then we call η is a simulation
function (see [9, Definition 2.1]).

Example 1.1. Define η : R+ × R+ → R by η(t, s) = 1
2
s2 − t2, s ≥ 0, t ≥ 0, and

ψ : R+ → R+ by ψ(t) = t2, t ≥ 0. Then
η(t, s) = 1

2
ψ(s)− ψ(t) < ψ(s)− ψ(t) so that (η2) holds.

Further (η1) and (η3) hold trivially. Therefore η is a Ψ−simulation function.
But it is not a simulation function, since
η(10, 2) = 102

2
− 22 = 50− 4 ≮ 8 and so (η2) fails to hold when ψ is the identity

map.
For more examples on simulation functions, we refer [11].
The following are examples of Ψ−simulation functions.

Example 1.2. [2, Example 2] Define η : R+ × R+ → R by
(i) η(t, s) = αψ(s)−ψ(t), for all s ≥ 0, t ≥ 0, where α ∈ [0, 1), for some ψ ∈ Ψ.
(ii) η(t, s) = ϕ(ψ(s))− ψ(t), for all s ≥ 0, t ≥ 0, where ϕ : R+ → R+ is a

function such that ϕ(0) = 0, 0 < ϕ(s) < s for each s > 0 and
lim sup
t→s

ϕ(t) < s. (for instance, ϕ(s) = αs where 0 ≤ α < 1), for some

ψ ∈ Ψ.
(iii) η(t, s) = ϕ(s)ψ(s)− ψ(t), for all s ≥ 0, t ≥ 0, where ϕ : R+ → R+ is a

function such that lim sup
t→s

ϕ(t) < 1 for each s > 0 and for some ψ ∈ Ψ.

(iv) η(t, s) = ψ(s)− ϕ(s)− ψ(t), for all s ≥ 0, t ≥ 0, where ϕ : R+ → R+ is a
function such that ϕ(0) = 0 and lim inf

t→s
ϕ(t) > 0 for each s > 0 and for

some ψ ∈ Ψ.

Notation. We denote ZΨ for the set of all Ψ−simulation functions.

Theorem 1.1. [2, Theorem 2] Let (X, d) be a complete metric space and let
A,B : X → X be two maps such that

1

2
min{d(x,Ax), d(y,By)} ≤ d(x, y) implies η(d(Ax,By),m(x, y)) ≥ 0, (1)
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where η ∈ ZΨ and

m(x, y) =

{
max{d(x, y), d(x,Ax)d(y,By)

d(x,y)
} if x ̸= y

d(Ax,Bx) if x = y

for all x, y ∈ X. If A and B are continuous then A and B have a unique common
fixed point in X (that is, there is a unique u ∈ X such that Au = Bu = u).

A pair of maps that satisfy (1) is known as Suzuki type Z-contraction pair
of selfmaps. For more works in the direction of finding the existence of fixed
points/common fixed points, we refer [4], [12] and [14].

Definition 1.2. (Jungck [7]) A pair (f, g) of selfmaps of a metric space (X, d) is
said to be compatible if lim

n→∞
d(fgxn, gfxn) = 0 whenever {xn} is a sequence in X

such that lim
n→∞

fxn = lim
n→∞

gxn = z for some z ∈ X.

Definition 1.3. (Jungck and Rhoades [8]) Let f and g be selfmaps of a metric
space (X, d). The pair (f, g) is said to be weakly compatible if they commute at
their coincidence points i.e., fgx = gfx whenever fx = gx, x ∈ X.

Every compatible pair of maps is weakly compatible, but its converse is not
true (see [8, Example 5.1]).

Definition 1.4. (Pant [15]) Two selfmaps f and g of a metric space (X, d) are
called reciprocally continuous if lim

n→∞
fgxn = fz and lim

n→∞
gfxn = gz whenever

{xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = z for some z in X.

Motivated by the works of Alsubaie, Alqahtani, Karapınar, and Roldán López
de Hierro [2], in Section 2 of this paper, we extend Theorem 1.1 to two pairs
of selfmaps by using reciprocal continuity and weakly compatible property. For
this purpose, we define a Suzuki type Z−contraction of two pairs of selfmaps
with a rational expression via Ψ−simulation function and prove the existence and
uniqueness of common fixed points. In Section 3, we draw some corollaries to our
main result and give an example in support of our main result.

2. Main result

In the following, we introduce Suzuki type Z−contraction with a rational
expression via Ψ−simulation function for two pairs of selfmaps.

Definition 2.1. Let (X, d) be a metric space. Let A,B, S and T be selfmaps of
X which satisfy the following condition: if there exists a Ψ-simulation function η
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such that

1

2
min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}

implies η(d(Ax,By),m(x, y)) ≥ 0
(2)

where

m(x, y) =

{
max{d(Sx, Ty), d(Sx,Ax)d(Ty,By)

d(Sx,Ty)
} if Sx ̸= Ty

d(Ax,By) if Sx = Ty
(3)

for all x, y ∈ X. Then we say that the pairs (A, S) and (B, T ) satisfy Suzuki type Z−
contraction with a rational expression with respect to a Ψ−simulation function η.

Let A,B, S and T be maps from a metric space (X, d) into itself and satisfying

A(X) ⊆ T (X) and B(X) ⊆ S(X).

Thus, for any x0 ∈ X, there exists x1 ∈ X such that y0 = Ax0 = Tx1. Similarly,
for x1 ∈ X, we choose a point x2 ∈ X such that y1 = Bx1 = Sx2 and so on.
In general, we define a sequence {yn} in X such that

y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2 (4)

for n = 0, 1, 2, ... .
The following lemma is useful to prove that the sequence {yn} is Cauchy in X.

Lemma 2.1. (Babu and Sailaja [5]) Suppose (X, d) is a metric space. Let {xn} be
a sequence in X such that d(xn, xn+1) → 0 as n → +∞. If {xn} is not a Cauchy
sequence then there exist ϵ > 0 and sequences of positive integers {mk} and {nk}
with mk > nk > k such that d(xmk

, xnk
) ≥ ϵ, d(xmk−1, xnk

) < ϵ and
i) lim

k→+∞
d(xmk

, xnk
) = ϵ ii) lim

k→+∞
d(xmk−1, xnk

) = ϵ

iii) lim
k→+∞

d(xmk−1, xnk+1) = ϵ iv) lim
k→+∞

d(xmk−1, xnk−1) = ϵ.

We initiate this paper with the following two propositions which we apply to
prove our main result.

Proposition 2.1. Let (X, d) be a metric space. Let A,B, S and T be selfmaps
of X and the pairs (A, S) and (B, T ) satisfy Suzuki type Z−contraction with a
rational expression with respect to a Ψ−simulation function η. Then we have the
following:
(i) If A(X) ⊆ T (X) and the pair (B, T ) is weakly compatible, and if z is a common

fixed point of A and S then z is a common fixed point of A,B, S and T and it
is unique.
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(ii) If B(X) ⊆ S(X) and the pair (A, S) is weakly compatible, and if z is a common
fixed point of B and T then z is a common fixed point of A,B, S and T and it
is unique.

Proof. First we prove (i).
Let z be a common fixed point of A and S.
Then Az = Sz = z.
Since A(X) ⊆ T (X), there exists u ∈ X such that Tu = Az.
Therefore Az = Sz = Tu = z.
We now prove that Az = Bu.
Suppose that Az ̸= Bu.
Now, since Az = Sz, we have
1
2
min{d(Sz,Az), d(Tu,Bu)} = 0 ≤ max{d(Tu, Sz), d(Az,Bu)}, and hence

η(d(Az,Bu),m(z, u)) ≥ 0,
where m(z, u) = d(Az,Bu), since Sz = Tu = z.
Therefore 0 ≤ η(d(Az,Bu), d(Az,Bu))

< ψ(d(Az,Bu))− ψ(d(Az,Bu)) = 0,
a contradiction.
Therefore Az = Bu.
Hence Bu = Az = Sz = Tu = z.
Since the pair (B, T ) is weakly compatible and Tu = Bu, we have
BTu = TBu, i.e., Bz = Tz.
We now prove that Bz = z.
Suppose that Bz ̸= z. So Bz ̸= Az. Since Az = Sz, clearly
1
2
min{d(Sz,Az), d(Tz,Bz)} = 0 ≤ max{d(Tz, Sz), d(Az,Bz)}, and hence

η(d(Az,Bz),m(z, z)) ≥ 0,
where m(z, z) = d(Az,Bz), since Sz = Tz = z.
Therefore 0 ≤ η(d(Az,Bz), d(Az,Bz))

< ψ(d(Az,Bz))− ψ(d(Az,Bz)) = 0,
a contradiction.
Therefore Bz = z.
Hence Bz = Tz = z.
Therefore Az = Bz = Sz = Tz = z.
Therefore z is a common fixed point of A,B, S and T .
Suppose z′ is also a common fixed point of A,B, S, and T , with z ̸= z′, then
Az′ = Bz′ = Sz′ = Tz′ = z′ and d(z, z′) > 0.
Now, we have
1
2
min{d(Sz,Az), d(Tz′, Bz′)} = 0 ≤ max{d(Tz′, Sz), d(Az,Bz′)}, and hence

η(d(Az,Bz′),m(z, z′)) ≥ 0, which implies that η(d(z, z′),m(z, z′)) ≥ 0
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where m(z, z′) = max{d(Sz, Tz′), d(Sz,Az)d(Tz
′,Bz′)

d(Sz,Tz′)
}

= d(Sz, Tz′) = d(z, z′).
Therefore 0 ≤ η(d(z, z′), d(z, z′))

< ψ(d(z, z′))− ψ(d(z, z′)) = 0,
a contradiction.
Therefore z = z′. Hence z is the unique common fixed point of A,B, S and T .
Let us now prove (ii).
Let z be a common fixed point of B and T .
Then Bz = Tz = z. Since B(X) ⊆ S(X), there exists v ∈ X such that Sv = z.
Therefore Bz = Tz = Sv = z.
We now prove that Bz = Av.
Suppose that Bz ̸= Av.
Now, since Tz = Bz, we have
1
2
min{d(Sv,Av), d(Tz,Bz)} = 0 ≤ max{d(Tz, Sv), d(Av,Bz)}, and hence

η(d(Av,Bz),m(v, z)) ≥ 0,
where m(v, z) = d(Av,Bz), since Sv = Tz = z.
Therefore η(d(Av,Bz), d(Av,Bz)) ≥ 0, i.e.,
0 ≤ η(d(Av,Bz), d(Av,Bz))
< ψ(d(Av,Bz))− ψ(d(Av,Bz)) = 0,

a contradiction.
Therefore Av = Bz.
Hence Av = Bz = Sv = Tz = z.
Since the pair (A, S) is weakly compatible and Av = Sv, we have
ASv = SAv, i.e., Az = Sz.
We now prove that Az = z.
Suppose that Az ̸= z. Since Az = Sz, clearly
1
2
min{d(Sz,Az), d(Tz,Bz)} = 0 ≤ max{d(Tz, Sz), d(Az,Bz)}, and hence

η(d(Az,Bz),m(z, z)) ≥ 0,
where m(z, z) = d(Az,Bz), since Sz = Tz = z.
Therefore 0 ≤ η(d(Az,Bz), d(Az,Bz))

< ψ(d(Az,Bz))− ψ(d(Az,Bz)) = 0,
a contradiction.
Therefore Az = z.
Hence Az = Sz = z.
Therefore Az = Bz = Sz = Tz = z.
Therefore z is a common fixed point of A,B, S and T .
Suppose z′ is also a common fixed point of A,B, S, and T , with z ̸= z′, then
Az′ = Bz′ = Sz′ = Tz′ = z′ and d(z, z′) > 0.
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Now, we have
1
2
min{d(Sz,Az), d(Tz′, Bz′)} = 0 ≤ max{d(Tz′, Sz), d(Az,Bz′)}, and hence

η(d(Az,Bz′),m(z, z′)) ≥ 0, which implies that η(d(z, z′),m(z, z′)) ≥ 0

where m(z, z′) = max{d(Sz, Tz′), d(Sz,Az)d(Tz
′,Bz′)

d(Sz,Tz′)
}

= d(Sz, Tz′) = d(z, z′).
Therefore 0 ≤ η(d(z, z′), d(z, z′))

< ψ(d(z, z′))− ψ(d(z, z′)) = 0,
a contradiction.
Therefore z = z′.

Hence z is the unique common fixed point of A,B, S and T .

Proposition 2.2. Let (X, d) be a metric space. Let A,B, S and T be selfmaps of
X such that A(X) ⊆ T (X) and B(X) ⊆ S(X). If the pairs (A, S) and (B, T )
satisfy Suzuki type Z−contraction with a rational expression with respect to a
Ψ−simulation function η, then for any x0 ∈ X, the sequence {yn} defined by (4)
for n = 0, 1, 2, ..., is Cauchy in X.
Proof. Let x0 ∈ X be arbitrary. Let {yn} be a sequence defined by (4).
Assume that yn = yn+1 for some n.
First we suppose that n is even.
We write n = 2m for some m ∈ N.
Clearly, we have
1
2
min{d(y2m+1, y2m+2), d(y2m, y2m+1)} = 0 ≤ max{d(y2m+1, y2m), d(y2m+2, y2m+1)},

i.e., 1
2
min{d(Sx2m+2, Ax2m+2), d(Tx2m+1, Bx2m+1)}

≤ max{d(Sx2m+2, Tx2m+1), d(Ax2m+2, Bx2m+1)}.
Therefore η(d(Ax2m+2, Bx2m+1),m(x2m+2, x2m+1)) ≥ 0,

wherem(x2m+2, x2m+1) = max{d(Sx2m+2, Tx2m+1),
d(Sx2m+2,Ax2m+2)d(Tx2m+1,Bx2m+1)

d(Sx2m+2,Tx2m+1)
}

= max{d(y2m+1, y2m),
d(y2m+1,y2m+2)d(y2m,y2m+1)

d(y2m+1,y2m)
}

= max{d(y2m+1, y2m), d(y2m+1, y2m+2)}.
= max{0, d(y2m+1, y2m+2)} = d(y2m+1, y2m+2).

0 ≤ η(d(y2m+2, y2m+1), d(y2m+2, y2m+1))
< ψ(d(y2m+2, y2m+1))− ψ(d(y2m+2, y2m+1)) = 0 provided d(y2m+2, y2m+1) > 0,

a contradiction.
Therefore d(y2m+2, y2m+1) = 0 so that y2m+2 = y2m+1, and hence

y2m+2 = y2m+1 = y2m. (5)

We now suppose that n is odd.
We write n = 2m+ 1 for some m ∈ N.
Clearly, we have
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1
2
min{d(y2m+1, y2m+2), d(y2m+2, y2m+3)} = 0 ≤ max{d(y2m+1, y2m+2), d(y2m+2, y2m+3)},

i.e., 1
2
min{d(Sx2m+2, Ax2m+2), d(Tx2m+3, Bx2m+3)}

≤ max{d(Sx2m+2, Tx2m+3), d(Ax2m+2, Bx2m+3)}.
Therefore η(d(Ax2m+2, Bx2m+3),m(x2m+2, x2m+3)) ≥ 0

wherem(x2m+2, x2m+3) = max{d(Sx2m+2, Tx2m+3),
d(Sx2m+2,Ax2m+2)d(Tx2m+3,Bx2m+3)

d(Sx2m+2,Tx2m+3)
}

= max{d(y2m+1, y2m+2),
d(y2m+1,y2m+2)d(y2m+2,y2m+3)

d(y2m+1,y2m+2)
}

= max{d(y2m+1, y2m+2), d(y2m+2, y2m+3)}.
If maximum of {d(y2m+1, y2m+2), d(y2m+2, y2m+3)} = d(y2m+2, y2m+3) then
0 ≤ η(d(y2m+2, y2m+3), d(y2m+2, y2m+3))
< ψ(d(y2m+2, y2m+3))− ψ(d(y2m+2, y2m+3)) = 0,

a contradiction.
Therefore m(x2m+2, x2m+3) = d(y2m+1, y2m+2).
Hence d(y2m+2, y2m+3) ≤ d(y2m+1, y2m+2) = 0.
Therefore d(y2m+2, y2m+3) = 0.
Hence y2m+2 = y2m+3.
Therefore

y2m+3 = y2m+2 = y2m+1. (6)

Therefore from (5) and (6), we have yn+k = yn for all k = 1, 2, 3, ... .
Hence {yn} is a constant sequence so that {yn} is Cauchy.
We now show that {yn} is Cauchy when yn ̸= yn+1 for all n = 1, 2, ... . Assume
that yn ̸= yn+1 for all n ∈ N.

Case (i): n is odd.
We write n = 2m+ 1 for some m ∈ N.
Clearly, we have
1
2
min{d(y2m+1, y2m+2), d(y2m, y2m+1)} ≤ max{d(y2m+1, y2m), d(y2m+2, y2m+1)},

i.e., 1
2
min{d(Sx2m+2, Ax2m+2), d(Tx2m+1, Bx2m+1)}

≤ max{d(Sx2m+2, Tx2m+1), d(Ax2m+2, Bx2m+1)} and
hence η(Ax2m+2, Bx2m+1),m(x2m+2, x2m+1) ≥ 0

wherem(x2m+2, x2m+1) = max{d(Sx2m+2, Tx2m+1),
d(Sx2m+2,Ax2m+2)d(Tx2m+1,Bx2m+1)

d(Sx2m+2,Tx2m+1)
}

= max{d(y2m+1, y2m),
d(y2m+1,y2m+2)d(y2m,y2m+1)

d(y2m+1,y2m)
}

= max{d(y2m+1, y2m), d(y2m+1, y2m+2)}.
If maximum of {d(y2m+1, y2m), d(y2m+1, y2m+2)} = d(y2m+1, y2m+2), then
0 ≤ η(d(y2m+2, y2m+1), d(y2m+2, y2m+1))
< ψ(d(y2m+2, y2m+1))− ψ(d(y2m+2, y2m+1)) = 0,

a contradiction.
Therefore d(y2m+1, y2m+2) ≤ d(y2m, y2m+1).
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Case (ii): n is even.
We write n = 2m for m ∈ N.
Clearly, we have
1
2
min{d(y2m−1, y2m), d(y2m−2, y2m−1)} ≤ max{d(y2m−1, y2m−2), d(y2m, y2m−1)},

i.e., 1
2
min{d(Sx2m, Ax2m), d(Tx2m−1, Bx2m−1)}

≤ max{d(Sx2m, Tx2m−1), d(Ax2m, Bx2m−1)}
implies η(d(Ax2m, Bx2m−1),m(x2m, x2m−1)) ≥ 0

where m(x2m, x2m−1) = max{d(Sx2m, Tx2m−1),
d(Sx2m,Ax2m)d(Tx2m−1,Bx2m−1)

d(Sx2m,Tx2m−1)
}

= max{d(y2m−1, y2m−2),
d(y2m−1,y2m)d(y2m−2,y2m−1)

d(y2m−1,y2m−2)
}

= max{d(y2m−1, y2m−2), d(y2m−1, y2m)}.
If maximum of {d(y2m−1, y2m−2), d(y2m−1, y2m)} = d(y2m−1, y2m), then
0 ≤ η(d(y2m, y2m−1), d(y2m, y2m−1))
< ψ(d(y2m, y2m−1))− ψ(d(y2m, y2m−1)) = 0,

a contradiction.
Therefore m(x2m, x2m−1) = d(y2m−1, y2m−2).
Therefore d(y2m, y2m−1) ≤ d(y2m−1, y2m−2).
Therefore from Cases (i) and (ii), we have

d(yn, yn+1) ≤ d(yn−1, yn) for all n = 1, 2, ... . (7)

Therefore {d(yn, yn+1)} is a nonnegative monotone decreasing sequence of reals.
Let lim

n→+∞
d(yn, yn+1) = r, r ≥ 0.

We now show that r = 0.
Suppose r > 0. Since lim

n→+∞
d(y2n, y2n+1) = r and lim

n→+∞
d(y2n−1, y2n) = r.

We have
1
2
min{d(y2n+1, y2n+2), d(y2n, y2n+1) ≤ max{d(y2n, y2n+1), d(y2n+1, y2n+2)},

and hence η(d(y2n+2, y2n+1),m(x2n+2, x2n+1) ≥ 0

where m(x2n+2, x2n+1) = max{d(y2n+1, y2n),
d(y2n+1,y2n+2)d(y2n,y2n+1)

d(y2n+1,y2n)
}

= max{d(y2n+1, y2n), d(y2n+1, y2n+2)}.
If maximum of {d(y2n+1, y2n), d(y2n+1, y2n+2)} = d(y2n+1, y2n+2), then
0 ≤ η(d(y2n+2, y2n+1), d(y2n+2, y2n+1))
< ψ(d(y2n+2, y2n+1))− ψ(d(y2n+2, y2n+1)) = 0,

a contradiction.
Therefore m(x2n+2, x2n+1) = d(y2n+1, y2n).
Therefore 0 ≤ η(d(y2n+2, y2n+1), d(y2n+1, y2n)).
On letting lim sup

n→+∞
, and by using (η3) we get

0 ≤ lim sup
n→+∞

η(d(y2n+2, y2n+1), d(y2n+1, y2n)) < 0,
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a contradiction.
Therefore r = 0, i.e., lim

n→+∞
d(yn, yn+1) = 0.

We now show that {yn} is Cauchy.
It is sufficient to show that {y2n} is Cauchy.

Suppose that {y2n} is not Cauchy. Then, by Lemma 2.1, it follows that there
exist ϵ > 0 and subsequences {y2nk

} and {y2mk
} such that nk > mk > k and

d(y2nk
, y2mk

) ≥ ϵ and d(y2mk−1, y2nk
) < ϵ and

(i) lim
k→+∞

d(y2nk
, y2mk

) = ϵ (ii) lim
k→+∞

d(y2nk
, y2mk−1) = ϵ

(iii) lim
k→+∞

d(y2nk+1, y2mk
) = ϵ (iv) lim

k→+∞
d(y2nk−1, y2mk−2) = ϵ.

Therefore,m(x2nk
, x2mk−1) = max{d(Sx2nk

, Tx2mk−1),
d(Sx2nk

,Ax2nk
)d(Tx2mk−1,Bx2mk−1)

d(Sx2nk
,Tx2mk−1)

}.
On letting k → +∞, we have

lim
k→+∞

m(x2nk
, x2mk−1) = lim

k→+∞
max{d(y2nk−1, y2mk−2),

d(y2nk−1,y2nk
)d(y2mk−2,y2mk−1)

d(y2nk−1,y2mk−2)
}

= max{ϵ, 0} = ϵ.
Also lim

k→+∞
d(y2nk

, y2mk−1) = ϵ.

Therefore from (η3), we have

lim sup
n→+∞

η(d(y2nk
, y2mk−1),m(x2nk

, x2mk−1)) < 0. (8)

We now show that if nk > mk > k,

1

2
min{d(Sx2nk

, Ax2nk
), d(Tx2mk−1, Bx2mk−1)}

≤ max{d(Sx2nk
, Tx2mk−1), d(Ax2nk

, Bx2mk−1)}.
(9)

Since nk > mk and {d(yn, yn+1)} is decreasing, we have
d(Sx2nk

, Ax2nk
) = d(y2nk−1, y2nk

)
≤ d(y2mk

, y2mk−1)
≤ d(y2mk−1, y2mk−2)
= d(Bx2mk−1, Tx2mk−1).

Therefore 1
2
min{d(Sx2nk

, Ax2nk
), d(Tx2mk−1, Bx2mk−1)} ≤ 1

2
d(Tx2mk−1, Bx2mk−1).

Therefore for sufficiently large k, nk > mk > k, we show that
1
2
d(Tx2mk−1, Bx2mk−1) ≤ max{d(Sx2nk

, Tx2mk−1), d(Ax2nk
, Bx2mk−1)}.

Suppose max{d(Sx2nk
, Tx2mk−1), d(Ax2nk

, Bx2mk−1)} = d(Sx2nk
, Tx2mk−1). Then

1
2
d(Tx2mk−1, Bx2mk−1) ≤ d(Sx2nk

, Tx2mk−1), i.e.,

1

2
d(y2mk−2, y2mk−1) ≤ d(y2nk−1, y2mk−2). (10)
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Let ϵ > 0 be given. Since lim
n→+∞

d(y2nk
, y2nk+1) = 0, there exists N1 ∈ N such

that for k ≥ N1, d(y2nk−1, y2nk
) < ϵ

8
.

Also there exists N2 ∈ N such that for k ≥ N2, d(y2mk−2, y2mk−1) <
ϵ
8
and

d(y2mk−1, y2mk
) < ϵ

8
.

Therefore k > max{N1, N2} and for nk > mk > k,
ϵ ≤ d(y2nk

, y2mk
) ≤ d(y2nk

, y2nk−1) + d(y2nk−1, y2mk−2) + d(y2mk−2, y2mk−1)
+d(y2mk−1, y2mk

)
< ϵ

8
+ d(y2nk−1, y2mk−2) +

ϵ
8
+ ϵ

8
, and hence

5ϵ
8
< d(y2nk−1, y2mk−2).

Therefore for k > max{N1, N2} and nk > mk > k,
d(y2mk−2, y2mk−1) <

ϵ
8
≤ 5ϵ

8
< d(y2nk−1, y2mk−2)
≤ max{d(y2nk−1, y2mk−2), d(y2nk

, y2mk−1)}
= max{d(Sx2nk

, Tx2mk−1), d(Ax2nk
, Bx2mk−1)}.

Therefore (10) holds, which in turn (9) holds.
Consequently, for sufficiently large k ∈ N and nk > mk > k, we have
η(d(Ax2nk

, Bx2mk−1),m(x2nk
, x2mk−1)) ≥ 0.

i.e., η(d(y2nk
, y2mk−1),m(x2nk

, x2mk−1)) ≥ 0, and hence
lim sup
k→+∞

η(d(y2nk
, y2mk−1),m(x2nk

, x2mk−1)) ≥ 0,

a contradiction to (8).
Therefore {xn} is Cauchy.
The following theorem is the main result of this paper.

Theorem 2.1. Let (X, d) be a complete metric space. Let A,B, S and T be
selfmaps of X and satisfy A(X) ⊆ T (X) and B(X) ⊆ S(X) and the pairs (A, S)
and (B, T ) satisfy Suzuki type Z−contraction with a rational expression with respect
to a Ψ−simulation function η. Further, assume that either
(i) (A, S) is a reciprocally continuous and compatible pair of maps and (B, T ) is

a pair of weakly compatible maps (or)
(ii) (B, T ) is a reciprocally continuous and compatible pair of maps and (A, S) is

a pair of weakly compatible maps.
Then A,B, S and T have a unique common fixed point in X.
Proof. Let x0 ∈ X be arbitrary. We define the sequence {yn} by (4) for n =
0, 1, 2, ... .
By Proposition 2.2, it follows that {yn} is Cauchy in X.
Since X is complete, there exists z ∈ X such that lim

n→+∞
yn = z.

Consequently, the subsequences {y2n} and {y2n+1} are also convergent to z ∈ X,
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we have

lim
n→+∞

y2n = lim
n→+∞

Ax2n = lim
n→+∞

Tx2n+1 = z, (11)

and

lim
n→+∞

y2n+1 = lim
n→+∞

Bx2n+1 = lim
n→+∞

Sx2n+2 = z. (12)

Case (i): First, we assume that (i) holds.
Since (A, S) is reciprocally continuous, by using (11) and (12) it follows that
lim

n→+∞
ASx2n+2 = Az and lim

n→+∞
SAx2n+2 = Sz.

Since (A, S) is compatible, we have
lim

n→+∞
d(ASx2n+2, SAx2n+2) = 0, which implies that lim

n→+∞
d(Az, Sz) = 0.

Therefore Az = Sz.
We now show that Az = z.
Since Sz = Az, if we suppose that Az ̸= z, then
1
2
min{d(Sz,Az), d(Tx2n+1, Bx2n+1)} = 0 ≤ max{d(Tx2n+1, Sz), d(Az,Bx2n+1)}

and hence

η(d(Az,Bx2n+1),m(z, x2n+1)) ≥ 0 (13)

where m(z, x2n+1) = max{d(Sz, Tx2n+1),
d(Sz,Az)d(Tx2n+1,Bx2n+1)

d(Sz,Tx2n+1)
}.

On letting n→ +∞, we get
lim

n→+∞
m(z, x2n+1) = max{d(Sz, z), d(Sz,Az)d(z,z)

d(Sz,z)
}

= d(Sz, z) = d(Az, z) > 0.
Also, since lim

n→+∞
d(Az,Bx2n+1) = d(Az, z), by applying (η3) to (13), we have

0 ≤ lim sup
n→+∞

η(d(Az,Bx2n+1),m(z, x2n+1)) < 0,

a contradiction.
Therefore Az = z, so that z is a common fixed point of A and S.
Now, by Proposition 2.1, it follows that Az = Bz = Sz = Tz = z.

Case (ii): We now assume that (ii) holds.
Since (B, T ) is reciprocally continuous, by using (11) and (12), it follows that
lim

n→+∞
BTx2n+1 = Bz and lim

n→+∞
TBx2n+1 = Tz.

Since (B, T ) is compatible, we have
lim

n→+∞
d(BTx2n+1, TBx2n+1) = 0, which implies that lim

n→+∞
d(Bz, Tz) = 0.

Therefore Bz = Tz.
We now show that Tz = z.
Since Tz = Bz, if we suppose that Tz ̸= z, then
1
2
min{d(Sx2n+2, Ax2n+2), d(Tz,Bz)} = 0 ≤ max{d(Sx2n+2, T z), d(Ax2n+2, Bz)}



Common Fixed Points of Suzuki type Z−Contraction of two pairs ... 173

which implies that

η(d(Ax2n+2, Bz),m(x2n+2, z)) ≥ 0 (14)

where m(x2n+2, z) = max{d(Sx2n+2, T z),
d(Sx2n+2,Ax2n+2)d(Tz,Bz)

d(Sx2n+2,T z)
}.

On letting n→ +∞, we get
lim

n→+∞
m(x2n+2, z) = max{d(z, Tz), d(z,z)d(Tz,Bz)

d(z,Tz)
}

= d(z, Tz) > 0.
Also, since lim

n→+∞
d(Ax2n+2, Bz) = d(z,Bz), by applying (η3), to (14) we have

0 ≤ lim sup
n→+∞

η(d(Ax2n+2, Bz),m(x2n+2, z)) < 0,

a contradiction.
Therefore Tz = z, and hence z is a common fixed point of B and T .
Now by applying Proposition 2.1, it follows that Az = Bz = Sz = Tz = z.

Hence, it follows that z is a common fixed point of A,B, S and T .

3. Corollaries and an example

Corollary 3.1. Suppose that {An}+∞
n=1, S and T be selfmaps of a complete metric

space (X, d) and satisfy A1(X) ⊆ S(X) and A1(X) ⊆ T (X) and the inequality

1

2
min{d(Sx,A1x), d(Ty,Ajy) ≤ max d(Sx, Ty), d(A1x,Ajy)}

implies η(d(A1x,Ajy),m(x, y)) ≥ 0
(15)

where

m(x, y) =

{
max{d(Sx, Ty), d(Sx,A1x)d(Ty,Ajy)

d(Sx,Ty)
} if Sx ̸= Ty

d(A1x,Ajy) if Sx = Ty
for all x, y ∈ X.

Further, assume that either
(i) (A1, S) is a reciprocally continuous and compatible pair of maps and (A1, T ) is

a pair of weakly compatible maps (or)
(ii) (A1, T ) is a reciprocally continuous and compatible pair of maps and (A1, S) is

a pair of weakly compatible maps.
Then {An}+∞

n=1, S and T have a unique common fixed point in X.
Proof. Under the assumptions of A1, S and T , the existence of unique common
fixed point z of A1, S and T follows by choosing A = B = A1 in Theorem 2.1.
Therefore A1z = Sz = Tz = z.
Now, let j ∈ N with j ̸= 1.
Since
1
2
min{d(Sz,A1z), d(Tz,Ajz)} = 0 ≤ max{d(Sz, Tz), d(A1z, Ajz)},

we have
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η(d(A1z, Ajz),m(z, z)) ≥ 0

where m(z, z) =

{
max{d(Sz, Tz), d(Sz,A1z)d(Tz,Ajz)

d(Sz,Tz)
} if Sz ̸= Tz

d(A1z, Ajz) if Sz = Tz.

Since Sz = Tz = z, we have
m(z, z) = d(A1z, Ajz). Therefore
0 ≤ η(d(A1z, Ajz), d(A1z, Ajz))
< ψ(d(A1z, Ajz))− ψ(d(A1z, Ajz)) = 0,

a contradiction.
Therefore A1z = z = Ajz for j = 1, 2, 3, ... and uniqueness of common fixed point
follows from the inequality (15).
Hence {An}+∞

n=1, S and T have a unique common fixed point in X.

Corollary 3.2. Let (X, d) be a complete metric space and let A,B, S and T be
selfmaps of X and A(X) ⊆ T (X) and B(X) ⊆ S(X) and for every x, y ∈ X,

1

2
min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)} (16)

which implies that

ψ(d(Ax,By)) ≤ ψ(m(x, y))− ϕ(m(x, y)) (17)

where m(x, y) is as defined in Definition 2.1, ψ ∈ Ψ and ϕ : R+ → R+ is a function
such that lim inf

s→t
ϕ(s) > 0 for each t > 0 and ϕ(t) = 0 if and only if t = 0. Further,

assume that either (i) or (ii) of Theorem 2.1 holds. Then A,B, S and T have a
unique common fixed point in X.
Proof. By defining η(t, s) = ψ(s)− ϕ(s)− ψ(t) for all t, s ≥ 0 as in Example 1.2
(iv), we can easily see that η is a Ψ−simulation function.
Therefore the inequality (16) implies η(d(Ax,By),m(x, y)) ≥ 0, so that (17) holds.
Hence, by applying Theorem 2.1, the conclusion of the corollary follows.

Corollary 3.3. Let (X, d) be a complete metric space and let A,B, S and T be
selfmaps of X and A(X) ⊆ T (X) and B(X) ⊆ S(X) and for every x, y ∈ X,

1

2
min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}

which implies that

ψ(d(Ax,By)) ≤ ψ(m(x, y))− ϕ(m(x, y))

where ψ ∈ Ψ and ϕ is lower semi-continuous with ϕ(t) = 0 if and only if t = 0,
and m(x, y) is as defined in Definition 2.1. Further, assume that either (i) or (ii)
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of Theorem 2.1 holds. Then A,B, S and T have a unique common fixed point in
X.
Proof. Since ϕ is lower semi-continuous, if

lim
n→+∞

sn = l > 0,

then, we have

lim inf
n→+∞

ϕ(sn) ≥ ϕ(l) > 0.

Hence, by Corollary 3.2, the conclusion of this corollary follows.

Corollary 3.4. Let (X, d) be a complete metric space and let A,B, S and T be
selfmaps of X and A(X) ⊆ T (X) and B(X) ⊆ S(X) and for every x, y ∈ X,

1

2
min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}

which implies that

ψ(d(Ax,By)) ≤ ρ(m(x, y))ψ(m(x, y))

where ψ ∈ Ψ, and m(x, y) is as defined in Definition 2.1 and ρ : R+ → [0, 1) is a
function such that ρ(t) = 0 if and only if t = 0 and lim sup

t→s
ρ(t) < 1 for each s > 0.

Further, assume that either (i) or (ii) of Theorem 2.1 holds. Then A,B, S and T
have a unique common fixed point in X.
Proof. By defining η(t, s) = ρ(s)ψ(s) − ψ(t) for all t, s ≥ 0, we can easily see
that η is a Ψ−simulation function. Now by applying Theorem 2.1, the conclusion
follows.

Corollary 3.5. Let (X, d) be a complete metric space and let A,B, S and T be
selfmaps of X and A(X) ⊆ T (X) and B(X) ⊆ S(X) and for every x, y ∈ X,

1

2
min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}

implies ψ(d(Ax,By)) ≤ ϕ(ψ(m(x, y)))
(18)

where ψ ∈ Ψ and m(x, y) is as defined in Definition 2.1 and ψ : R+ → R+ is a
function such that for each t > 0 and ϕ(t) < t, and lim sup

s→t
ϕ(s) < t and ϕ(t) = 0

if and only if t = 0. Further, assume that either (i) or (ii) of Theorem 2.1 holds.
Then A,B, S and T have a unique common fixed point in X.
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Proof. Define η(t, s) = ϕ(ψ(s))− ψ(t) for all t, s ≥ 0 as in Example 1.2 (ii).
Then η is a Ψ−simulation function. Therefore, from the inequality (18) we have

1

2
min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}

implies

η(d(Ax,By),m(x, y)) = ϕ(ψ(m(x, y)))− ψ(d(Ax,By)) ≥ 0 for all x, y ∈ X.

Therefore A,B, S and T satisfy the inequality (2). Hence, by Theorem 2.1, the
conclusion holds.

Remark 3.1. Suppose that ψ ∈ Ψ and ϕ : R+ → R+ is an upper semi-continuous
function such that ϕ(t) < t for each t > 0 and ϕ(t) = 0 if and only t = 0. Then
for any sequence {sn} in (0,+∞) with lim

n→+∞
sn = l > 0, one can obtain that

lim sup
n→+∞

ϕ(ψ(sn)) < ψ(l).

Corollary 3.6. Let (X, d) be a complete metric space and let A,B, S and T be
selfmaps of X and A(X) ⊆ T (X) and B(X) ⊆ S(X) and for every x, y ∈ X,

1

2
min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}

which implies that
ψ(d(Ax,By)) ≤ ϕ(ψ(m(x, y)))

where ψ ∈ Ψ and m(x, y) is as defined in Definition 2.1 and ϕ is defined as in
Remark 3.1. Further, assume that either (i) or (ii) of Theorem 2.1 holds. Then
A,B, S and T have a unique common fixed point in X.
Proof. By choosing η(t, s) as in Corollary 3.5, and by applying Theorem 2.1, the
conclusion follows.

Example 3.1. Let X = [0, 1] with the usual metric. We define selfmaps A,B, S
and

T on X by A(x) =

{
x2

4
if x ∈ [0, 1

2
)

0 if x ∈ [1
2
, 1]

, B(x) =

{
x2

6
if x ∈ [0, 1

2
)

0 if x ∈ [1
2
, 1]

S(x) =

{
x2 if x ∈ [0, 1

2
)

1 if x ∈ [1
2
, 1]

and T (x) =

{
x2

2
if x ∈ [0, 1

2
)

0 if x ∈ [1
2
, 1]

.

Then A(X) = [0, 1
16
), B(X) = [0, 1

24
), S(X) = [0, 1

4
) ∪ {1}, T (X) = [0, 1

8
) so that

A(X) ⊆ T (X) and B(X) ⊆ S(X). We define η : R+ × R+ → R by
η(t, s) = 8

9
s2 − t2. We define ψ : R+ → R+ by ψ(t) = t2, t ≥ 0. Then clearly
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ψ ∈ Ψ and η(t, s) = 8
9
ψ(s)− ψ(t) = αψ(s)− ψ(t) < ψ(s)− ψ(t) where α = 8

9
.

In the following we show that the pairs (A, S) and (B, T ) satisfy the hypotheses of
Theorem 2.1.
Since lim

n→+∞
Axn = 0 and lim

n→+∞
Sxn = 0, we have

lim
n→+∞

ASxn = lim
n→+∞

Ax2n = lim
n→+∞

x4n
4
= 0 = A0 and

lim
n→+∞

SAxn = lim
n→+∞

S x2n
4
= lim

n→+∞
x4n
16

= 0 = S0.

Therefore lim
n→+∞

ASxn = lim
n→+∞

SAxn.

Therefore (A, S) is reciprocally continuous and compatible.
Since Bx = Tx = 0 for x ∈ [1

2
, 1], we have TBx = T0 = 0 = B0 = BTx.

Hence the pair (B, S) is weakly compatible.
We now verify the inequality (2).

Case (i): First, we suppose that x ≥ y.

Subcase (i): Let x, y ∈ [0, 1
2
).

d(Ax, Sx) = |x2
4
− x2| = 3

4
x2, d(Ax,By) = |x2

4
− y2

6
|

d(Ty,By) = |y2
6
− y2

2
| = 1

3
y2, d(Sx, Ty) = |x2 − y2

2
|

1
2
min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}, i.e.,

1
2
min{3

4
x2, 1

3
y2} ≤ max{|x2 − y2

2
|, |x2

4
− y2

6
|}.

If 1
2
minimum of {3

4
x2, 1

3
y2} is 3

8
x2, then

3
8
x2 ≤ 1

6
y2 implies 9

4
x2 ≤ y2 which fails to hold because

3
8
x2 ≤ |x2

4
− y2

6
| implies 3

8
x2 ≤ x2

4
− y2

6
implies y2

6
≤ −3

8
x2 + x2

4
= −x2

8
< 0.

Therefore 1
2
minimum of {3

4
x2, 1

3
y2} is 1

6
y2, and 1

6
y2 ≤ |x2

4
− y2

6
| = x2

4
− y2

6

so that

y2 ≤ 3

4
x2. (19)

Therefore 1
2
min{1

3
y2, 3

4
x2} ≤ |x2

4
− y2

6
| ≤ max{|x2

4
− y2

6
|, |x2 − y2

2
|}.

Then η(d(Ax,By),m(x, y)) = 8
9
m(x, y)2 − d(Ax,By)2

= 8
9
|x2 − y2

2
|2 − |x2

4
− y2

6
|2

= 8
9
(x2 − y2

2
)2 − (x

2

4
− y2

6
)2

= 8
9
(x4 + y4

4
− x2y2)− (x

4

16
+ y4

36
− x2y2

12
)

= (8
9
− 1

16
)x4 + ( 8

36
− 1

36
)y4 − (8

9
+ 1

12
)x2y2

= 117
144
x4 + 7

36
y4 − 35

36
x2y2

≥ 117
144
x4 + 7

36
y4 − 35

36
× 3

4
x4 (from (19))

= 117
144
x4 − 35

48
x4 + 7

36
y4

= 1
12
x4 + 7

36
y4 ≥ 0.
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Subcase (ii): x, y ∈ [1
2
, 1].

d(Sx,Ax) = 1, d(Ax,By) = 0, d(Ty,By) = 0, d(Sx, Ty) = 1.
1
2
min{d(Ax, Sx), d(Ty,By)} = 1

2
min{1, 0}

= 0 ≤ max{0, 1} = max{d(Sx, Ty), d(Ax,By)}
and hence η(d(Ax,By),m(x, y)) = 8

9
m(x, y)2 − d(Ax,By)2 = 8

9
m(x, y)2 ≥ 0.

Subcase (iii): Let x ∈ [0, 1
2
), y ∈ [1

2
, 1].

d(Sx,Ax) = |x2 − x2

4
| = 3

4
x2, d(Ty,By) = 0, d(Ax,By) = x2

4
, d(Sx, Ty) = x2.

1
2
min{d(Sx,Ax), d(Ty,By)} = 1

2
{3
4
x2, 0} = 0 ≤ max{x2, x2

4
}

= max{d(Sx, Ty), d(Ax,By)}
and so η(d(Ax,By),m(x, y)) = 8

9
m(x, y)2 ≥ d(Ax,By)2

= 8
9
(x2)2 − (x

2

4
)2

= (8
9
− 1

16
)x4 = 99

144
x4 ≥ 0.

Subcase (iv): Let x ∈ [1
2
, 1], y ∈ [0, 1

2
).

d(Sx,Ax) = 1, d(Ty,By) = |y2
2
− y2

6
| = 1

3
y2, d(Sx, Ty) = |1− y2

2
|,

d(Ax,By) = |y2
6
| = y2

6
.

1
2
min{d(Sx,Ax), d(Ty,By) = 1

2
min{1, 1

3
y2}} = 1

6
y2 ≤ 1− y2

2
= d(Sx, Ty)

≤ max{d(Sx, Ty), d(Ax,By)}
and hence η(d(Ax,By),m(x, y)) = 8

9
m(x, y)2 − d(Ax,By)2

= 8
9
(1− y2

2
)2 − (1

6
y2)2

= 8
9
(1 + y4

4
− y2)− 1

36
y4

= 8
9
+ 8

36
y4 − 8

9
y2 − 1

36
y4

= 8
9
+ 7

36
y4 − 8

9
y2 ≥ 7

36
y4 ≥ 0.

Therefore in this case the inequality (2) holds.
Similarly, we can see that A,B, S and T satisfy the inequality (2) for the case
x ≤ y.
Therefore A,B, S and T satisfy all the hypotheses of Theorem 2.1, and ‘0’ is the
unique common fixed point of A,B, S and T .

Remark 3.2. Theorem 1.1 follows as a corollary to Theorem 2.1 by choosing
S = I and T = I in Theorem 2.1.

4. Conclusion
We defined Suzuki type Z−contraction with a rational expression via Ψ−simulation

function and proved the existence and uniqueness of common fixed points of two
pairs of selfmaps in complete metric spaces by using reciprocal continuity and
weakly compatible property (Theorem 2.1). Here we note that the class of all
Ψ−simulation functions is more general than the class of all simulation functions
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(Example 1.1). Our result (Theorem 2.1) extends Theorem 1.1 [2, Theorem 2] to
two pairs of selfmaps. We provided an example in support of our main result.
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tractions via Simmulation Functions, An. St. Univ. Ovidius Constanta,
27(3) (2019), 137-152.



180 South East Asian J. of Mathematics and Mathematical Sciences

[11] Khojasteh, F., Shukla, S. and Radenović, S., A new approach to the study of
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