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Abstract: In this paper we have found a necessary and sufficient condition for
equivalence of two norms on a linear space using the theory of exponential vector
space. Exponential vector space (‘evs’ in short) is an ordered algebraic structure
which can be considered as an algebraic ordered extension of vector space. This
structure is axiomatised on the basis of the intrinsic properties of the hyperspace
C (X ) comprising all nonempty compact subsets of a Hausdorff topological vector
space X . Exponential vector space is a conglomeration of a semigroup structure, a
scalar multiplication and a compatible partial order. We have shown that the col-
lection of all norms defined on a linear space, together with the constant function
zero, forms a topological exponential vector space. Then using the concept of com-
paring function (a concept defined on a topological exponential vector space) we
have proved the aforesaid necessary and sufficient condition; also we have proved
using comparing function that in an infinite dimensional linear space there are un-
countably many non-equivalent norms.
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1. Introduction
It is a well-known fact in functional analysis that in a finite dimensional linear

space all norms are equivalent. Again, in an infinite dimensional linear space
uncountably many non-equivalent norms can be defined. In the present paper we
shall prove a necessary and sufficient condition for equivalence of two norms on
a linear space using the theory of exponential vector space. Exponential vector
space is an ordered algebraic structure which can be considered as an algebraic
ordered extension of vector space. This structure is axiomatised on the basis of
the intrinsic properties of the hyperspace C (X ) comprising all nonempty compact
subsets of a Hausdorff topological vector space X . Exponential vector space is a
conglomeration of a semigroup structure, a scalar multiplication and a compatible
partial order. This structure was formulated by S. Ganguly et al. in [1] with
the name ‘quasi-vector space’. Later Priti Sharma et al. study the same space
in [9] with the new nomenclature ‘exponential vector space’ considering various
intrinsic properties of the space. Before going to other details let us present first
the definition of exponential vector space.

Definition 1.1. [9] Let (X,≤) be a partially ordered set, ‘+’ be a binary operation
on X [called addition] and ‘·’: K ×X −→ X be another composition [called scalar
multiplication, K being a field]. If the operations and the partial order satisfy the
following axioms then (X,+, ·,≤) is called an exponential vector space (in short
evs) over K [This structure was initiated with the terminology ‘quasi-vector spce’
or ‘qvs’ in short by S. Ganguly et al. in [1]].

A1 : (X,+) is a commutative semigroup with identity θ
A2 : x ≤ y (x, y ∈ X) ⇒ x+ z ≤ y + z and α · x ≤ α · y,∀ z ∈ X, ∀α ∈ K
A3 : (i) α · (x+ y) = α · x+ α · y

(ii) α · (β · x) = (αβ) · x
(iii) (α + β) · x ≤ α · x+ β · x
(iv) 1 · x = x, where ‘1’ is the multiplicative identity in K,

∀x, y ∈ X, ∀α, β ∈ K
A4 : α · x = θ iff α = 0 or x = θ
A5 : x+ (−1) · x = θ iff x ∈ X0 :=

{
z ∈ X : y ̸≤ z,∀ y ∈ X ∖ {z}

}
A6 : For each x ∈ X, ∃ p ∈ X0 such that p ≤ x.
In the above definition, X0 is precisely the set of all minimal elements of the

evs X with respect to the partial order on X and it forms the maximum vector
space (within X) over the same field as that of X ([1]). This vector space X0 is
called the ‘primitive space’ or ‘zero space’ of X and the elements of X0 are called
the ‘primitive elements’ [[9]].

Thus every evs contains a vector space and conversely, given any vector space
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V , an evs X can be constructed such that V is isomorphic to X0 [9]. In this
sense,“exponential vector space” can be considered as an algebraic ordered ex-
tension of vector space. The axiom A3(iii) expresses very rapid growth of the
non-primitive elements, since x ≤ 1

2
x + 1

2
x, ∀x ̸∈ X0; whereas axiom A6 demon-

strates ‘positivity ’ of all elements with respect to primitive elements. This justifies
the nomenclature ‘exponential vector space’.

Definition 1.2. [6] Let ‘≤’ be a preorder in a topological space Z; the preorder is
said to be closed if its graph G≤(Z) := {(x, y) ∈ Z ×Z : x ≤ y} is closed in Z ×Z
(endowed with the product topology).

Theorem 1.3. [6] A partial order ‘≤’ in a topological space Z will be a closed order
iff for any x, y ∈ Z with x ̸≤ y, ∃ open neighbourhoods U, V of x, y respectively in
Z such that (↑ U)∩ (↓ V ) = ∅, where ↑ U := {x ∈ Z : x ≥ u for some u ∈ U} and
↓ V := {x ∈ Z : x ≤ v for some v ∈ V }.
Definition 1.4. [9] An exponential vector space X over the field K of real or com-
plex numbers is said to be a topological exponential vector space if there exists a
topology on X with respect to which the addition, scalar multiplication are contin-
uous and the partial order ‘≤’ becomes closed (Here K is equipped with the usual
topology).

Remark 1.5. If X is a topological exponential vector space then its primitive space
X0 becomes a topological vector space, since restriction of a continuous function is
continuous. Moreover, the closedness of the partial order ‘≤’ in a topological expo-
nential vector space X readily implies (in view of Theorem 1.3) that X is Hausdorff
and hence X0 becomes a Hausdorff topological vector space.

Example 1.6. [2] Let X := [0,∞)×V , where V is a vector space over the field K
of real or complex numbers. Define operations and partial order on X as follows :
for (r, a), (s, b) ∈ X and α ∈ K,
(i) (r, a) + (s, b) := (r + s, a+ b)
(ii) α(r, a) := (|α|r, αa)
(iii) (r, a) ≤ (s, b) iff r ≤ s and a = b
Then [0,∞)×V becomes an exponential vector space with the primitive space
{0}×V which is clearly isomorphic to V .

In this example, if we consider V as a Hausdorff topological vector space, then
[0,∞)×V becomes a topological exponential vector space with respect to the prod-
uct topology, where [0,∞) is equipped with the subspace topology inherited from
the real line R.

Instead of V , if we take the trivial vector space {θ} in the above example, then
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the resulting topological evs is [0,∞)×{θ} which can be clearly identified with the
half ray [0,∞) of the real line. Thus, [0,∞) forms a topological evs over the field
K.

Example 1.7. [1] Let C (X ) denote the topological hyperspace consisting of all
non-empty compact subsets of a Hausdorff topological vector space X over the field
K of real or complex numbers. Define addition, scalar multiplication and partial
order on C (X ) as follows:

(i) For A,B ∈ C (X ), A+B :=
{
a+ b : a ∈ A, b ∈ B

}
(ii) For A ∈ C (X ) and α ∈ K, αA :=

{
αa : a ∈ A

}
(iii) For A,B ∈ C (X ), A ≤ B ⇐⇒ A ⊆ B
Then C (X ) becomes an evs over the field K. The primitive space is given by

[C (X )]0 =
{
{x} : x ∈ X

}
. Moreover, C (X ) forms a topological evs with respect

to the Vietoris topology [5]. An arbitrary basic open set in this topology is of the
form V +

0 ∩V −
1 ∩V −

2 ∩ ...∩V −
m , where V0, V1, ..., Vm are open in X with Vi ⊆ V0 for all

i = 1, 2, ...,m. Here V + :=
{
A ∈ C (X ) : A ⊆ V

}
, V − :=

{
A ∈ C (X ) : A∩V ̸= ∅

}
,

for any V ⊆ X .
The study of exponential vector space (previously, quasi-vector space) was mo-

tivated by the inspection of properties of C (X ). It leaves a major influence in
searching certain algebraic systems possessing the evs structure and developing
general and specialized theory preserving the sense of hyperspace on exponential
vector spaces.

In the present paper we first show that the collection N (X ) of all norms on a
linear space X over the field K, together with the constant function zero ‘O’, forms
a topological exponential vector space with respect to suitably defined operations,
partial order and point open topology. Then using the concept of comparing func-
tion (defined on a topological exponential vector space in [10]) we have proved
some necessary and sufficient conditions of equivalence of two norms on any linear
space. Also using the concept of comparing function we have shown that in an in-
finite dimensional linear space there are uncountably many non-equivalent norms
(a standard result in functional analysis).

2. Prerequisites

Definition 2.1. [2] A map ϕ : X → Y (X, Y being two exponential vector spaces
over the field K) is called an order-morphism if

(i) f(x+ y) = f(x) + f(y), ∀x, y ∈ X
(ii) f(αx) = αf(x), ∀α ∈ K, ∀x ∈ X
(iii) x ≤ y (x, y ∈ X) =⇒ f(x) ≤ f(y)
(iv) p ≤ q

(
p, q ∈ f(X)

)
=⇒ f−1(p) ⊆↓ f−1(q) and f−1(q) ⊆↑ f−1(p).
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Further, if f is bijective (injective, surjective) order-morphism, then it is called
order-isomorphism (order-monomorphism, order-epimorphism respectively).

IfX and Y both are topological evs over the fieldK, then the order-isomorphism
f : X → Y is called topological order-isomorphism if f is a homeomorphism.

Definition 2.2. [9] A property of an evs is called evs property if it remains invari-
ant under order-isomorphism.

Definition 2.3. [8] In an evs X, the primitive of x ∈ X is defined as the set
Px :=

{
p ∈ X0 : p ≤ x

}
The axiom A6 of the Definition 1.1 of an evs ascertains that Px ̸= ∅ for each

x ∈ X. The elements of Px are known as primitive elements of x.

Definition 2.4. [4] An evs X is said to be a single primitive evs if Px is a singleton
set for each x ∈ X.

Definition 2.5. [8] An evs X is said to be a zero primitive evs if Px = {θ}, for
all x ∈ X.

Clearly an evs X is zero primitive iff X0 = {θ}. Obviously, any zero primitive
evs is a single primitive evs.

Definition 2.6. [8] An element x in an evs X is said to be homogeneous if αx =
|α|x, ∀α ∈ K. An evs X is said to be homogeneous if each element of X is
homogeneous.

Definition 2.7. [8] Let X be an evs over the field K of real or complex numbers.
An element x ∈ X is said to be a convex element if (α+β)x = αx+βx, ∀α, β ∈ K
with α, β ≥ 0. So each primitive element of X is a convex element.

An evs X is said to be a convex evs if every element of X is convex.

Definition 2.8. [7] Let X be an evs over the field K of real or complex numbers.
An element x ∈ X is said to be a balanced element if αx ≤ x,∀α ∈ K with |α| ≤ 1.

An evs X is said to be balanced if each element of X is balanced.

Single primitivity, convexity, homogeneity and balancedness are evs properties
([4], [8], [7]).

3. Evs structure on the collection of norms on a linear space

Let X be a linear space over the field K of real or complex numbers and N (X )
denote the set of all norms on X together with the constant function zero, say
O, on X . We define addition, scalar multiplication and partial order on N (X ) as
follows :

(i) For f, g ∈ N (X ), (f + g)(x) := f(x) + g(x) for all x ∈ X .

(ii) For f ∈ N (X ) and for all α ∈ K, (αf)(x) := |α|f(x) for all x ∈ X .
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(iii) For f, g ∈ N (X ), f ≤ g ⇐⇒ f(x) ≤ g(x) for all x ∈ X .
We show below that

(
N (X ),+, ·,≤

)
becomes an evs over the field K.

Theorem 3.1. N (X ) is an exponential vector space over the field K of all real or
complex numbers with respect to the aforesaid operations and partial order.
Proof. We first show that if f, g ∈ N (X ) with atleast one of f, g being different
from the zero function O, then f + g is also a norm on X [Obviously, O+O = O].
Clearly, (f + g)(x) = f(x)+ g(x) ≥ 0 and (f + g)(x) = 0 ⇐⇒ f(x)+ g(x) = 0 ⇐⇒
f(x) = 0 and g(x) = 0 ⇐⇒ x = θ (the zero element of X ) [ ∵ atleast one of f and
g is non-zero ].
Again (f + g)(x + y) = f(x + y) + g(x + y) ≤ f(x) + f(y) + g(x) + g(y) =
(f + g)(x) + (f + g)(y), ∀x, y ∈ X .
Now (f + g)(λx) = f(λx) + g(λx) = |λ|f(x) + |λ|g(x) = |λ|

(
f(x) + g(x)

)
=

|λ|(f + g)(x), ∀x ∈ X , ∀λ ∈ K.
Hence f + g ∈ N (X ), ∀f, g ∈ N (X ).

Now we show that for any α ∈ K and f ∈ N (X ), the scalar multiplication
αf ∈ N (X ). Clearly, (αf)(x) = |α|f(x) ≥ 0, ∀x ∈ X . If α = 0 or f = O then
αf = O ∈ N (X ). For α ̸= 0 and f ̸= O, (αf)(x) = 0 ⇐⇒ |α|f(x) = 0 ⇐⇒ f(x) =
0 ⇐⇒ x = θ.
Now (αf)(x+y) = |α|f(x+y) ≤ |α|

(
f(x)+f(y)

)
= (αf)(x)+(αf)(y), ∀x, y ∈ X .

Again (αf)(λx) = |α|f(λx) = |α||λ|f(x) = |λ|(αf)(x), ∀x ∈ X , ∀λ ∈ K.
Hence αf ∈ N (X ), ∀f ∈ N (X ), ∀α ∈ K.

Clearly, ‘≤’ is a partial order on N (X ).

We now prove that
(
N (X ),+, ·,≤

)
forms an evs over the field K of real or

complex numbers.
A1 : Clearly, (N (X ),+) is a commutative semigroup with identity O, the constant
function zero.
A2 : Let f, g ∈ N (X ) with f ≤ g. Then f(x) ≤ g(x), ∀x ∈ X . For any h ∈ N (X ),
(f + h)(x) = f(x) + h(x) ≤ g(x) + h(x) = (g + h)(x),∀x ∈ X =⇒ f + h ≤ g + h,
∀h ∈ N (X ).
Also, for any α ∈ K, (αf)(x) = |α|f(x) ≤ |α|g(x) = (αg)(x),∀x ∈ X =⇒ αf ≤ αg,
∀α ∈ K.
A3 (i) : Let f, g ∈ N (X ) and α ∈ K. Then,

(
α(f + g)

)
(x) = |α|

(
f(x) + g(x)

)
= |α|f(x) + |α|g(x) = (αf + αg)(x),∀x ∈ X =⇒ α(f + g) = αf + αg, ∀α ∈ K,
∀f, g ∈ N (X ).
(ii) Let f ∈ N (X ) and α, β ∈ K. Then,

(
α(βf)

)
(x) = |α|(βf)(x) = |α||β|f(x) =

|αβ|f(x) =
(
(αβ)f

)
(x),∀x ∈ X =⇒ α(βf) = (αβ)f , ∀α, β ∈ K, ∀f ∈ N (X ).

(iii) Let f ∈ N (X ) and α, β ∈ K. Then,
(
(α + β)f

)
(x) = |α + β|f(x) ≤ (|α| +

|β|)f(x) = |α|f(x) + |β|f(x) = (αf + βf)(x), ∀x ∈ X =⇒ (α + β)f ≤ αf + βf ,
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∀α, β ∈ K, ∀f ∈ N (X ).
(iv) Clearly, 1.f = f , ∀f ∈ N (X ).
A4 : Let α ∈ K and f ∈ N (X ). Then, αf = O ⇐⇒ (αf)(x) = O(x),∀x ∈ X ⇐⇒
|α|f(x) = 0,∀x ∈ X ⇐⇒ α = 0 or f(x) = 0,∀x ∈ X ⇐⇒ α = 0 or f = O.
A5 : For any f ∈ N (X ), f + (−1)f = O ⇐⇒

(
f + (−1)f

)
(x) = O(x),∀x ∈ X

⇐⇒ f(x) + f(x) = 0,∀x ∈ X ⇐⇒ f(x) = 0,∀x ∈ X i.e. f = O. Since f(x) ≥
0, ∀x ∈ X ,∀ f ∈ N (X ) we have [N (X )]0 = {O}. Thus f + (−1)f = O ⇐⇒
f ∈ [N (X )]0 = {O}.
A6 : Clearly, for each f ∈ N (X ), O ≤ f where, O ∈ [N (X )]0.

Hence
(
N (X ), ,+, ·,≤

)
forms an exponential vector space over K.

Theorem 3.2. N (X ) is a single primitive, convex, homogeneous and balanced evs.
Proof. As [N (X )]0 = {O} so N (X ) is zero primitive and hence single primitive
evs. For α, β ∈ K with α, β ≥ 0,

(
(α+ β)f

)
(x) = |α+ β|f(x) = (|α|+ |β|)f(x) =

|α|f(x)+|β|f(x) = (αf+βf)(x),∀x ∈ X =⇒ (α+β)f = αf+βf for α, β ≥ 0,∀ f ∈
N (X ). Hence, N (X ) is a convex evs. Also for any α ∈ K and any f ∈ N (X ),
(αf)(x) = |α|f(x),∀x ∈ X =⇒ αf = |α|f, ∀ f ∈ N (X ). Hence N (X ) is
homogeneous. Again, for α ∈ K with |α| ≤ 1, (αf)(x) = |α|f(x) ≤ f(x),∀x ∈ X
=⇒ αf ≤ f for |α| ≤ 1. Thus, N (X ) is a balanced evs.

We now give the point open topology on N (X ). For any x ∈ X and any open
set U in [0,∞), let W (x, U) := {f ∈ N (X ) : f(x) ∈ U}. Then

{
W (x, U) : x ∈ X ,

U is open in [0,∞)
}
forms a subbase for the point open topology say, τ on N (X ).

Also, a net {fn}n∈D [D being a directed set] in N (X ) converges to some f ∈ N (X )
iff fn(x) → f(x),∀x ∈ X .

Theorem 3.3. Consider the evs N (X ) endowed with the point open topology.
Then,
(1) The addition ‘+’ : N (X )×N (X ) −→ N (X ) is continuous.
(2) The scalar multiplication ‘·’ : K×N (X ) −→ N (X ) is continuous, where K is
endowed with the usual topology.
(3) The partial order ‘≤’ is closed.
Thus N (X ) with the point open topology forms a topological evs over K.
Proof. (1) Let {fn}n∈D and {gn}n∈D be two nets in N (X ) [ D being a directed set
] such that fn → f and gn → g in N (X ). Then fn(x) → f(x) and gn(x) → g(x) in
[0,∞), ∀x ∈ X =⇒ fn(x) + gn(x) → f(x) + g(x), ∀x ∈ X [ ∵ ‘+’ is continuous in
[0,∞) ] i.e. (fn + gn)(x) → (f + g)(x), ∀x ∈ X =⇒ (fn + gn) → (f + g) in N (X ).
Hence the addition is continuous in N (X ).

(2) Let {fn}n∈D be a net in N (X ) and {αn}n∈D be a net in K [D being a
directed set] such that fn → f in N (X ) and αn → α in K. Then fn(x) → f(x),
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∀x ∈ X . Now for any x ∈ X ,∣∣(αnfn)(x)− (αf)(x)
∣∣ = ∣∣|αn|fn(x)− |α|f(x)

∣∣
=

∣∣|αn|fn(x)− |αn|f(x) + |αn|f(x)− |α|f(x)
∣∣

≤ |αn|
∣∣fn(x)− f(x)

∣∣+ |f(x)|
∣∣|αn| − |α|

∣∣
→ 0 [∵ |αn| → |α|, fn(x) → f(x),∀x ∈ X ].

∴ αnfn → αf in N (X ). Hence the scalar multiplication is continuous in N (X ).
(3) Let {(fn, gn)}n∈D be a net in N (X ) × N (X ) [ D being a directed set ]

converging to some (f, g) ∈ N (X ) × N (X ) with fn ≤ gn, ∀n ∈ D. So, fn → f ,
gn → g in N (X ). Therefore, fn(x) → f(x), gn(x) → g(x), ∀x ∈ X and fn(x) ≤
gn(x), ∀x ∈ X , ∀n ∈ D =⇒ f(x) ≤ g(x), ∀x ∈ X [ ∵ ‘≤’ is closed in the topological
evs [0,∞) ] =⇒ f ≤ g in N (X ). Hence the partial order is closed in N (X ).
Therefore,

(
N (X ), τ

)
is a topological evs over K. Again, since N (X ) ⊆ [0,∞)X ,

where [0,∞) is a Tychonoff space and τ is the point open topology, so
(
N (X ), τ

)
is also a Tychonoff space.

4. Characterisation of equivalent norms on a linear space
In this section we first discuss the concept of comparing function defined on a

zero primitive topological evs. Then we shall compute the comparing function on
the zero primitive topological evs N (X ). Finally, using this comparing function
we shall prove necessary and sufficient condition for equivalence of two norms on
a linear space over K. We shall conclude this paper by proving, with the help of
comparing function, a standard result from functional analysis that in an infinite
dimensional linear space there are uncountably many non-equivalent norms.

Definition 4.1. Let X be a zero primitive evs over the field K of real or complex
numbers with additive identity θ. For x, y ∈ X, we define the comparing spectrum
of y relative to x by σx(y) :=

{
λ ∈ K : λx ≤ y

}
.

Since X is zero primitive, y ≥ θ, ∀ y ∈ X and hence 0 ∈ σx(y) so that it is
nonempty.

Proposition 4.2. [7] For a topological evs X, σx(y) is bounded, ∀x ̸= θ, ∀ y ∈ X.

Definition 4.3. [10] Let X be a zero primitive topological evs over the field K of
real or complex numbers. For any x (̸= θ) ∈ X, the comparing function relative to
x, denoted by Cx, is defined as

Cx(y) := sup
λ∈σx(y)

|λ|, for all y ∈ X.

By Proposition 4.2, Cx is well-defined and Cx(y) ∈ [0,∞), ∀ y ∈ X, ∀x ̸= θ.

Proposition 4.4. Let X be a zero primitive topological evs over the field K. For
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any non-zero homogeneous element x ∈ X and any y ∈ X, Cx(y)x ≤ y.
Proof. By definition of Cx(y), ∃ a sequence {λn} in σx(y) such that |λn| → Cx(y)
as n → ∞. Then λnx ≤ y,∀n ∈ N. Now x being homogeneous, |λn|x = λnx, ∀n.
So |λn|x ≤ y,∀n. Therefore the scalar multiplication being continuous and the
partial order ‘≤’ being closed we have Cx(y)x ≤ y.

We shall now compute the comparing function in the topological evs N (X ).

Theorem 4.5. Consider the topological evs N (X ) and let f ( ̸= O) ∈ N (X ). Then

the comparing function relative to f is Cf (g) = inf
x∈X∖{θ}

g(x)
f(x)

, ∀ g ∈ N (X ). Here θ

is the zero element in the vector space X .
Proof. Here σf (g) =

{
λ ∈ K : λf ≤ g

}
=

{
λ ∈ K : |λ|f(x) ≤ g(x), for all x ∈ X

}
.

Define s := inf
x∈X∖{θ}

g(x)
f(x)

. Clearly s ∈ [0,∞). We will prove that Cf (g) = s.

By definition of s, s ≤ g(x)
f(x)

for all x ∈ X ∖ {θ} =⇒ sf(x) ≤ g(x) for all x ∈ X
=⇒ s · f ≤ g =⇒ s ∈ σf (g). Hence s ≤ sup

λ∈σf (g)

|λ| = Cf (g).

To prove the converse, let λ ∈ σf (g). Therefore λ · f ≤ g =⇒ |λ|f(x) ≤ g(x)

for all x ∈ X =⇒ |λ| ≤ g(x)
f(x)

for all x ∈ X ∖ {θ} =⇒ |λ| ≤ inf
x∈X∖{θ}

g(x)
f(x)

= s. This

holds for any λ ∈ σf (g). Therefore sup
λ∈σf (g)

|λ| ≤ s i.e. Cf (g) ≤ s.

Consequently, Cf (g) = inf
x∈X∖{θ}

g(x)
f(x)

, for all g ∈ N (X ).

Theorem 4.6. Let f, g be two norms on a linear space X . Then g produces larger
topology than the topology produced by f if and only if Cf (g) ̸= 0.
Proof. SinceN (X ) is a homogeneous, zero primitive, topological evs (by Theorems
3.2 and 3.3), we have by Proposition 4.4, Cf (g)f ≤ g =⇒ Cf (g)f(x) ≤ g(x),∀x ∈
X . Let τ (f) and τ (g) be the topologies generated by the norms f, g respectively.
Then Cf (g) ̸= 0 =⇒ τ (g) ⊇ τ (f).

Conversely, let τ (g) ⊇ τ (f). Then ∃λ > 0 such that λf(x) ≤ g(x), ∀x ∈ X
=⇒ λf ≤ g =⇒ λ ∈ σf (g) =⇒ λ ≤ Cf (g) =⇒ Cf (g) ̸= 0.

Theorem 4.7. In a linear space X over the field K of all real or complex numbers,
any two norms f, g are equivalent if and only if Cf (g)Cg(f) ̸= 0.
Proof. Let f, g be two equivalent norms on X . Then there exists λ, µ > 0 such
that λf(x) ≤ g(x) ≤ µf(x), ∀x ∈ X =⇒ λ ∈ σf (g) and 1

µ
∈ σg(f). So by

definition, λ ≤ Cf (g) and
1
µ
≤ Cg(f) =⇒ Cf (g)Cg(f) ̸= 0.

Conversely let Cf (g)Cg(f) ̸= 0. Since N (X ) is a homogeneous, zero primi-
tive, topological evs (by Theorems 3.2 and 3.3), we have by Proposition 4.4 that
Cf (g)f ≤ g ≤ 1

Cg(f)
f =⇒ Cf (g)f(x) ≤ g(x) ≤ 1

Cg(f)
f(x), for all x ∈ X . This
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justifies that f, g are two equivalent norms on X .

Remark 4.8. In view of Theorems 4.6 and 4.7 we can say that the topologies τ (f)
and τ (g) induced by two norms f, g respectively on a linear space will be totally
incomparable if and only if Cf (g) = 0 = Cg(f).

Example 4.9. Let c00 be the linear space of all sequences inK whose all but finitely
many terms are zero. Then the norms ∥ · ∥∞ and ∥ · ∥1 on c00 are non-equivalent.
To justify this we show that C∥·∥1(∥ · ∥∞) = 0. Let us consider a sequence {xn}
in c00 , where xn = (1, 2, . . . , n, 0, 0, . . .) ∈ c00 . Then C∥·∥1(∥ · ∥∞) = inf

x∈c00
x ̸=0

∥x∥∞
∥x∥1 ≤

inf
n∈N

∥xn∥∞
∥xn∥1 = inf

n∈N
n

1+2+···+n
= lim

n→∞
2

n+1
= 0.

This example is instructive to show that there exists non-equivalent norms on
any infinite dimensional linear space. We shall prove this standard result from
functional analysis using comparing function.

Theorem 4.10. Let X be an infinite dimensional linear space over the field K.
Then there exist non-equivalent norms on X .
Proof. Let H be a Hamel basis of X . Since H is infinite we can find an enumerable
subset B := {en ∈ H : n ∈ N} of H. Now each x ∈ X can be expressed uniquely

as x =
n∑

i=1

αihi, for some hi ∈ H and αi ∈ K. We define two norms on X as follows

:

∥x∥∞ := max
1≤i≤n

|αi| and ∥x∥1 :=
n∑

i=1

|αi|, if x has the representation as above.

We show below that these two norms are not equivalent.

Actually we show that C∥·∥1(∥·∥∞) = 0. For this we construct a sequence {xn} in
X by xn := e1+2e2+· · ·+nen,∀n ∈ N. Then ∥xn∥∞ = n and ∥xn∥1 = 1+2+· · ·+n.

Therefore C∥·∥1(∥ · ∥∞) = inf
x∈X
x ̸=0

∥x∥∞
∥x∥1 ≤ inf

n∈N
∥xn∥∞
∥xn∥1 = inf

n∈N
n

1+2+···+n
= lim

n→∞
2

n+1
= 0.

Then the theorem follows from Theorem 4.7.

We now show that there are uncountably many non-equivalent norms on any
infinite dimensional linear space using comparing functions.

Theorem 4.11. Let X be an infinite dimensional linear space over the field K.
Then there exist uncountably many non-equivalent norms on X .
Proof. Let H be a Hamel basis of X . Since H is infinite we can find an enumerable
subset B := {en ∈ H : n ∈ N} of H. Now each x ∈ X can be expressed uniquely

as x =
n∑

i=1

αihi, for some hi ∈ H and αi ∈ K. We define p-norm (p ≥ 1) on X as

follows :
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∥x∥p :=
(

n∑
i=1

|αi|p
) 1

p

, if x has the representation as above.

We show below that this gives non-equivalent norms for different p’s.

We show that for p > q, C∥·∥q(∥ ·∥p) = 0. For this we construct a sequence {xn}
in X by xn := ne1+ne2+· · ·+nen,∀n ∈ N. Then ∥xn∥p = n1+ 1

p and ∥xn∥q = n1+ 1
q .

Therefore C∥·∥q(∥ · ∥p) = inf
x∈X
x ̸=0

∥x∥p
∥x∥q ≤ inf

n∈N
∥xn∥p
∥xn∥q = inf

n∈N
n
1+ 1

p

n
1+1

q
= lim

n→∞
n

1
p
− 1

q = 0
[
∵

1
p
− 1

q
< 0

]
. Then the theorem follows from Theorem 4.7.

Definition 4.12. Two norms on a linear space are said to be totally non-equivalent
if the topologies induced by them are totally incomparable.

Thus in view of the Remark 4.8 we have the following Theorem.

Theorem 4.13. Two norms f, g on a linear space X will be totally non-equivalent
iff Cf (g) = 0 = Cg(f).

We now show that if X is infinite dimensional with dimension at least c, the
cardinality of the continuum, then we can construct uncountably many totally non-
equivalent norms.

Theorem 4.14. Let X be a linear space (over the field K) of dimension at least
c, the cardinality of the continuum. Then we can construct at least c many totally
non-equivalent norms on X .
Proof. Let H be a Hamel basis of X . Then cardinality of H is at least c. Consider
two disjoint enumerable subsets H1, H2 of H. Let Hi := {hi

n ∈ H : n ∈ N}, i = 1, 2.

Now each x ∈ X has a unique representation x =
∑
h∈H

λhh, where λh ∈ K and λh = 0

except for finitely many h’s. For any β > 1 we define ∥x∥β := max
h∈H

bh|λh|,

where bh :=


1, if h /∈ H1 ∪H2

βn, if h = h1
n ∈ H1

β−n, if h = h2
n ∈ H2

It is easy to check that ∥ · ∥β defines a norm on X for any β > 1.

We now show that for any γ > β > 1, the norms ∥ ·∥β and ∥ ·∥γ are totally non-

equivalent. In fact, C∥·∥γ (∥ · ∥β) = inf
x∈X
x ̸=0

∥x∥β
∥x∥γ

≤ inf
n∈N

∥h1
n∥β

∥h1
n∥γ

= inf
n∈N

βn

γn = lim
n→∞

(
β
γ

)n

=

0 [∵ γ > β > 1]. Also, C∥·∥β(∥ · ∥γ) = inf
x∈X
x̸=0

∥x∥γ
∥x∥β

≤ inf
n∈N

∥h2
n∥γ

∥h2
n∥β

= inf
n∈N

γ−n

β−n =

lim
n→∞

(
β
γ

)n

= 0 [∵ γ > β > 1]. Then in view of Theorem 4.13 the result follows.
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Remark 4.15. From above Theorem 4.14 it follows that for any two distinct
β, γ (> 1), the identity map i : (X , ∥ · ∥β) → (X , ∥ · ∥γ) and its inverse i−1 :
(X , ∥ · ∥γ) → (X , ∥ · ∥β) both are discontinuous.

Let N∗(X ) := N (X )∖ {O}. Define two maps Ψ,Φ : N∗(X )×N∗(X ) → [0,∞)
by

Ψ(f, g) := min
{
Cf (g), Cg(f)

}
,∀ f, g ∈ N∗(X ).

and Φ(f, g) := max
{
Cf (g), Cg(f)

}
,∀ f, g ∈ N∗(X ).

Then we have the following characterisation of non-equivalent norms.

Theorem 4.16. (1) Two norms f, g on a linear space X over the field K are
non-equivalent if and only if Ψ(f, g) = 0.
(2) Two norms f, g on a linear space X over the field K are totally non-equivalent
if and only if Φ(f, g) = 0.
Proof. (1) and (2) follow from the Theorems 4.7 and 4.13 respectively.
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