CERTAIN RESULTS INVOLVING q-HYPERGEOMETRIC SERIES AND RAMANUJAN'S MOCK THETA FUNCTIONS

Sunil Singh, Mohmmad Shahjade* and Amit Kumar Singh**
Department of Mathematics, Dr. Homi Bhabha State University, The Institute of Science, Mumbai - 32, INDIA
E-mail: sunilsingh@iscm.ac.in
*Department of Mathematics, MANUU Poly. 8th Cross, 1st Stage, 3rd Block, Nagarbhavi, Banglore - 72 INDIA
E-mail : mohammadshahjade@gmail.com
**Department of Mathematics, Thakur Mativar Singh PG College, Jamalapur, Jaunpur, Uttar Pradesh, INDIA
E-mail : dramitsingh2013@gmail.com

(Received: Dec. 17, 2021 Accepted: Oct. 08, 2023 Published: Dec. 30, 2023)
Abstract: In this paper certain transformation formulas for q-hypergeometric series have been established. In another section of this paper, results involving mock theta functions have also been established.

Keywords and Phrases: q-hypergeometric series, transformation formula, mock theta functions, truncated hypergeometric series, summation formula.

2020 Mathematics Subject Classification: 30G35, 32A30, 30C15.

1. Introduction, Notations and Definitions

The q-shifted factorial for $|q|<1$ is defined as,

$$
(a ; q)_{0}=1
$$

$$
\begin{gathered}
(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), \quad n \in N \\
(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}=\prod_{r=0}^{\infty}\left(1-a q^{r}\right)
\end{gathered}
$$

The basic hypergeometric series is defined as,

$$
{ }_{r} \Phi_{s}\left[\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{r} ; q ; z \tag{1.1}\\
b_{1}, b_{2}, \ldots, b_{s}
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n} z^{n}}{\left(q, b_{1}, b_{2}, \ldots, b_{s} ; q\right)_{n}}
$$

where max. $(|q|,|z|)<1$ for the convergence of the series and

$$
\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n \ldots}\left(a_{r} ; q\right)_{n}
$$

The truncated hypergeometric series is defined as,

$$
{ }_{r} \Phi_{s}\left[\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{r} ; q ; z \tag{1.2}\\
b_{1}, b_{2}, \ldots, b_{s}
\end{array}\right]_{n}=\sum_{k=0}^{n} \frac{\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{k}}{\left(q, b_{1}, b_{2}, \ldots, b_{s} ; q\right)_{k}} z^{k}
$$

In 1949 Bailey [2] established the following very useful transform known as Bailey's transform. It is defined as, If

$$
\begin{equation*}
\beta_{n}=\sum_{r=0}^{n} \alpha_{r} u_{n-r} v_{n+r} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{n}=\sum_{r=0}^{\infty} \delta_{r+n} u_{r} v_{r+2 n} \tag{1.4}
\end{equation*}
$$

then under suitable convergence conditions,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \alpha_{n} \gamma_{n}=\sum_{n=0}^{\infty} \beta_{n} \delta_{n} \tag{1.5}
\end{equation*}
$$

where u_{r}, v_{r}, α_{r} and δ_{r} are arbitrary functions of r alone.
Taking $u_{r}=v_{r}=1$ and $\delta_{r}=z^{r}$ in above transform, it takes the form,

$$
\begin{align*}
& \text { If } \beta_{n}=\sum_{r=0}^{n} \alpha_{r}, \gamma_{n}=\frac{z^{n}}{1-z} \text { then under suitable convergence conditions, } \\
& \qquad \sum_{n=0}^{\infty} \alpha_{n} z^{n}=(1-z) \sum_{n=0}^{\infty} \beta_{n} z^{n}=(1-z) \sum_{n=0}^{\infty} z^{n} \sum_{r=0}^{n} \alpha_{r} \tag{1.6}
\end{align*}
$$

We shall make use of (1.6) in next sections and one can refereed the papers [4, 5, $6]$.

2. Summation formulas for truncated hypergeometric series

In this section we shall establish certain summation formulas for truncated q-series.
(i) Putting $c=a b q$ in the summation formula [3; App II (II. 12) p. 355] we get

$$
{ }_{2} \Phi_{1}\left[\begin{array}{l}
a, b ; q ; q \tag{2.1}\\
a b q
\end{array}\right]_{n}=\sum_{r=0}^{n} \frac{(a, b ; q)_{r} q^{r}}{(q, a b q ; q)_{r}}=\frac{(a q, b q ; q)_{n}}{(q, a b q ; q)_{n}} .
$$

As $n \rightarrow \infty$, (2.1) yields

$$
{ }_{2} \Phi_{1}\left[\begin{array}{l}
a, b ; q ; q \tag{2.2}\\
a b q
\end{array}\right]=\frac{(a q, b q ; q)_{\infty}}{(q, a b q ; q)_{\infty}} .
$$

(ii) Putting $b=a q^{1+n}$ in [3; App II (II. 14)] we find,

$$
{ }_{2} \Phi_{1}\left[\begin{array}{l}
a,-q \sqrt{a} ; q ; \frac{1}{\sqrt{a}} \tag{2.3}\\
-\sqrt{a}
\end{array}\right]_{n}=\frac{(a q ; q)_{n}}{(q ; q)_{n}(\sqrt{a})^{n}} .
$$

(iii) Putting $c=a q^{1+n}$ in [3; App II (II. 21)] we get,

$$
{ }_{4} \Phi_{3}\left[\begin{array}{l}
a, q \sqrt{a},-q \sqrt{a}, b ; q ; \frac{1}{b} \tag{2.4}\\
\sqrt{a},-\sqrt{a}, \frac{a q}{b}
\end{array}\right]_{n}=\frac{(a q, b q ; q)_{n}}{(q, a q / b, ; q)_{n} b^{n}} .
$$

(iii) Taking $e=a q^{1+n}$ in [3; App II (II. 22)] we get,

$$
{ }_{6} \Phi_{5}\left[\begin{array}{l}
a, q \sqrt{a},-q \sqrt{a}, b, c, d ; q ; q \tag{2.5}\\
\sqrt{a},-\sqrt{a}, \frac{a q}{b}, \frac{a q}{c}, \frac{a q}{d}
\end{array}\right]_{n}=\frac{(a q, a q / b c, a q / b d, a q / c d ; q)_{n}}{(a q / b, a q / c, a q / d, a q / b c d ; q)_{n}}, \quad a=b c d .
$$

[3; App II (II. 34)] can be put as

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(a p q ; p q)_{k}(a ; p)_{k}(c ; q)_{k} q^{k}}{(a ; p q)_{k}(q ; q)_{k}(a p / c ; p)_{k}}=\frac{(a p ; p)_{n}(c q ; q)_{n}}{(q ; q)_{n}(a p / c ; p)_{n}} \tag{2.6}
\end{equation*}
$$

3. Transformation Formulas

In this section we shall establish transformation formulas by making use of the summation formulas established in the previous section.
(i) Putting $\alpha_{n}=\frac{(a, b ; q)_{n} q^{n}}{(q, a b q ; q)_{n}}$ in (1.6) we get

$$
\sum_{n=0}^{\infty} \frac{(a, b ; q)_{n} z^{n} q^{n}}{(q, a b q ; q)_{n}}=(1-z) \sum_{n=0}^{\infty} \frac{(a q, b q ; q)_{n} z^{n}}{(q, a b q ; q)_{n}},
$$

which can be written as

$$
(z q ; q)_{\infty}{ }_{2} \Phi_{1}\left[\begin{array}{l}
a, b ; q ; z q \tag{3.1}\\
a b q
\end{array}\right]=(z ; q)_{\infty_{2}} \Phi_{1}\left[\begin{array}{l}
a q, b q ; q ; z \\
a b q
\end{array}\right]
$$

(ii) Putting $\alpha_{n}=\frac{(a,-q \sqrt{a} ; q)_{n}}{(q,-\sqrt{a} ; q)_{n} a^{n / 2}}$ in (1.6) we get,
$(z q ; q)_{\infty} \Phi_{1}\left[\begin{array}{l}a,-q \sqrt{a} ; q ; \frac{z}{\sqrt{a}} \\ -\sqrt{a}\end{array}\right]=(z ; q)_{\infty} \Phi_{0}\left[\begin{array}{l}a q ; q ; \frac{z}{\sqrt{a}} \\ -\end{array}\right]=\frac{(z ; q)_{\infty}(z q \sqrt{a} ; q)_{\infty}}{(z / \sqrt{a} ; q)_{\infty}}$.
(iii) Taking $\alpha_{n}=\frac{(a, q \sqrt{a},-q \sqrt{a}, b ; q)_{n}}{(q, \sqrt{a},-\sqrt{a}, a q / b ; q)_{n} b^{n}}$ in (1.6) we get,

$$
(z q ; q)_{\infty} \Phi_{3}\left[\begin{array}{l}
a, q \sqrt{a},-q \sqrt{a}, b ; q ; \frac{z}{b} \tag{3.3}\\
\sqrt{a},-\sqrt{a}, a q / b
\end{array}\right]=(z ; q)_{\infty}{ }_{2} \Phi_{1}\left[\begin{array}{l}
a q, b q ; q ; \frac{z}{b} \\
a q / b
\end{array}\right]
$$

(iv) Taking $\alpha_{n}=\frac{(a, q \sqrt{a},-q \sqrt{a}, b, c, d ; q)_{n}}{(q, \sqrt{a},-\sqrt{a}, a q / b, a q / c, a q / d ; q)_{n}} q^{n}$ in (1.6) and using (2.5) we have,

$$
\begin{align*}
& (z q ; q)_{\infty} \Phi_{5}\left[\begin{array}{l}
a, q \sqrt{a},-q \sqrt{a}, b, c, d ; q ; z q \\
\sqrt{a},-\sqrt{a}, a q / b, a q / c, a q / d
\end{array}\right] \\
& \quad=(z ; q)_{\infty} \Phi_{3}\left[\begin{array}{l}
a q, a q / b c, a q / b d, a q / c d ; q ; z \\
a q / b, a q / c, a q / d, a q / b c d
\end{array}\right] \tag{3.4}
\end{align*}
$$

(v) Putting $\alpha_{n}=\frac{(a p q ; q)_{n}(a ; p)_{n}(c ; q)_{n} q^{n}}{(q ; q)_{n}(a ; p q)_{n}(a p / c ; p)_{n}}$ in (1.6) we get,

$$
\begin{equation*}
(z q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{(a p q ; p q)_{n}(a ; p)_{n}(c ; q)_{n} z^{n} q^{n}}{(q ; q)_{n}(a ; p q)_{n}(a p / c ; p)_{n}}=(z ; q)_{\infty} \sum_{n=0}^{\infty} \frac{(a p ; p)_{n}(c q ; q)_{n} z^{n}}{(q ; q)_{n}(a p / c ; p)_{n}} \tag{3.5}
\end{equation*}
$$

4. Main Results

In this section we shall establish certain results involving Ramanujan's mock theta functions.
Let us define as,
If $A(q)=\sum_{n=0}^{\infty} B_{n}$ is a mock theta function, then $A_{m}(q)=\sum_{n=0}^{m} B_{n}$ is called partial mock theta function.
Also, $A(z, q)=\sum_{n=0}^{\infty} B_{n} z^{n}$ is a mock theta function having one more variable z .

For the definitions of mock theta functions of order three, five and seven one is refereed chapter 2 and 3 of the book [1, Agarwal].
(i) Putting $\alpha_{n}=\frac{q^{n^{2}}}{(-q ; q)_{n}^{2}}$ in (1.6) we get,

$$
\begin{equation*}
(z q ; q)_{\infty} f(z ; q)=(z ; q)_{\infty} \sum_{n=0}^{\infty} z^{n} f_{n}(q) . \tag{4.1}
\end{equation*}
$$

(ii) Putting $\alpha_{n}=\frac{q^{n^{2}}}{\left(-q^{2} ; q^{2}\right)_{n}}$ in (1.6) we get,

$$
\begin{equation*}
(z q ; q)_{\infty} \Phi(z ; q)=(z ; q)_{\infty} \sum_{n=0}^{\infty} z^{n} \Phi_{n}(q) . \tag{4.2}
\end{equation*}
$$

(iii) For $\alpha_{n}=\frac{q^{(n+1)^{2}}}{\left(q ; q^{2}\right)_{n+1}}$ in (1.6) we have,

$$
\begin{equation*}
(z q ; q)_{\infty} \Psi(z ; q)=(z ; q)_{\infty} \sum_{n=0}^{\infty} z^{n} \Psi_{n}(q) . \tag{4.3}
\end{equation*}
$$

(iv) Taking $\alpha_{n}=\frac{q^{n^{2}}}{\left(-\omega q,-\omega^{2} q ; q\right)_{n}}$ in (1.6) we get,

$$
\begin{equation*}
(z q ; q)_{\infty} \chi(z ; q)=(z ; q)_{n} \sum_{n=0}^{\infty} z^{n} \chi_{n}(q) . \tag{4.4}
\end{equation*}
$$

(v) For $\alpha_{n}=\frac{q^{2 n(n+1)}}{\left(q ; q^{2}\right)_{n+1}^{2}}$ in (1.6) we have,

$$
\begin{equation*}
(z q ; q)_{\infty} \omega(z ; q)=(z ; q)_{\infty} \sum_{n=0}^{\infty} z^{n} \omega_{n}(q) \tag{4.5}
\end{equation*}
$$

(vi) Taking $\alpha_{n}=\frac{q^{n(n+1)}}{\left(-q ; q^{2}\right)_{n+1}}$ in (1.6) we find,

$$
\begin{equation*}
(z q ; q)_{\infty} \nu(z ; q)=(z ; q)_{\infty} \sum_{n=0}^{\infty} z^{n} \nu_{n}(q) . \tag{4.6}
\end{equation*}
$$

(vii) Taking $\alpha_{n}=\frac{q^{2 n(n+1)}}{\left(\omega q, \omega^{2} q ; q^{2}\right)_{n}}$ in (1.6) we have,

$$
\begin{equation*}
(z q ; q)_{\infty} \rho(z ; q)=(z ; q)_{\infty} \sum_{n=0}^{\infty} z^{n} \rho_{n}(q) \tag{4.7}
\end{equation*}
$$

By proper choice of α_{n} one can establish similar results for mock theta functions of five and seven order.

References

[1] Agarwal, R. P., Resonance of Ramanujan Mathematics, Vol. II, New Age International (P) Limited, New Delhi, 1996.
[2] Bailey, W. N., Identities of the Rogers-Ramanujan type, Proc. London Mathematical Society, Volume s2-50, Issue 1, (1948), 1-10.
[3] Gasper, G. and Rahman, M., Basic hypergeometric series, second edition, Cambridge University Press, 2004.
[4] Pant, G. S., Pande, V. P. and Mohammad Shahjade, Transformation formulae involving partial mock theta functions, J. of Ramanujan Society of Math. and Math. Sc., Vol. 5, No. 2 (2016), 99-112.
[5] Sharma, S. and Rana, M., Combinatorics of third order mock theta function $f(q)$ and sixth order mock theta functions $\phi(q), \psi(q)$, J. of Ramanujan Society of Mathematics and Mathematical Sciences, Vol. 7, No. 1 (2019), 31-36.
[6] Singh, Satya Prakash and Singh, Ashish Pratap, On certain results involving square of Ramanujan's mock theta functions, South East Asian J. of Mathematics and Mathematical Sciences, Volume, 19, Issue, 2 (2023), 157-162.

