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1. Introduction
The process of finding all the zeros of a higher-degree polynomial is much more

difficult; therefore, it is desirable to find a region where the zeros will lie. This
study in the field of complex numbers began a long time ago with the Fundamental
Theorem of Algebra. The Fundamental Theorem of Algebra only gives information
about the number of zeros in a polynomial but not about the location of the zeros.
The problem of finding a region containing all the zeros of a polynomial in the field
of complex numbers C have a rich old history [26]. In 1829, Cauchy [26] introduced
the following classical result.

Theorem A. [26] If P (z) =
∑n

t=0 atz
t is a polynomial of degree n in C with

complex coefficients, then all the zeros of P (z) lie in |z| ≤ 1 + max
0≤t≤(n−1)

| at
an
|.
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Several improvements of Theorem A by many researchers were found in [12,
15, 19, 25]. Joyal et al. [16] proved the following theorem as an improvement of
Theorem A:

Theorem B. [16] If P (z) =
∑n

t=0 atz
t (an = 1) is a polynomial of degree n and

β = max
0≤t<n−1

|at|, then all the zeros of P (z) lie in

|z| ≤ 1

2

{
1+|an−1|+

√
(1−|an−1|)2 + 4β

}
.

This theorem does not improve Theorem A when β =|an−1|. Datt and Govil [11]
proved the following result, which is an improvement of Theorem A even if β =
|an−1|.
Theorem C. [11] If P (z) =

∑n
t=0 atz

t (an = 1) is a polynomial of degree n and if
A = max

0≤t≤n−1
|at|, then P (z) has all its zeros in the ring shaped region

|a0|
2(1 + A)n−1.(nA+ 1)

≤|z| ≤ 1 +

(
1− 1

(1 + A)n

)
A.

Molla and Datta [24] introduced the subsequent theorem, enhancing both The-
orems A and B and Theorem C in specific circumstances.

Theorem D. [24] Let P (z) = anz
n + an−1z

n−1 + ...+ a1z + a0 be a polynomial of
degree n > 1 with M1 = max {|a2 − a1|, |a3 − a2|, ..., |an − an−1|, |an|} and M2 =
max {|a0|, |a1 − a0|, ..., |an−1 − an−2|}.Then all the zeros of P (z) are contained in
the ring shaped region R1 ≤|z| ≤ R2 where

R1 =
2|a0|

|a0|+ |a1 − a0|+
√
(|a0| − |a1 − a0|)2 + 4|a0|M1

,

R2 =
1

2|an|

{
|an|+|an − an−1|+

√
(|an|−|an − an−1|)2 + 4|an|.M2

}
.

In a different manner, G. Enström and S. Kakeya [14] introduced the following
result known as Enström-Kakeya theorem.

Theorem E. [14] If P (z) =
∑n

t=0 atz
t is a complex polynomial of degree n with

real coefficients satisfying 0 ≤ a0 ≤ a1 ≤ ... ≤ an, then all the zeros of P (z) lie in
|z| ≤ 1.

Many results on the generalization of Theorem E for complex polynomials can
be found in [2-4, 8, 13, 14, 16, 17]. Although full-fledged extensions of Theorems
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A and E are not available in bicomplex settings, a partial reflection of the same is
seen in [10, 23].

The primary concern of this paper is to revisit Theorems A and E for bicomplex
polynomials. Further, some examples are provided to validate the results obtained.
We do not explain the standard definitions and notations in the theory of bicomplex
analysis because they are available in [20, 21, 27].

2. Preliminary Definitions and Notations
To think of the extension of complex numbers in four-dimensional settings to

solve various problems in physics that could not be solved in three dimensions,
W.R. Hamilton introduced quaternions in 1844 [22] by considering three anticom-
muting imaginary units i, j & k such that ij = k. However, because of a lack of
commutativity, many difficulties arise when one attempts to extend theories of the
holomorphicity of one complex variable to the skew field of quaternions. Bicom-
plex numbers are compatible four-dimensional extensions of complex numbers and
have been used in numerous fields such as digital image processing, geometry, and
theoretical physics [1, 5, 29]. In 1892, Segre [27] defined set of bicomplex numbers
as C2 = {z : z = z1 + jz2, z1, z2 ∈ C} where ij = ji = k and i2 = j2 = −k2 = −1.

Defining addition and multiplication on C2 in a manner similar to that on C, it
is observed that multiplication is commutative, associative, and distributive over
addition and makes C2 a commutative algebra [27]. However, C2 is not a field
because of the presence of zero-divisors [27], namely the set

O = {z1 + jz2 ∈ C2 : z
2
1 + z22 = 0} = {a(1± ij) : a ∈ C}.

An element z1 + jz2 ∈ C2 is called non-singular if z1 + jz2 /∈ O [22].

2.1. Idempotent Representation [27]
The bicomplex numbers e1 = 1+ij

2
, e2 = 1−ij

2
are linearly independent in the

C- linear space C2 and e1 + e2 = 1, e1 − e2 = ij, e1.e2 = 0, e21 = e1, e
2
2 = e2.

Any number z = z1 + jz2 ∈ C2 can be written uniquely as z = ω1e1 + ω2e2
where ω1 = z1 − iz2 & ω2 = z1 + iz2. This representation is called the idempotent
representation of z.

2.2. Auxiliary Complex Spaces [20]
The complex spacesA1 = {ω1 : ω1 = z1−iz2, z1, z2 ∈ C} and A2 = {ω2 : ω2 =

z1+iz2, z1, z2 ∈ C} are called auxiliary complex spaces. Spaces A1 and A2 contain
the same elements as in C. However, the convenient notations A1 and A2 are used
for the special representation of elements. Each point z1 + jz2 = ω1e1 + ω2e2 ∈ C2

associates the points ω1 ∈ A1 and ω2 ∈ A2. In addition, for each pair of points
(ω1, ω2) ∈ A1 × A2 there is a unique point in C2.



52 South East Asian J. of Mathematics and Mathematical Sciences

2.3. Cartesian Product [20]
C2-cartesian set determined by X1 ⊆ A1 and X2 ⊆ A2 is defined as follows:

X1 ×e X2 := {z1 + jz2 ∈ C2 : z1 + jz2 = ω1e1 + ω2e2, (ω1, ω2) ∈ X1 ×X2}.

2.4. Euclidean Norm [27]
The Euclidean norm function ∥∥ : C2 → R+ (R+ denote the set of all non

negative real numbers) is defined as follows:
If z = z1 + jz2 = ω1e1 + ω2e2 ∈ C2, then

∥z∥ = {|z1|2+|z2|2}
1
2 =

{
|ω1|2+|ω2|2

2

} 1
2

.

This norm function has the following properties [27]:
If a ∈ C, z = z1 + jz2 = ω1e1 + ω2e2 & w = w1 + jw2 ∈ C2, then

i. ∥az∥ =|a|.∥z∥.

ii. ∥w + z∥ ≤∥w∥+∥z∥.

iii. ∥wz∥ ≤
√
2∥w∥.∥z∥.

iv. {
|ω1|
|ω2|

≤
√
2∥z∥ ≤|ω1|+|ω2|.

2.5. C2-Open Discus [20]
An open discus D(a; r1, r2) with centre a = a1e1 + a2e2 and radii r1 > 0, r2 > 0

is defined as
D(a; r1, r2) = B1(a1, r1)×e B1(a2, r2)

= {ω1e1 + ω2e2 ∈ C2 :|ω1 − a1| < r1, |ω2 − a2| < r2}
where B1(z, r) is an open ball with center z ∈ C and radius r > 0.

2.6. C2-Closed Discus [20]
A closed discus D̄(a; r1, r2) with centre a = a1e1 + a2e2 and radii r1 > 0, r2 > 0

is defined by
D̄(a; r1, r2) = B̄1(a1, r1)×e B̄1(a2, r2)

= {ω1e1 + ω2e2 ∈ C2 :|ω1 − a1| ≤ r1, |ω2 − a2| ≤ r2}
where B̄1(z, r) is a closed ball with center z ∈ C and radius r > 0.
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2.7. Zeros of a bicomplex polynomial
Let P (z) =

∑n
t=0 atz

t be a bicomplex polynomial of degree n with z = z1+jz2 =
ω1e1 + ω2e2 and at = αte1 + βte2, t = 0, 1, 2, ..., n. Therefore, P (z) can be written
as [28]

P (z) =
n∑

t=0

αtω
t
1e1 +

n∑
t=0

βtω
t
2e2

= ϕ(ω1)e1 + ψ(ω2)e2.

The set S of zeros of P (z) is fully described by the sets S1 & S2 of distinct zeros
of respective polynomials ϕ(ω1) & ψ(ω2) i.e, S = S1e1 + S2e2 [28].

Example 2.1. Let P (z) = z3 − 1, z = z1 + jz2.
The associated complex polynomials are ϕ(ω1) = ω3

1 − 1 & ψ(ω2) = ω3
2 − 1.

The set of zeros of ϕ(ω1) & ψ(ω2) are

S1 = {ω1
1 = 1, ω2

1 = −1

2
+ i

√
3

2
, ω3

1 = −1

2
− i

√
3

2
},

S2 = {ω1
2 = 1, ω2

2 = −1

2
+ i

√
3

2
, ω3

2 = −1

2
− i

√
3

2
}.

Hence, the set of 9 zeros of the bicomplex polynomial P (z) of degree 3 is S =
{ωt

1e1 + ωt
2e2 : t = 1, 2, 3}.

Bicomplex polynomials can exhibit unusual behavior, such as having no zeros
within the bicomplex domain or having a finite or infinite number of zeros. To
address this complexity, it is crucial to first state an analogue of the Fundamental
Theorem of Algebra tailored for bicomplex polynomials [6].

Theorem 2.1. [6] Consider a bicomplex polynomial P (z) =
∑n

t=0 atz
t of degree n

with at = αte1+βte2, t = 0, 1, 2, ..., n. If all the coefficients aj with the exception
of the free term a0 = α0e1 + β0e2 are complex multiples of e1 (respectively e2), but
a0 has β0 ̸= 0 (respectively α0 ≠= 0), then P (z) has no roots. In all other cases,
P (z) has at least one root.

Examining the distribution of zeros in bicomplex polynomials, especially com-
pared to complex polynomials, poses unique challenges. Motivated by this, the
study presents results that predict the distribution of these zeros.

3. Theorems
In this section, the main results of the study are presented.

Theorem 3.1. Let P (z) =
∑n

t=0(at + jbt)z
t be a bicomplex polynomial of degree

n with z = ω1e1 + ω2e2 and at least one at + jbt /∈ O for t ≥ 1. If |ap − ibp| ̸= 0,
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|aq + ibq| ≠ 0 for the greatest positive integers p, q ≤ n, then all the zeros of P (z)
lie in the annular region{
z = ω1e1 + ω2e2 ∈ C2 :

|a0−ib0|
|a0−ib0|+M2

≤|ω1| ≤ 1 + M1
|ap−ibp| ,

|a0+ib0|
|a0+ib0|+M4

≤|ω2| ≤ 1 + M3
|aq+ibq |

}
where M1 = max

0≤t≤p−1
{|at − ibt|}, M2 = max

1≤t≤p
{|at − ibt|}, M3 = max

0≤t≤q−1
{|at +

ibt|}, M4 = max
1≤t≤q

{|at + ibt|}.
Proof. Taking At = at − ibt & Bt = at + ibt, P (z) can be written as

P (z) =
n∑

t=0

(Ate1 +Bte2)(ω1e1 + ω2e2)
t

=
n∑

t=0

(Ate1 +Bte2)(ω
t
1e1 + ωt

2e2)

=

p∑
t=0

Atω
t
1e1 +

q∑
t=0

Btω
t
2e2

= ϕ(ω1)e1 + ψ(ω2)e2

where ϕ(ω1) =

p∑
t=0

Atω
t
1 ∈ A1 & ψ(ω2) =

q∑
t=0

Btω
t
2 ∈ A2.

Now, it follows for |ω1| > 1 that

|ϕ(ω1)| ≥|Apω
p
1|−|Ap−1ω

p−1
1 + Ap−2ω

p−2
1 + ...+ A0|

≥|Ap||ω1|p −
(
|Ap−1||ω1|p−1+|Ap−2||ω1|p−2 + ...+|A0|

)
=|Ap||ω1|p−|ω1|p−1

(
|Ap−1|+

|Ap−2|
|ω1|

+ ...+
|A0|

|ω1|p−1

)
≥|Ap||ω1|p−|ω1|p−1.M1

(
1 +

1

|ω1|
+ ...+

1

|ω1|p−1

)
where M1 = max

0≤t≤p−1
{|At|}

≥|Ap||ω1|p−|ω1|p−1.M1

∞∑
t=0

1

|ω1|t

=|Ap||ω1|p−|ω1|p−1.M1.
1

1− 1
|ω1|

=|ω1|p
(
|Ap| −

M1

|ω1| − 1

)
Hence, we obtain for |ω1| > 1 that

|ϕ(ω1)| > 0 if |Ap| − M1

|ω1|−1
> 0
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i.e, |ϕ(ω1)| > 0 if |ω1| > 1 + M1

|Ap| .

Therefore, no zeros of ϕ(ω1) in |ω1| > 1 in the auxiliary space A1 lie in

|ω1| > 1 +
M1

|Ap|
.

Consequently, all the zeros of ϕ(ω1) in the auxiliary space A1 are contained in

|ω1| ≤ 1 +
M1

|Ap|
.

Again, let ϕ1(ω1) = ωp
1ϕ(

1
ω1
) = A0ω

p
1 + A1ω

p−1
1 + A2ω

p−2
1 + ...+ Ap.

Then, we get for |ω1| > 1 that

|ϕ1(ω1)| ≥|A0ω
p
1|−|A1ω

p−1
1 + A2ω

p−2
1 + ...+ Ap|

≥|A0||ω1|p −
(
|A1||ω1|p−1+|A2||ω1|p−2 + ...+|Ap|

)
=|A0||ω1|p−|ω1|p−1

(
|A1|+

|A2|
|ω1|

+ ...+
|Ap|

|ω1|p−1

)
≥|A0||ω1|p−|ω1|p−1.M2

(
1 +

1

|ω1|
+ ...+

1

|ω1|p−1

)
where M2 = max

1≤t≤p
{|At|}

≥|A0||ω1|p−|ω1|p−1.M2

∞∑
t=0

1

|ω1|t

=|A0||ω1|p−|ω1|p−1.M2.
1

1− 1
|ω1|

=|ω1|p
(
|A0| −

M2

|ω1| − 1

)
Hence, it follows for |ω1| > 1 that

|ϕ1(ω1)| > 0 if |A0| − M2

|ω1|−1
> 0

i.e, |ϕ1(ω1)| > 0 if |ω1| > 1 + M2

|A0|
i.e, |ϕ( 1

ω1
)| > 0 if |ω1| > 1 + M2

|A0| .

Consequently, we obtain for |ω1| < 1 that |ϕ(ω1)| > 0 if |ω1| < 1

1+
M2
|A0|

.

Therefore, all the zeros of ϕ(ω1) in |ω1| < 1 in the auxiliary space A1 lie in

|ω1| ≥
1

1 + M2

|A0|
.
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Finally, the annular region containing all the zeros of ϕ(ω1) in A1 is

1

1 + M2

|A0|
≤|ω1| ≤ 1 +

M1

|Ap|
.

Calculating in a similar fashion, it is observed that all the zeros of ψ(ω2) in the
auxiliary space A2 lie in

1

1 + M4

|B0|
≤|ω2| ≤ 1 +

M3

|Bq|
.

Thus the theorem is established.

Remark 3.1. If all coefficients of the polynomial P (z) are simultaneously multiples
of e1 or e2, then either ϕ(ω1) or ψ(ω2) vanishes identically. In this scenario, P (z)
has an uncountable number of zeros that are not isolated. Consequently, no bounded
region containing all zeros of P (z) can be identified.

Remark 3.2. The following example justifies the validity of Theorem 3.1.

Example 3.1. Let P (z) = 3(1 + ij)z3 + z2 − 2(1− ij)z − 1, z = z1 + jz2.
Then, we obtain by taking z = ω1e1+ω2e2 that ϕ(ω1) = 6ω3

1 +ω1− 1 and ψ(ω2) =
ω2
2 − 4ω2 − 1.

Here, |a0 − ib0| = 1, |ap − ibp| = 6, |a0 + ib0| = 1, |aq + ibq| = 1, M1 = 1, M2 =
6, M3 = 4 & M4 = 4.
Hence, by Theorem 3.1, the annular region containing all the zeros of P (z) is{

z = ω1e1 + ω2e2 ∈ C2 :
1

7
≤|ω1| ≤ 1 +

1

6
,
1

5
≤|ω2| ≤ 5

}
.

Clearly, the zeros of ϕ(ω1) in A1 are −1
2
, ± 1√

3
and the zeros of ψ(ω2) in A2 are

2±
√
5.

Hence, the six zeros of P (z) in C2 are −1
2
e1 + (2±

√
5)e2, ± 1√

3
e1 + (2±

√
5)e2.

Remark 3.3. For complex polynomials, Theorem 3.1 provides an improvement
in the lower bound for the moduli of the zeros in Theorem A, as well as in both
Theorem B, Theorem C, and Theorem D, even if β = |an−1|. Taking P (z) =
z5 + 2z4 − z3 + 2z2 − z + 1, the sharpness of Theorem 3.1 is demonstrated in the
following table.
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Sl. no. Theorem Bounds for zeros of P (z)
1 Theorem 3.1 0.33 ≤|z| ≤ 3
2 Theorem A |z| ≤ 3
3 Theorem B |z| ≤ 3
4 Theorem C 0.00056 ≤|z| ≤ 2.99
5 Theorem D 0.303 ≤|z| ≤ 2.73

A bicomplex version of the Enström-Kakeya theorem is established in the next
result.

Theorem 3.2. If P (z) =
∑n

t=0 atz
t is a bicomplex polynomial of degree n with

real coefficients satisfying 0 ≤ a1 ≤ a2 ≤ ... ≤ an, then all the zeros of P (z) are
contained in the closed discus D̄(0; 1, 1).
Proof. Consider a bicomplex polynomial Q defined by the equation

(1− z)P (z) = (1− z)
n∑

t=0

atz
t

= a0 + (a1 − a0)z + (a2 − a1)z
2 + ...+ (an − an−1)z

n − anz
n+1

= Q(z)− anz
n+1. (1)

Clearly, for z = ω1e1 + ω2e2,

Q(z) = {a0 + (a1 − a0)ω1 + (a2 − a1)ω
2
1 + ...+ (an − an−1)ω

n
1 }e1+

{a0 + (a1 − a0)ω2 + (a2 − a1)ω
2
2 + ...+ (an − an−1)ω

n
2 }e2

= Q1(ω1)e1 +Q2(ω2)e2. (2)

Now, it follows for |ω1| = 1 that

∣∣∣∣ωn
1Q1

(
1

ω1

)∣∣∣∣ = |a0ωn
1 + (a1 − a0)ω

n−1
1 + ...+ (an−1 − an−2)ω1 + (an − an−1)|

≤|a0||ω1|n + |a1 − a0||ω1|n−1 + ...+ |an−1 − an−2||ω1|+ |an − an−1|
= a0 + (a1 − a0) + ...+ (an−1 − an−2) + (an − an−1)

= an.

Clearly, ωn
1Q1(

1
ω1
) is holomorphic in |ω1| ≤ 1; hence, considering the maximum
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modulus principle in C, ∣∣∣∣ωn
1Q1

(
1

ω1

)∣∣∣∣ ≤ an for |ω1| ≤ 1

i.e,

∣∣∣∣Q1

(
1

ω1

)∣∣∣∣ ≤ an
|ω1|n

for |ω1| ≤ 1

i.e, |Q1(ω1)| ≤ an|ω1|n for |ω1| ≥ 1.

Similarly, we obtain for |ω2| ≥ 1 that
|Q2(ω2)| ≤ an|ω2|n.

From (1) & (2), we get that

∥(1− z)P (z)∥ =∥{Q1(ω1)− anω
n+1
1 }e1 + {Q2(ω2)− anω

n+1
2 }e2∥.

Hence, in view of the property of the C2-norm, it follows for |ω1| ≥ 1 that

∥(1− z)P (z)∥ ≥ 1√
2
|Q1(ω1)− anω

n+1
1 |

≥ 1√
2
{an|ω1|n+1 − an|ω1|n}

=
1√
2
an|ω1|n(|ω1| − 1)

and for |ω2| ≥ 1,

∥(1− z)P (z)∥ ≥ 1√
2
an|ω2|n(|ω2| − 1).

Thus, for z = ω1e1 + ω2e2 ∈ C2 such that |ω1| > 1 & |ω2| > 1, (1− z)P (z) ̸= 0.

Consequently, all the zeros of P (z) lie in the closed discus D̄(0; 1, 1).

Remark 3.4. The following example ensures the validity of Theorem 3.2.

Example 3.2. Let P (z) = 1 + 2z + 3z2, z = z1 + jz2.

All the zeros of P (z) are
(

−1±
√
2i

3

)
e1 +

(
−1±

√
2i

3

)
e2.

Clearly, all the zeros of P (z) are contained in the closed discus D̄(0; 1, 1).

3. Future prospect
In line with the work carried out in this paper, one may think of the extension

of the results obtained by dealing with n-dimensional bicomplex numbers with
the help of the idempotents 0, 1, 1±i1i2

2
, 1±i2i3

2
, ..., 1±in−1in

2
in Cn. Consequently, the

problem of taking the coefficients of the power series in Cn is still a virgin and may
be considered an open problem for future researchers in this branch.
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[28] Pogorui, A. A., Rodŕıguez-Dagnino, R. M., On the set of zeros of bicom-
plex polynomials, Complex Variables and Elliptic Equations, 51(7) (2006),
725–730.

[29] Yasarsoy, S., Acikgoz, M. and Duran, U., A Study on the k-Jacobsthal and k-
Jacobsthal-Lucas Quaternions and Octonions, Journal of Analysis and Num-
ber Theory, 6(2) (2018), 1-7.



62 South East Asian J. of Mathematics and Mathematical Sciences

Th
is
pa
ge
in
te
nt
io
na
lly
lef
t b
la
nk
.


