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Abstract: The purpose of this work is to introduce and study new subclasses
of analytic functions using a new q-derivative operator. This operator generalizes
the operators introduced by Al-Oboudi, Catas, Cho and Kim, Cho and Srivastava,
Maslina Darus and R W Ibrahim, Sǎlǎgean, Uralegaddi and Somanatha. We inves-
tigate coefficient bounds, growth, distortion and closure theorems for the functions
belonging to these classes. We also give a result which unifies radii of close-to-
convexity, starlikeness and convexity.
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1. Introduction
We begin by denoting by S the class of functions f(z) of the form

f(z) = z +
∞∑
k=2

akz
k (1.1)
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which are analytic and univalent in the open unit disc U = {z : z ∈ C and |z| < 1} .
First we briefly recall the notation of q-derivative operator which plays vital role

in the theory of hypergeometric series, quantum physics and in the operator theory.
Many known researchers and applied scientists have made valuable contributions in
the modifications of the q-calculus and generalizations. In recent years extensions
and generalization of q-calculus have witnessed a significant evolution, due to large
range of application many researchers have explored q-calculus in depth. The first
application and usage of the q-calculus was introduced by Jackson [12], [13].
For a function f(z) ∈ S the Jackson’s q-derivative is defined as [11]

Dqf(z) =
f(z)− f(qz)

(1− q)z
, (z ̸= 0, 0 < q < 1). (1.2)

From equation (1.2) it is clear that if f(z) and g(z) are two functions, then

Dq(f(z) + g(z)) = Dqf(z) +Dqg(z). (1.3)

Dq(cf(z)) = cDqf(z). (1.4)

We note that Dqf(z) → f ′(z) as q → 1−, where f ′(z) is the ordinary derivative of
the function f(z). Further by (1.2) the q-derivative of the function h(z) = zk is as
follows:

Dqh(z) = [k]qz
k−1 (1.5)

where [k]q is given as:

[k]q =
1− qk

1− q
(0 < q < 1). (1.6)

Note that [k]q → k as q → 1−, therefore in view of equation (1.5), Dqh(z) = h′(z)
as q → 1−, where h′(z) denotes the ordinary derivative of the function h(z) with
respect to z.
The q-derivative of the function f(z), given by equation (1.1) is defined as

Dqf(z) = 1 +
∞∑
k=2

[k]qakz
k−1 (0 < q < 1) (1.7)

where [k]q is given by (1.6).
Motivated by the earlier investigations [1, 2, 14, 15, 21] and with the aid of the
Jackson q-derivative, we define the new operator Dn

δ,λ,l,qf(z). For f(z) ∈ S, 0 <
q < 1, δ, λ, l ≥ 0, n ∈ N0 = N ∪ {0}.
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D0
δ,λ,l,qf(z) = f(z).

D1
δ,λ,l,qf(z) = (l + δ − λ)f(z) + (1− δ + λ)zDqf(z) = Dδ,λ,l,qf(z).

.

.

.
Dn

δ,λ,l,qf(z) = Dδ,λ,l,q(Dn−1
δ,λ,l,qf(z)).

Dn
δ,λ,l,qf(z) = z +

∞∑
k=2

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
akz

k. (1.8)

Note that as q → 1− we obtain the differential operator studied by Latha and Shilpa
in [16]. As q → 1− and for suitable choices of parameters Dn

δ,λ,l,qf(z) reduces to
various operators studied by many authors Al-oboudi [3], Catas [6], Cho and Kim
[7], Cho and Srivastava [8], Maslina Darus and Rabha W Ibrahim [9], Sǎlǎgean
[19], Uralegaddi and Somanatha [22].

Making use of the new q-derivative operator Dn
δ,λ,l,qf(z) we introduce a new

subclass of analytic functions as follows.

Definition 1.1. A function f(z) ∈ S is said to be in the class Ln(δ, λ, l, q, α, β, γ)
if it satisfies the following condition

ℜ

{
zDq(D

n
δ,λ,l,qf(z))

(1− γ)Dn
δ,λ,l,qf(z) + γzDq(Dn

δ,λ,l,qf(z))
− α

}
(1.9)

> β

∣∣∣∣∣ zDq(D
n
δ,λ,l,qf(z))

(1− γ)Dn
δ,λ,l,qf(z) + γzDq(Dn

δ,λ,l,qf(z))
− 1

∣∣∣∣∣
where 0 < q < 1,−1 ≤ α ≤ 1, β ≥ 0, 0 ≤ γ < 1, z ∈ U .

Let T ⊂ S denote the family of functions defined in the open unit disc U ,
introduced and studied by Silverman [20] which are of the form

f(z) = z −
∞∑
k=2

akz
k, ak ≥ 0. (1.10)

We further let T Ln(δ, λ, l, q, α, β, γ) = Ln(δ, λ, l, q, α, β, γ) ∩ T .
By specializing the parameters we can obtain several subclasses studied in [3], [4],
[5], [10] and [18].
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2. Main Results
We assume that −1 ≤ α < 1, β ≥ 0, 0 < q < 1, n ∈ N0, 0 ≤ γ <

1, f(z) ∈ T and z ∈ U
Theorem 2.1. A function f(z) ∈ T Ln(δ, λ, l, q, α, β, γ) if and only if

∞∑
k=2

{[k]q(1+β)−(α+β)[1+γ([k]q−1)]}
[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
ak ≤ 1−α.

(2.1)
Proof. First we assume that (2.1) holds. Then it is sufficient to show that

β

∣∣∣∣∣ zDq(D
n
δ,λ,l,qf(z))

(1− γ)Dn
δ,λ,l,qf(z) + γzDq(Dn

δ,λ,l,qf(z))
− 1

∣∣∣∣∣
−ℜ

{
zDq(D

n
δ,λ,l,qf(z))

(1− γ)Dn
δ,λ,l,qf(z) + γzDq(Dn

δ,λ,l,qf(z))
− 1

}
≤ 1− α.

Note that

β

∣∣∣∣∣ zDq(D
n
δ,λ,l,qf(z))

(1− γ)Dn
δ,λ,l,qf(z) + γzDq(Dn

δ,λ,l,qf(z))
− 1

∣∣∣∣∣
−ℜ

{
zDq(D

n
δ,λ,l,qf(z))

(1− γ)Dn
δ,λ,l,qf(z) + γzDq(Dn

δ,λ,l,qf(z))
− 1

}

≤ (1 + β)

∣∣∣∣∣ zDq(D
n
δ,λ,l,qf(z))

(1− γ)Dn
δ,λ,l,qf(z) + γzDq(Dn

δ,λ,l,qf(z))
− 1

∣∣∣∣∣
≤

(1 + β)
∞∑
k=2

([k]q − 1)(1− γ)

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
ak

1−
∞∑
k=2

[1 + γ([k]q − 1)]

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
ak

.

The last expression is bounded above by (1− α) since (2.1) holds.
Conversely if f(z) ∈ T Ln(δ, λ, l, q, α, β, γ) and z is real, then

1−
∞∑
k=2

[k]q

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
akz

k−1

1−
∞∑
k=2

[1 + γ([k]q − 1)]

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
akz

k−1

− α
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≥ β

∣∣∣∣∣∣∣∣∣∣

∞∑
k=2

([k]q − 1)(1− γ)

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
akz

k−1

1−
∞∑
k=2

[1 + γ([k]q − 1)]

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
akz

k−1

∣∣∣∣∣∣∣∣∣∣
.

Letting z → 1− along the real axis, we get the desired inequality (2.1). Which
completes the proof.

Corollary 2.2. For f(z) ∈ T Ln(δ, λ, l, q, α, β, γ), we have

ak ≤
1− α

{[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n , (k ≥ 2).

and

f(z) = z − 1− α

{[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n zk, (k ≥ 2)

(2.2)
gives the sharpness.

3. Growth and Distortion Theorems

Theorem 3.1. Let f(z) ∈ T Ln(δ, λ, l, q, α, β, γ). Then for 0 ≤ i ≤ n,∣∣Di
δ,λ,l,qf(z)

∣∣ ≥ |z| − 1− α

{[2]q(1 + β)− (α + β)(1 + γq)}
[
1 + (1−δ+λ

l+1
)q
]n−i |z|

2 (3.1)

and∣∣Di
δ,λ,l,qf(z)

∣∣ ≤ |z|+ 1− α

{[2]q(1 + β)− (α + β)(1 + γq)}
[
1 + (1−δ+λ

l+1
)q
]n−i |z|

2. (3.2)

The equalities in (3.1) and (3.2) are attained for

f(z) = z − 1− α

{[2]q(1 + β)− (α + β)(1 + γq)}
[
1 + (1−δ+λ

l+1
)q
]n−i z

2. (3.3)

Proof. We have f(z) ∈ T Ln(δ, λ, l, q, α, β, γ) if and only if
Di

δ,λ,l,qf(z) ∈ T Ln−i(δ, λ, l, q, α, β, γ) where

Di
δ,λ,l,qf(z) = z −

∞∑
k=2

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]i
akz

k (3.4)
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By Theorem 2.1, we have

{[2]q(1+β)−(α+β)(1+γq)}
[
1 +

(
1− δ + λ

l + 1

)
q

]n−i ∞∑
k=2

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]i
ak

(3.5)

≤ 1− α

that is,
∞∑
k=2

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]i
ak (3.6)

≤ 1− α

{[2]q(1 + β)− (α + β)(1 + γq)}
[
1 + (1−δ+λ

l+1
)q
]n−i .

From (3.4) and (3.6) it follows that

|Di
δ,λ,l,qf(z)| ≥ |z| − |z|2

∞∑
k=2

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]i
ak (3.7)

≥ |z| − 1− α

{[2]q(1 + β)− (α + β)(1 + γq)}
[
1 + (1−δ+λ

l+1
)q
]n−i |z|

2

and

|Di
δ,λ,l,qf(z)| ≤ |z|+ |z|2

∞∑
k=2

[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]i
ak (3.8)

≤ |z|+ 1− α

{[2]q(1 + β)− (α + β)(1 + γq)}
[
1 + (1−δ+λ

l+1
)q
]n−i |z|

2.

note that the bounds in (3.1) and (3.2) are attained for f(z) defined by

Di
δ,λ,l,qf(z) = z − 1− α

{[2]q(1 + β)− (α + β)(1 + γq)}
[
1 + (1−δ+λ

l+1
)q
]n−i z

2, (z ∈ U).

(3.9)
Hence the proof is completed.

4. Closure Theorems
Let fi(z) be defined, for i = 1, 2, 3, ..,m, by

fi(z) = z −
∞∑
k=2

ak,iz
k (ak,i ≥ 0, z ∈ U). (4.1)
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Theorem 4.1. Let fi(z) ∈ T Ln(δ, λ, l, q, α, β, γ) for i = 1, 2, 3, ...,m. Then

g(z) =
m∑
i=1

cifi(z), (4.2)

is also in the same class, where ci ≥ 0,
m∑
i=1

ci = 1

Proof. Using (4.2), we have

g(z) = z −
∞∑
k=2

(
m∑
i=1

ciak,i

)
zk. (4.3)

Further, since fi(z) ∈ T Ln(δ, λ, l, q, α, β, γ), we get

∞∑
k=2

{[k]q(1+β)−(α+β)(1+γ([k]q−1))}
[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
ak,i ≤ 1−α.

(4.4)
Hence

∞∑
k=2

{[k]q(1+β)−(α+β)(1+γ([k]q−1))}
[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n( m∑
i=1

ciak,i

)

=
m∑
i=1

ci

[ ∞∑
k=2

{[k]q(1 + β)− (α+ β)(1 + γ(kq − 1))}
[
(l + δ − λ) + (1− δ + λ)[k]q

l + 1

]n
ak,i

]

≤

(
m∑
i=1

ci

)
(1− α) = 1− α, (4.5)

which implies that g(z) ∈ T Ln(δ, λ, l, q, α, β, γ). This completes the proof.

Theorem 4.2. Let f1(z) = z and

fk(z) = z− 1− α

{[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n zk, (k ≥ 2)

(4.6)
then f(z) ∈ T Ln(δ, λ, l, q, α, β, γ) if and only if

f(z) =
∞∑
k=1

µkfk(z), (4.7)



44 South East Asian J. of Mathematics and Mathematical Sciences

where µk ≥ 0(k ≥ 1) and
∞∑
k=1

µk = 1.

Proof. Suppose that

f(z) =
∞∑
k=1

µkfk(z) (4.8)

= z −
∞∑
k=2

1− α

{[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n zk
then it follows that

∞∑
k=2

{[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n
1− α

.

1− α

{[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]nµk

=
∞∑
k=2

µk = 1− µ1 ≤ 1. (4.9)

By Theorem 2.1, f(z) ∈ T Ln(δ, λ, l, q, α, β, γ).
Conversely, assume that f(z) ∈ T Ln(δ, λ, l, q, α, β, γ). Then

ak ≤
1− α

{[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n (k ≥ 2). (4.10)

Setting

µk =
{[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}

[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n
1− α

(k ≥ 2). (4.11)

and

µ1 = 1−
∞∑
k=2

µk, (4.12)

note that f(z) can be expressed in the form (4.7). Hence the proof.
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5. Some radii for the class T Ln(δ, λ, l, q, α, β, γ)

Theorem 5.1. Let f(z) ∈ Ln(δ, λ, l, q, α, β, γ). Then for 0 ≤ ρ < 1, k ≥ 2, f(z) is
(i). Close -to-convex of order ρ in |z| < r1, where

r1 = r1(δ, λ, l, q, α, β, γ, ρ) : (5.1)

= infk

(1− ρ) {[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n
k(1− α)


1

k−1

.

(ii). Starlike of order ρ in |z| < r2, where

r2 = r2(δ, λ, l, q, α, β, γ, ρ) : (5.2)

= infk

(1− ρ) {[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n
(k − ρ)(1− α)


1

k−1

.

(iii). Convex of order ρ in |z| < r3, where

r3 = r3(δ, λ, l, q, α, β, γ, ρ) : (5.3)

= infk

(1− ρ) {[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n
k(k − ρ)(1− α)


1

k−1

.

The result is sharp, for f(z) given by (2.2).
Proof. To prove (i) we must show that

|f ′(z)− 1| ≤ 1− ρ

for |z| < r1(δ, λ, l, q, α, β, γ, ρ)

From (1.10), we have |f ′(z)− 1| ≤
∞∑
k=2

kak|z|k−1.

Thus |f ′(z)− 1| ≤ 1− ρ, if

∞∑
k=2

k

1− ρ
ak|z|k−1 ≤ 1. (5.4)



46 South East Asian J. of Mathematics and Mathematical Sciences

But, by Theorem 2.1, (5.4) will be true if(
k

1− ρ

)
|z|k−1 ≤

[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n
1− α

that is, if

|z| ≤

(1− ρ) {[k]q(1 + β)− (α + β)[1 + γ([k]q − 1)]}
[
(l+δ−λ)+(1−δ+λ)[k]q

l+1

]n
k(1− α)


1

k−1

(5.5)
which gives (5.1). To prove (ii) and (iii) we have to show that∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ 1− ρ (5.6)

for |z| < r2, ∣∣∣∣zf ′′(z)

f ′(z)
− 1

∣∣∣∣ ≤ 1− ρ

for |z| < r3, respectively, by using arguments as in (i).

Remark 5.2. By taking l = 0, α = 1 and as q → 1− we obtain the results in
[17].

6. Conclusion
q-calculus has significant importance and applications in various fields of Science

and Engineering. In this paper we introduce and study new subclasses of analytic
functions using q-derivative operator. We find the coefficient bounds, growth, dis-
tortion and closure theorems for the functions belonging to these classes. Also we
obtain a result which unifies radii of close-to-convexity, starlikeness and convexity.
The results obtained from this study will enrich the theoretical foundation of this
field and open new avenues for mathematical inquiry and applications. The results
would generalize and improve the earlier results by several authors.
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