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Abstract: We use the Kempf et al. (2014 & 2015) process of integration by
differentiation to obtain the Lanczos generalized derivative, and we give a simple
deduction of the Rangarajan—-Purushothaman’s formula for the orthogonal deriva-
tive for higher orders. Besides, we show that the Lanczos derivative allows deduce
an interesting algebraic expression for the first derivative of a function.

Keywords and Phrases: Differentiation by integration, Integration by differen-
tiation, Lanczos derivative, Legendre polynomials, Orthogonal derivative.

2020 Mathematics Subject Classification: 26A24, 26A42, 33C45, 65D25.



32 South FEast Asian J. of Mathematics and Mathematical Sciences

1. Introduction
Kempf et al. [8, 9] show how to obtain a definite integral via differentiation, in
fact, they find the interesting expression:

/abF(:c)d:c — lim F (%) {@} (1)

Here we give an elementary proof of (1), and we use it to deduce the Cioranescu-
(Haslam-Jones)- Lanczos generalized derivative [2, 3, 5-7, 10, 11}

f'(xg) = lim 3 /_6 f(v+ xo)vdv, (2)
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which represents differentiation via integration [3, 5, 7, 11, 12]. This Lanczos
derivative for higher orders was studied by the several authors [4, 13, 15] via Leg-
endre polynomials, here we show a simple deduction of their corresponding formula.
Besides, we exhibit that (2) gives an algebraic expression to determine f’(x).

2. Expression of Kempf et al.
We have

Then
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Hence (1) is immediate.



On the Lanczos Orthogonal Derivative 33

Now, we apply (1) for the case F(z) = xf(x + o) with a = —b = —¢ and
therefore, we have
bt at 2 4

— =2 <1+§t2+;t4+-“)’ F(x) = f(xo)a+['(wo)a? +1f”($o> R

Thus from (1), we get
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Then it is evident the expression (2):
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which coincides with the Lanczos orthogonal derivative [2, 3, 5-7, 10, 11]. The
relation (1) represents integration by differentiation, but (2) expresses the inverse
process, that is, differentiation by integration.

3. Generalized Derivative for Higher Orders
Now we consider the integral

/_i o (é) flz+t)dt = 5/_11 Qn(u) f(z + eu)du. (3)

The Taylor expansion allows us to write the following:
gn—I—l
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Then from (3), we have
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which suggest selecting @, (u) with the property f_ll ukQ,(u)du = 0 for
k < n —1, and it is evident that the Legendre polynomials satisfy the following
identities [1, 13, 20]:

P (=0 k= 0,12 L[ wrp 2(nt) 5
_1u n(U)U— 5 =uU, L,z ,n—1 _1u n(u)u_m ()

Thus, from (4) and (5), we obtain the celebrated formula of Rangarajan-Purushothaman
[15] (See [4, 13]):

f™(z) = lim @Zn+ 1) / P, (é) f(x+1t)dt, (6)

e—0 Qentl e

which reproduces (2) for n = 1 because P; (L) = L.

4. Algebraic Calculation of f'(x)
Now we shall employ (2) to deduce an algebraic expression for f’(zy), where we
shall accept that e is very small. Thus,

f’(:ro)N%/_itf(:vo—l—t)dt:%n/olx F(ro+ D) =1 (- 2)] o,

(7)
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where n is very large. On the other hand, we know that (See [14, 16])
/1 Faydi~ — Y F (5) D> 1 (8)
0 p(n) 1<k<n, (kn)=1 "

involving the Euler totient function ¢(n) [17-19], whose application in (7) implies
the following interesting expression:

sy 5 sl k) b)) o

1<k<n, (k,n)=1

If fis an odd function and zy = 0, then from (9) we have

ro~ s S k() (10)
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For example, if f(z) = zcos2r and f(z) = xlog(z? + 20), then f/(0) = 1 and
f/(0) = 2.9957, respectively. Thus, from (10) we obtain that f’(0) ~ 0.9672 and
1(0) ~ 2.9493 for n = 8, respectively. If f(z) = zlog(x + 1), then f/(1) = 1.1931
and (9) gives f'(1) ~ 1.1385 for n = 11.

Finally, if n = p, a prime number, then (9) takes the form

) o) o

For example, if f(x) = xsinz, then f'(2) = 0.0770 and (11) gives f'(2) ~ 0.0721
for p = 11. Similarly, if f(z) = z2%¢%, then f’(0.5) = 2.0609 and (11) implies
1(0.5) ~ 2.0187 for p = 23.

It is clear that for sufficiently large values of n, relation (9) will give excellent
approximations for the first derivative of f at z.

3 p
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