ON THE LANCZOS ORTHOGONAL DERIVATIVE

J. D. Bulnes, J. López-Bonilla*, R. Rajendra**, P. Siva Kota Reddy***
Departamento de Ciencias Exatas e Tecnología, Universidade Federal do Amapá, Rod. Juscelino Kubitschek Jardin Marco Zero, 68903-419, Macapá, AP, BRASIL
E-mail : bulnes@unifap.br
*ESIME-Zacatenco, Instituto Politécnico Nacional Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, MÉXICO
E-mail : jlopezb@ipn.mx
**Department of Mathematics, Field Marshal K.M. Cariappa College Mangalore University, Madikeri-571 201, INDIA
E-mail : rrajendrar@gmail.com
*** Department of Mathematics,
Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru-570 006, INDIA
E-mail : pskreddy@jssstuniv.in, pskreddy@sjce.ac.in

(Received: May 08, 2023 Accepted: Dec. 06, 2023 Published: Dec. 30, 2023)
Abstract: We use the Kempf et al. (2014 \& 2015) process of integration by differentiation to obtain the Lanczos generalized derivative, and we give a simple deduction of the Rangarajan-Purushothaman's formula for the orthogonal derivative for higher orders. Besides, we show that the Lanczos derivative allows deduce an interesting algebraic expression for the first derivative of a function.

Keywords and Phrases: Differentiation by integration, Integration by differentiation, Lanczos derivative, Legendre polynomials, Orthogonal derivative.
2020 Mathematics Subject Classification: 26A24, 26A42, 33C45, 65D25.

1. Introduction

Kempf et al. [8, 9] show how to obtain a definite integral via differentiation, in fact, they find the interesting expression:

$$
\begin{equation*}
\int_{a}^{b} F(x) d x=\lim _{t \rightarrow 0} F\left(\frac{d}{d t}\right)\left[\frac{e^{b} t-e^{a} t}{t}\right] \tag{1}
\end{equation*}
$$

Here we give an elementary proof of (1), and we use it to deduce the Cioranescu-(Haslam-Jones)- Lanczos generalized derivative $[2,3,5-7,10,11]$:

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{\varepsilon \rightarrow 0} \frac{3}{2 \varepsilon^{3}} \int_{-\varepsilon}^{\varepsilon} f\left(v+x_{0}\right) v d v \tag{2}
\end{equation*}
$$

which represents differentiation via integration $[3,5,7,11,12]$. This Lanczos derivative for higher orders was studied by the several authors [4, 13, 15] via Legendre polynomials, here we show a simple deduction of their corresponding formula. Besides, we exhibit that (2) gives an algebraic expression to determine $f^{\prime}\left(x_{0}\right)$.

2. Expression of Kempf et al.

We have

$$
\begin{aligned}
\int_{a}^{b} x^{n} d x & =\frac{1}{(n+1)}\left(b^{n+1}-a^{n+1}\right) \\
& =\left[\frac{d^{n}}{d t^{n}} \sum_{r=0}^{\infty} \frac{b^{r+1}-a^{r+1}}{(r+1)!} t^{r}\right]_{t=0} \\
& =\lim _{\varepsilon \rightarrow 0}\left[\frac{d^{n}}{d t^{n}} \frac{1}{t} \sum_{k=1}^{\infty} \frac{b^{k}-a^{k}}{k!} t^{k}\right] \\
& =\lim _{\varepsilon \rightarrow 0} \frac{d^{n}}{d t^{n}} \frac{e^{b} t-e^{a} t}{t}
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{a}^{b} F(x) d x & =\sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} \int_{a}^{b} x^{n} d x \\
& =\lim _{t \rightarrow 0} \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} \frac{d^{n}}{d t^{n}} \frac{e^{b} t-e^{a} t}{t}
\end{aligned}
$$

Hence (1) is immediate.

Now, we apply (1) for the case $F(x)=x f\left(x+x_{0}\right)$ with $a=-b=-\varepsilon$ and therefore, we have

$$
\frac{e^{b t}-e^{a t}}{t}=2 \varepsilon\left(1+\frac{\varepsilon^{2}}{3!} t^{2}+\frac{\varepsilon^{4}}{5!} t^{4}+\cdots\right), \quad F(x)=f\left(x_{0}\right) x+f^{\prime}\left(x_{0}\right) x^{2}+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right) x^{3}+\cdots .
$$

Thus from (1), we get

$$
\begin{aligned}
\int_{-\varepsilon}^{\varepsilon} x f\left(x+x_{0}\right) d x & =2 \varepsilon \lim _{t \rightarrow 0}\left[f\left(x_{0}\right) \frac{d}{d t}+f^{\prime}\left(x_{0}\right) \frac{d^{2}}{d t^{2}}+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right) \frac{d^{3}}{d t^{3}}+\cdots\right] \\
& \times\left(1+\frac{\varepsilon^{2}}{3!} t^{2}+\frac{\varepsilon^{4}}{5!} t^{4}+\cdots\right), \\
& =2 \varepsilon^{3}\left[\frac{1}{3} f^{\prime}\left(x_{0}\right)+\frac{\varepsilon^{2}}{5 \cdot 3!} f^{\prime \prime \prime}\left(x_{0}\right)+\frac{\varepsilon^{4}}{7 \cdot 5!} f^{v}\left(x_{0}\right)+\cdots\right] .
\end{aligned}
$$

Then it is evident the expression (2):

$$
f^{\prime}\left(x_{0}\right)=\lim _{\varepsilon \rightarrow 0} \frac{3}{2 \varepsilon^{3}} \int_{-\varepsilon}^{\varepsilon} x f\left(x+x_{0}\right) d x
$$

which coincides with the Lanczos orthogonal derivative $[2,3,5-7,10,11]$. The relation (1) represents integration by differentiation, but (2) expresses the inverse process, that is, differentiation by integration.

3. Generalized Derivative for Higher Orders

Now we consider the integral

$$
\begin{equation*}
\int_{-\varepsilon}^{\varepsilon} Q_{n}\left(\frac{t}{\varepsilon}\right) f(x+t) d t=\varepsilon \int_{-1}^{1} Q_{n}(u) f(x+\varepsilon u) d u . \tag{3}
\end{equation*}
$$

The Taylor expansion allows us to write the following:

$$
f(x+\varepsilon u)=f(x)+\varepsilon f^{\prime}(x) u+\cdots+\frac{\varepsilon^{n}}{n!} f^{(n)}(x) u^{n}+\frac{\varepsilon^{n+1}}{(n+1)!} f^{(n+1)}(x) u^{n+1}+\cdots,
$$

Then from (3), we have

$$
\begin{align*}
\frac{1}{\varepsilon^{n+1}} \int_{-\varepsilon}^{\varepsilon} Q_{n}\left(\frac{t}{\varepsilon}\right) f(x+t) d t= & \sum_{k=0}^{n-1} \frac{\varepsilon^{k-n}}{k!} f^{(k)}(x) \int_{-1}^{1} u^{k} Q_{n}(u) d u \\
& +\frac{1}{n!} f^{(n)}(x) \int_{-1}^{1} u^{n} Q_{n}(u) d u \\
& +\sum_{j=n+1}^{\infty} \frac{\varepsilon^{j-n}}{j!} f^{(j)}(x) \int_{-1}^{1} u^{j} Q_{n}(u) d u \tag{4}
\end{align*}
$$

which suggest selecting $Q_{n}(u)$ with the property $\int_{-1}^{1} u^{k} Q_{n}(u) d u=0$ for $k \leq n-1$, and it is evident that the Legendre polynomials satisfy the following identities [1, 13, 20]:

$$
\begin{equation*}
\int_{-1}^{1} u^{k} P_{n}(u) d u=0, k=0,1,2, \cdots, n-1 ; \quad \int_{-1}^{1} u^{n} P_{n}(u) d u=\frac{2(n!)}{(2 n+1)!} \tag{5}
\end{equation*}
$$

Thus, from (4) and (5), we obtain the celebrated formula of Rangarajan-Purushothaman [15] (See $[4,13])$:

$$
\begin{equation*}
f^{(n)}(x)=\lim _{\varepsilon \rightarrow 0} \frac{(2 n+1)!}{2 \varepsilon^{n+1}} \int_{-\varepsilon}^{\varepsilon} P_{n}\left(\frac{t}{\varepsilon}\right) f(x+t) d t \tag{6}
\end{equation*}
$$

which reproduces (2) for $n=1$ because $P_{1}\left(\frac{t}{\varepsilon}\right)=\frac{t}{\varepsilon}$.

4. Algebraic Calculation of $f^{\prime}\left(x_{0}\right)$

Now we shall employ (2) to deduce an algebraic expression for $f^{\prime}\left(x_{0}\right)$, where we shall accept that ε is very small. Thus,

$$
\begin{align*}
f^{\prime}\left(x_{0}\right) \sim \frac{3}{2 \varepsilon^{3}} \int_{-\varepsilon}^{\varepsilon} t f\left(x_{0}+t\right) d t & =\frac{3 n}{2} \int_{0}^{1} x\left[f\left(x_{0}+\frac{x}{n}\right)-f\left(x_{0}-\frac{x}{n}\right)\right] d x \\
\varepsilon & =\frac{1}{7} \tag{7}
\end{align*}
$$

where n is very large. On the other hand, we know that (See $[14,16]$)

$$
\begin{equation*}
\int_{0}^{1} F(x) d x \sim \frac{1}{\varphi(n)} \sum_{1 \leq k \leq n,(k, n)=1} F\left(\frac{k}{n}\right), \quad n \gg 1 \tag{8}
\end{equation*}
$$

involving the Euler totient function $\varphi(n)$ [17-19], whose application in (7) implies the following interesting expression:

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right) \sim \frac{3}{2 \varphi(n)} \sum_{1 \leq k \leq n,(k, n)=1} k\left[f\left(x_{0}+\frac{k}{n^{2}}\right)-f\left(x_{0}-\frac{k}{n^{2}}\right)\right] \tag{9}
\end{equation*}
$$

If f is an odd function and $x_{0}=0$, then from (9) we have

$$
\begin{equation*}
f^{\prime}(0) \sim \frac{3}{\varphi(n)} \sum_{1 \leq k \leq n,(k, n)=1} k f\left(\frac{k}{n^{2}}\right) \tag{10}
\end{equation*}
$$

For example, if $f(x)=x \cos 2 x$ and $f(x)=x \log \left(x^{2}+20\right)$, then $f^{\prime}(0)=1$ and $f^{\prime}(0)=2.9957$, respectively. Thus, from (10) we obtain that $f^{\prime}(0) \sim 0.9672$ and $f^{\prime}(0) \sim 2.9493$ for $n=8$, respectively. If $f(x)=x \log (x+1)$, then $f^{\prime}(1)=1.1931$ and (9) gives $f^{\prime}(1) \sim 1.1385$ for $n=11$.
Finally, if $n=p$, a prime number, then (9) takes the form

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right) \sim \frac{3}{2(p-1)} \sum_{k=1}^{p-1} k\left[f\left(x_{0}+\frac{k}{p^{2}}\right)-f\left(x_{0}-\frac{k}{p^{2}}\right)\right] \tag{11}
\end{equation*}
$$

For example, if $f(x)=x \sin x$, then $f^{\prime}(2)=0.0770$ and (11) gives $f^{\prime}(2) \sim 0.0721$ for $p=11$. Similarly, if $f(x)=x^{2} e^{x}$, then $f^{\prime}(0.5)=2.0609$ and (11) implies $f^{\prime}(0.5) \sim 2.0187$ for $p=23$.

It is clear that for sufficiently large values of n, relation (9) will give excellent approximations for the first derivative of f at x_{0}.

Acknowledgement

The authors would like to thank the referees for their invaluable comments and suggestions which led to the improvement of the manuscript.

References

[1] Bulnes D., López-Bonilla J. and Prajapati J., Certain integrals involving Legendre polynomials, Open Access Journal of Science, 6(1) (2023), 1-3.
[2] Cioranescu N., La generalization de la premiére formule de la moyenne, Enseign. Math., 37 (1938), 292-302.
[3] Cruz-Santiago R., López-Bonilla J. and López-Vázquez R., Differentiation of Fourier series via orthogonal derivative, Journal of Institute of Science and Technology, 20(2) (2015), 113-114.
[4] Cruz-Santiago R., López-Bonilla J. and Torres-Silva H., Lanczos orthogonal derivative for higher orders, Transactions on Maths., 3(3) (2017), 12-14.
[5] Diekema E. and Koornwinder T. H., Differentiation by integration using orthogonal polynomials, a survey, J. Approx. Theory, 164 (2012), 637-667.
[6] Haslam-Jones U. S., On a generalized derivative, Quart. J. Math. Oxford Ser. (2), 4 (1953) 190-197.
[7] Hernández-Galeana A., Laurian-Ioan P., López-Bonilla J. and López-Vázquez R., On the Cioranescu-(Haslam-Jones)-Lanczos generalized derivative, Glob. J. Adv. Res. Class. Mod. Geom., 3(1) (2014), 44-49.
[8] Kempf A., Jackson D. M. and Morales A. H., New Dirac delta function based methods with applications to perturbative expansions in quantum field theory, J. Phys. A: Math. Theor., 47(41) (2014), Article id: 415204.
[9] Kempf A., Jackson D. M. and Morales A. H., How to (path-) integrate by differentiating, J. Phys. Conf. Ser., 626 (2015), Article id: 012015.
[10] Lanczos C., Applied analysis, Dover, New York, (1988), Chapter 5.
[11] López-Bonilla J., Rivera-Rebolledo J. and Vidal-Beltrán S., Lanczos derivative via a quadrature method, Int. J. Pure Appl. Sci. Technol., 1(2) (2010), 100-103.
[12] López-Bonilla J., López-Vázquez R. and Vidal-Beltrán S., An alternative deduction of the Lanczos orthogonal derivative, African Journal of Basic \& Applied Sciences, 10(3) (2018), 75-76.
[13] López-Bonilla J., López-Vázquez R. and Torres-Silva H., On the Legendre polynomials, Prespacetime Journal, 6(8) (2015), 735-739.
[14] Pólya G. and Szegö G., Problems and theorems in analysis, Springer-Verlag, Berlin, 1972.
[15] Rangarajan S. K. and Purushothaman S. P., Lanczos generalized derivative for higher orders, J. Comput. Appl. Math., 177(2) (2005), 461-465.
[16] Sándor J. and Tóth L., A remark on the gamma function, Elem. Math., 44(3) (1989), 73-76.
[17] Sándor J. and Atanassov K. T., Arithmetic functions, Nova Science Publishers, New York, 2021.
[18] Sivaramakrishnan R., Classical theory of arithmetic functions, Marcel Dekker, New York, 1989.
[19] Sivaramakrishnan R., The many facets of Euler's totient. II. Generalizations and analogues, Nieuw Arch. Wisk. (4), 8(2) (1990), 169-187.
[20] Sommerfeld A., Partial differential equations in Physics, Academic Press, New York, 1964.

