South East Asian J. of Mathematics and Mathematical Sciences Vol. 19, No. 2 (2023), pp. 403-416 DOI: 10.56827/SEAJMMS.2023.1902.30 ISSN (Onli

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

FUZZY PRE β -COMPACT SPACE

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, INDIA E-mail : anjanabhattacharyya@hotmail.com

(Received: Feb. 08, 2023 Accepted: Aug. 18, 2023 Published: Aug. 30, 2023)

Abstract: This paper deals with a new type of compactness, viz., fuzzy pre β compactness by using fuzzy pre β -open set [1] as a basic tool. We characterize this
newly defined compactness by fuzzy net and prefilterbase. It is shown that this
compactness implies fuzzy almost compactness [3] and the converse is true only
on fuzzy pre β -regular space [1]. Afterwards, it is shown that this compactness
remains invariant under fuzzy pre β -irresolute function [1].

Keywords and Phrases: Fuzzy pre β -open set, fuzzy pre β -regular space, fuzzy regularly pre β -closed set, fuzzy pre β -compact set (space), pre β -adherent point of a prefilterbase, pre β -cluster point of a fuzzy net.

2020 Mathematics Subject Classification: 54A40, 03E72.

1. Introduction

After introducing fuzzy compactness by Chang [2], many mathematicians have engaged themselves to introduce different types of fuzzy compactness. In [3], fuzzy almost compactness is introduced. In this paper we introduce fuzzy pre β -compactness which is weaker than fuzzy almost compactness. Here we use fuzzy net [8] and prefilterbase [6] to characterize fuzzy pre β -compactness.

2. Preliminaries

Throughout this paper, (X, τ) or simply by X we shall mean an fts. In 1965, L.A. Zadeh introduced fuzzy set [9] A which is a function from a non-empty set X into the closed interval I = [0, 1], i.e., $A \in I^X$. The support [9] of a fuzzy set A, denoted by suppA and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t \ (0 < t \leq 1)$ will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [9] of a fuzzy set A in an fts X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A, B in X, $A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [9] while AqB means A is quasi-coincident (q-coincident, for short) [8] with B, i.e., there exists $x \in X$ such that A(x) + B(x) > 1. The negation of these two statements will be denoted by $A \not \leq B$ and $A \not q B$ respectively. For a fuzzy set A, clA and intA will stand for fuzzy closure [2] and fuzzy interior [2] of A respectively. A fuzzy set A in X is called a fuzzy neighbourhood (fuzzy nbd, for short) [8] of a fuzzy point x_t if there exists a fuzzy open set G in X such that $x_t \in G \leq A$. If, in addition, A is fuzzy open, then A is called fuzzy open nbd of x_t . A fuzzy set A is said to be a fuzzy q-nbd of a fuzzy point x_t in an fts X if there is a fuzzy open set U in X such that $x_t qU \leq A$. If, in addition, A is fuzzy open, then A is called a fuzzy open q-nbd [8] of x_t .

A fuzzy set A in an fts (X, τ) is called fuzzy β -open [4] if $A \leq cl(int(clA))$. The complement of a fuzzy β -open set is called fuzzy β -closed [4]. The union (intersection) of all fuzzy β -open (resp., fuzzy β -closed) sets contained in (resp., containing) a fuzzy set A is called fuzzy β -interior [4] (resp., fuzzy β -closure [4]) of A, denoted by $\beta intA$ (resp., βclA).

Let (D, \geq) be a directed set and X be an ordinary set. Let J denote the collection of all fuzzy points in X. A function $S: D \to J$ is called a fuzzy net in X [8]. It is denoted by $\{S_n : n \in (D, \geq)\}$. A non empty family \mathcal{F} of fuzzy sets in X is called a prefilterbase on X if (i) $0_X \notin \mathcal{F}$ and (ii) for any $U, V \in \mathcal{F}$, there exists $W \in \mathcal{F}$ such that $W \leq U \bigcap V$ [6].

3. Fuzzy Pre β -Open Sets : Some Results

In this section we recall some definitions and results from [1, 2, 3, 5, 7] for ready references.

Definition 3.1. [1] A fuzzy set A in an fts (X, τ) is called fuzzy pre β -open if $A \leq \beta int(clA)$. The complement of this set is called fuzzy pre β -closed set. The union (resp., intersection) of all fuzzy pre β -open (resp., fuzzy pre β -closed)

sets contained in (containing) a fuzzy set A is called fuzzy pre β -interior (resp., fuzzy pre β -interior (resp., fuzzy pre β -closure) of A, denoted by $p\beta intA$ (resp., $p\beta clA$).

Definition 3.2. [1] A fuzzy set A in an fts (X, τ) is called fuzzy pre β -nbd of a fuzzy point x_{α} in X if there exists a fuzzy pre β -open set U in X such that $x_{\alpha} \in U \leq A$. If, in addition, A is fuzzy pre β -open, then A is called fuzzy pre β -open nbd of x_{α} . **Definition 3.3.** [1] A fuzzy set A in an fts (X, τ) is called fuzzy pre β -q-nbd of a fuzzy point x_{α} in X if there exists a fuzzy pre β -open set U in X such that $x_{\alpha}qU \leq A$. If, in addition, A is fuzzy pre β -open, then A is called fuzzy pre β -open q-nbd of x_{α} .

Result 3.4. [1] Union (resp., intersection) of any two fuzzy pre β -open (resp., fuzzy pre β -closed) sets is also so.

Result 3.5. [1] $x_{\alpha} \in p\beta clA$ if and only if every fuzzy pre β -open q-nbd U of x_{α} , UqA.

Result 3.6. [1] $p\beta cl(p\beta clA) = p\beta clA$ for any fuzzy set A in an fts (X, τ) .

Result 3.7. $p\beta cl(A \lor B) = p\beta clA \lor p\beta clB$, for any two fuzzy sets A, B in X. **Proof.** It is clear that

$$p\beta clA \bigvee p\beta clB \subseteq p\beta cl(A \bigvee B)...(1)$$

Conversely, let $x_{\alpha} \in p\beta cl(A \lor B)$. Then for any fuzzy pre β -open q-nbd U of x_{α} , $Uq(A \lor B) \Rightarrow$ there exists $y \in X$ such that $U(y) + max\{A(y), B(y)\} > 1 \Rightarrow$ either $U(y) + A(y) > 1 \Rightarrow UqA$ or $U(y) + B(y) > 1 \Rightarrow UqB \Rightarrow$ either $x_{\alpha} \in p\beta clA$ or $x_{\alpha} \in p\beta clB \Rightarrow x_{\alpha} \in p\beta clA \lor p\beta clB$.

Result 3.8. For any fuzzy set A in an fts (X, τ) ,

(i) $p\beta cl(1_X \setminus A) = 1_X \setminus p\beta intA$,

(ii) $p\beta int(1_X \setminus A) = 1_X \setminus p\beta clA$.

Proof. (i). Let $x_t \in p\beta cl(1_X \setminus A)$ for any $A \in I^X$. If possible, let $x_t \notin 1_X \setminus p\beta intA$. Then $x_t qp\beta intA$. Then there exists a fuzzy pre β -open set B in X with $B \leq A$ such that $x_t qB$. Then B is a fuzzy pre β -open q-nbd of x_t . By assumption, $Bq(1_X \setminus A) \Rightarrow Aq(1_X \setminus A)$, which is absurd.

Conversely, let $x_t \in 1_X \setminus p\beta$ int A for any $A \in I^X$. Then $x_t \not p\beta$ int A and so $x_t \not pU$ for any fuzzy pre β -open set U in X with $U \leq A \Rightarrow x_t \in 1_X \setminus U$ which is fuzzy pre β -closed set in X with $1_X \setminus A \leq 1_X \setminus U$. So $x_t \in p\beta cl(1_X \setminus A)$.

(ii) Writing $1_X \setminus A$ for A in (i), we get the result.

Definition 3.9. Let A be a fuzzy set in an fts (X, τ) . A collection \mathcal{U} of fuzzy sets in X is called a fuzzy cover of A if $\sup\{U(x) : U \in \mathcal{U}\} = 1$, for each $x \in \operatorname{supp} A$ [5]. If each member of \mathcal{U} is fuzzy open (resp., fuzzy pre β -open), we call \mathcal{U} is fuzzy open [5] (resp., fuzzy pre β -open) cover of A. In particular, if $A = 1_X$, we get the definition of fuzzy cover of X [2].

Definition 3.10. A fuzzy cover \mathcal{U} of a fuzzy set A in an fts (X, τ) is said to have a finite (resp., finite proximate) subcover \mathcal{U}_0 if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such

that $\bigvee \mathcal{U}_0 \geq A$ [5] (resp., $\bigvee \{ clU : U \in \mathcal{U}_0 \} \geq A$ [7]). In particular, if $A = 1_X$, we get $\bigvee \mathcal{U}_0 = 1_X$ [2] (resp., $\bigvee \{ clU : U \in \mathcal{U}_0 \} = 1_X$ [3]).

Definition 3.11. [3] An fts (X, τ) is called fuzzy almost compact space if every fuzzy open cover has a finite proximate subcover.

4. Fuzzy Pre β -compact Space : Some Characterizations

In this section fuzzy pre β -compactness is introduced and studied by fuzzy pre β -open and fuzzy regularly pre β -open sets and characterize this space via fuzzy net and prefilterbase.

Definition 4.1. A fuzzy set A in an fts (X, τ) is said to be a fuzzy pre β -compact set if every fuzzy pre β -open cover \mathcal{U} of A has a finite $p\beta$ -proximate subcover, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\bigvee \{p\beta clU : U \in \mathcal{U}_0\} \geq A$. If, in addition, $A = 1_X$, we say that the fts X is fuzzy pre β -compact space.

Definition 4.2. Let x_{α} be a fuzzy point in an fts (X, τ) . A prefilterbase \mathcal{F} on X is called

(a) $p\beta$ -adhere at x_{α} , written as $x_{\alpha} \in p\beta$ -ad \mathcal{F} , if for each fuzzy pre β -open q-nbd U of x_{α} and each $F \in \mathcal{F}$, $Fqp\beta clU$, i.e., $x_{\alpha} \in p\beta clF$, for each $F \in \mathcal{F}$;

(b) $p\beta$ -converge to x_{α} , written as $\mathcal{F}p\beta x_{\alpha}$, if to each fuzzy pre β -open q-nbd U of x_{α} , there corresponds some $F \in \mathcal{F}$ such that $F \leq p\beta clU$.

Definition 4.3. Let x_{α} be a fuzzy point in an fts (X, τ) . A fuzzy net $\{S_n : n \in (D, \geq)\}$ is said to

(a) $p\beta$ -adhere at x_{α} , denoted by $x_{\alpha} \in p\beta$ -ad (S_n) , if for each fuzzy pre β -open q-nbd U of x_{α} and each $n \in D$, there exists $m \in D$ with $m \ge n$ such that $S_m qp\beta clU$;

(b) $p\beta$ -converge to x_{α} , denoted by $S_n p \beta x_{\alpha}$, if for each fuzzy pre β -open q-nbd U of x_{α} , there exists $m \in D$ such that $S_n qp\beta clU$, for all $n \ge m(n \in D)$.

Theorem 4.4. For a fuzzy set A in an fts X, the following statements are equivalent:

(a) A is a fuzzy pre β -compact set,

(b) for every prefilterbase \mathcal{B} in X, $[\bigwedge \{p\beta clB : B \in \mathcal{B}\}] \bigwedge A = 0_X \Rightarrow$ there exists a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $\bigwedge \{p\beta intB : B \in \mathcal{B}_0\} \not A$,

(c) for any family \mathcal{F} of fuzzy pre β -closed sets in X with $\bigwedge \{F : F \in \mathcal{F}\} \bigwedge A = 0_X$, there exists a finite subcollection \mathcal{F}_0 of \mathcal{F} such that $\bigwedge \{p\beta intF : F \in \mathcal{F}_0\} \not A$,

(d) every prefilterbase on X, each member of which is q-coincident with A, $p\beta$ -adheres at some fuzzy point in A.

Proof. (a) \Rightarrow (b). Let \mathcal{B} be a prefilterbase in X such that $[\bigwedge \{p\beta clB : B \in \mathcal{B}\}] \bigwedge A = 0_X$. Then for any $x \in suppA$, $[\bigwedge \{p\beta clB : B \in \mathcal{B}\}](x) = 0 \Rightarrow 1 - 0$

 $\left[\bigwedge \{p\beta clB(x): B \in \mathcal{B}\}\right] = 1 \Rightarrow \bigvee [(1_X \setminus p\beta clB)(x): B \in \mathcal{B}] = 1 \Rightarrow sup\{p\beta int(1_X \setminus p\beta clB)(x): B \in \mathcal{B}\}$ $B(x): B \in \mathcal{B} = 1 \Rightarrow \{p\beta int(1_X \setminus B): B \in \mathcal{B}\}$ is a fuzzy pre β -open cover of A. By (a), there exists a finite $p\beta$ -proximate subcover $\{p\beta int(1_X \setminus B_1), p\beta int(1_X \setminus$ $B_{2}), ..., p\beta int(1_{X} \setminus B_{n}) \} \text{ (say) of it for } A. \text{ Thus } A \leq \bigvee_{i=1}^{n} p\beta cl(p\beta int(1_{X} \setminus B_{i}))$ $= \bigvee_{i=1}^{n} [1_{X} \setminus p\beta int(p\beta clB_{i})] = 1_{X} \setminus \bigwedge_{i=1}^{n} p\beta int(p\beta clB_{i}) \Rightarrow \bigwedge_{i=1}^{n} p\beta int(p\beta clB_{i}) \leq 1_{X} \setminus A \Rightarrow$ $A \not A \bigwedge_{i=1}^{n} p\beta int(p\beta clB_{i}) \Rightarrow A \not A \bigwedge_{i=1}^{n} p\beta intB_{i}.$ (b) \Rightarrow (a). Let the condition (b) hold, and suppose that there exists a fuzzy pre β -open cover \mathcal{U} of A having no finite $p\beta$ -proximate subcover for A. Then for every finite subcollection \mathcal{U}_0 of \mathcal{U} , there exists $x \in suppA$ such that $sup\{p\beta clU(x) :$ $U \in \mathcal{U}_0$ $\{ A(x), \text{ i.e., } 1 - \sup\{(p\beta clU)(x) : U \in \mathcal{U}_0\} > 1 - A(x) \ge 0 \Rightarrow \inf\{(1_X \setminus U) \in \mathcal{U}_0\} \}$ $p\beta clU)(x): U \in \mathcal{U}_0\} > 0.$ Thus $\{ \bigwedge (1_X \setminus p\beta clU): \mathcal{U}_0 \text{ is a finite subcollection of } \mathcal{U} \}$ $(=\mathcal{B}, say)$ is a prefilterbase in X. If there exists a finite subcollection $\{U_1, U_2, ..., U_n\}$ (say) of \mathcal{U} such that $\bigwedge_{i=1}^{n} p\beta int(1_X \setminus p\beta clU_i) /qA$, then $A \leq 1_X \setminus \bigwedge_{i=1}^{n} p\beta int(1_X \setminus p\beta clU_i) = \bigvee_{i=1}^{n} p\beta clU_i = \bigvee_{i=1}^{n} p\beta clU_i$ (by Result 3.6). Thus \mathcal{U} has a finite $p\beta$ -proximate subcover for A, contradicts our hypothesis. Hence for every finite subcollection $\{\bigwedge_{U \in \mathcal{U}_1} (1_X \setminus p\beta clU), ..., \bigwedge_{U \in \mathcal{U}_k} (1_X \setminus p\beta clU)\}$ of \mathcal{B} , where $\mathcal{U}_1, ..., \mathcal{U}_k$ are finite subset of \mathcal{U} , we have $[\bigwedge_{U \in \mathcal{U}_1 \setminus ... \setminus \mathcal{U}_k} p\beta int(1_X \setminus p\beta clU)]qA$. By(b), $\left[\bigwedge p\beta cl(1_X \setminus p\beta clU)\right] \bigwedge A \neq 0_X$. Then there exists $x \in suppA$, such that $\inf_{\substack{U \in \mathcal{U} \\ U \in \mathcal{U}}} [p\beta cl(1_X \setminus p\beta clU)](x) > 0 \Rightarrow 1 - \inf_{\substack{U \in \mathcal{U} \\ U \in \mathcal{U}}} [p\beta cl(1_X \setminus p\beta clU)](x) < 1 \Rightarrow \\ \sup_{U \in \mathcal{U}} [1_X \setminus p\beta cl(1_X \setminus p\beta clU)](x) < 1 \Rightarrow \\ \sup_{U \in \mathcal{U}} U(x) \leq \underset{U \in \mathcal{U}}{\sup} p\beta int(p\beta clU)(x) < 1 \text{ which}$ contradicts that \mathcal{U} is a fuzzy pre β -open cover of A. (a) \Rightarrow (c). Let \mathcal{F} be a family of fuzzy pre β -closed sets in X such that $\bigwedge \{F :$ $F \in \mathcal{F} \setminus A = 0_X$. Then for each $x \in suppA$ and for each positive integer n, there exists some $F_n \in \mathcal{F}$ such that $F_n(x) < 1/n \Rightarrow 1 - F_n(x) > 1 - 1/n \Rightarrow$ $\sup[(1_X \setminus F)(x)] = 1$ and so $\{1_X \setminus F : F \in \mathcal{F}\}$ is a fuzzy pre β -open cover of A. By $F \in \mathcal{F}$

(a), there exists a finite subcollection \mathcal{F}_0 of \mathcal{F} such that $A \leq \bigvee_{F \in \mathcal{F}_0} p\beta cl(1_X \setminus F) \Rightarrow$ $1_X \setminus A \geq 1_X \setminus \bigvee_{F \in \mathcal{F}_0} p\beta cl(1_X \setminus F) = \bigwedge_{F \in \mathcal{F}_0} (1_X \setminus p\beta cl(1_X \setminus F)) = \bigwedge_{F \in \mathcal{F}_0} p\beta intF$. Hence $A \not A(\bigwedge_{F \in \mathcal{F}_0} p\beta intF)$, where \mathcal{F}_0 is a finite subcollection of \mathcal{F} . (c) \Rightarrow (b). Let \mathcal{B} be a prefilterbase in X such that $[\bigwedge\{p\beta clB : B \in \mathcal{B}\}] \bigwedge A = 0_X$. Then the family $\mathcal{F} = \{p\beta clB : B \in \mathcal{B}\}$ is a family of fuzzy pre β -closed sets in X with $(\bigwedge F) \bigwedge A = 0_X$. By (c), there is a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $[\bigwedge\{p\beta int(p\beta clB) : B \in \mathcal{B}_0\}] \not A A \Rightarrow (\bigwedge p\beta intB) \not AA$.

(a) \Rightarrow (d). Let \mathcal{F} be a prefilterbase in X, each member of which is q-coincident with A. If possible, let \mathcal{F} do not $p\beta$ -adhere at any fuzzy point in A. Then for each $x \in suppA$, there exists $n_x \in \mathcal{N}$ (the set of all natural numbers) such that $x_{1/n_x} \in A$. Then there are a fuzzy pre β -open set $U_{n_x}^x$ and a member $F_{n_x}^x$ of \mathcal{F} such that $x_{1/n_x}qU_{n_x}^x$ and $p\beta clU_{n_x}^x / qF_{n_x}^x$. Thus $U_{n_x}^x(x) > 1 - 1/n_x$ so that $sup\{U_n^x(x) : n \in \mathcal{N}, n \ge n_x\} = 1$. Thus $\{U_n^x : n \in \mathcal{N}, n \ge n_x, x \in suppA\}$ forms a fuzzy pre β -open cover of A. By (a), there exist finitely many points $x_1, x_2, ..., x_k \in suppA$ and $n_1, n_2, ..., n_k \in \mathcal{N}$ such that $A \le \bigvee_{i=1}^k p\beta clU_{n_{x_i}}^{x_i}$. Choose

 $F \in \mathcal{F} \text{ such that } F \leq \bigwedge_{i=1}^{k} F_{n_{i}}^{x_{i}}. \text{ Then } F \not[A[\bigvee_{i=1}^{k} p\beta clU_{n_{x_{i}}}^{x_{i}}], \text{ i.e., } F \not[AA, \text{ a contradiction.} \\ (d) \Rightarrow (a). \text{ If possible, let there exist a fuzzy pre } \beta\text{-open cover } \mathcal{U} \text{ of } A \text{ such that for every finite subset } \mathcal{U}_{0} \text{ of } \mathcal{U}, \bigvee \{p\beta clU : U \in \mathcal{U}_{0}\} \not\geq A. \text{ Then } \mathcal{F} = \{1_{X} \setminus \bigvee_{U \in U} p\beta clU : \mathcal{U}_{0} \text{ is a finite subset of } \mathcal{U}\} \text{ is a prefilterbase on } X \text{ such that } FqA,$

for each $F \in \mathcal{F}$. By (d), $\mathcal{F} p\beta$ -adheres at some fuzzy point $x_{\alpha} \in A$. As \mathcal{U} is a fuzzy cover of A, $\sup_{U \in \mathcal{U}} U(x) = 1 \Rightarrow$ there exists $U_0 \in \mathcal{U}$ such that $U_0(x) > 1 - \alpha \Rightarrow x_{\alpha} q U_0$. As $x_{\alpha} \in p\beta$ -ad \mathcal{F} and $1_X \setminus p\beta clU_0 \in \mathcal{F}$, we have $p\beta clU_0q(1_X \setminus p\beta clU_0)$, a contradiction.

Theorem 4.5. For a fuzzy set A in an fts X, the following implications hold : (a) every fuzzy net in A $p\beta$ -adheres at some fuzzy point in A, \Leftrightarrow (b) every fuzzy net in A has a $p\beta$ -convergent fuzzy subnet, \Leftrightarrow (c) every prefilterbase in A $p\beta$ -adheres at some fuzzy point in A, \Rightarrow (d) for every family { $B_{\alpha} : \alpha \in \Lambda$ } of non-null fuzzy sets with $[\bigwedge_{\alpha \in \Lambda} p\beta clB_{\alpha}] \bigwedge A =$

 $\alpha \in \Lambda$

 \Rightarrow (e) A is fuzzy pre β -compact set.

 0_X , there is a finite subset Λ_0 of Λ such that $(\bigwedge_{\alpha \in \Lambda_0} B_\alpha) \bigwedge A = 0_X$,

Proof. (a) \Rightarrow (b). Let a fuzzy net $\{S_n : n \in (D, \geq)\}$ in A where (D, \geq) is a directed set, $p\beta$ -adhere at a fuzzy point $x_\alpha \in A$. Let Q_{x_α} denote the set of the fuzzy $p\beta$ -closures of all fuzzy pre β -open q-nbds of x_α . For any $B \in Q_{x_\alpha}$, we can choose some $n \in D$ such that $S_n qB$. Let E denote the set of all ordered pairs (n, B) with the property that $n \in D$, $B \in Q_{x_\alpha}$ and $S_n qB$. Then (E, \gg) is a directed set where $(m, C) \gg (n, B)$ if and only if $m \geq n$ in D and $C \leq B$. Then $T : (E, \gg) \rightarrow (X, \tau)$ given by $T(n, B) = S_n$, is a fuzzy subnet of $\{S_n : n \in (D, \geq)\}$. Let V be any fuzzy pre β -open q-nbd of x_α . Then there is $n \in D$ such that that $(n, p\beta clV) \in E$ and hence $S_n qp\beta clV$. Now, for any $(m, U) \gg (n, p\beta clV)$, $T(m, U) = S_m qU \leq p\beta clV \Rightarrow T(m, U)qp\beta clV$. Hence $Tp\beta x_\alpha$.

(b) \Rightarrow (a). If a fuzzy net $\{S_n : n \in (D, \geq)\}$ does not $p\beta$ -adhere at a fuzzy point x_α , then there is a fuzzy pre β -open q-nbd U of x_α and an $n \in D$ such that $S_m \not qp\beta clU$, for all $m \geq n$. Then obviously no fuzzy subnet of the fuzzy net can $p\beta$ -converge to x_α .

(a) \Rightarrow (c). Let $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a prefilterbase in A. For each $\alpha \in \Lambda$, choose a fuzzy point $x_{F_{\alpha}} \in F_{\alpha}$ and construct the fuzzy net $S = \{x_{F_{\alpha}} : F_{\alpha} \in \mathcal{F}\}$ in A with (\mathcal{F}, \gg) as domain, where for two members $F_{\alpha}, F_{\beta} \in \mathcal{F}, F_{\alpha} \gg F_{\beta}$ if and only if $F_{\alpha} \leq F_{\beta}$. By (a), the fuzzy net $S \ p\beta$ -adheres at some fuzzy point x_t $(0 < t \leq 1) \in A$. Then for any fuzzy pre β -open q-nbd U of x_t and any $F_{\alpha} \in \mathcal{F}$, there exists $F_{\beta} \in \mathcal{F}$ such that $F_{\beta} \gg F_{\alpha}$ and $x_{F_{\beta}}qp\beta clU$. Then $F_{\beta}qp\beta clU$ and hence $F_{\alpha}qp\beta clU$. Thus $\mathcal{F} \ p\beta$ -adheres at x_t .

(c) \Rightarrow (a). Let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net in A. Consider the prefilterbase $\mathcal{F} = \{T_n : n \in D\}$ generated by the net, where $T_n = \{S_m : m \in D, m \geq n\}$. By (c), there exists a fuzzy point $a_\alpha \in A$ such that $\mathcal{F} p\beta$ -adheres at a_α . Then for each fuzzy pre β -open q-nbd U of a_α and each $F \in \mathcal{F}$, $Fqp\beta clU$, i.e., $p\beta clUqT_n$, for all $n \in D$. Hence the given fuzzy net $p\beta$ -adheres at a_α .

(c) \Rightarrow (d). Let $\mathcal{B} = \{B_{\alpha} : \alpha \in \Lambda\}$ be a family of fuzzy sets in X such that for every finite subset Λ_0 of Λ , $(\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}) \bigwedge A \neq 0_X$. Then $\mathcal{F} = \{(\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}) \bigwedge A : \Lambda_0 \}$

is a finite subset of Λ } is a prefilterbase in A. By (c), $\mathcal{F} p\beta$ -adheres at some fuzzy point $a_t \in A$ ($0 < t \leq 1$). Then for each $\alpha \in \Lambda$ and each fuzzy pre β -open q-nbd U of a_t , $B_{\alpha}qp\beta clU$, i.e., $a_t \in p\beta clB_{\alpha}$, for each $\alpha \in \Lambda$. Consequently, $(\bigwedge p\beta clB_{\alpha}) \bigwedge A \neq 0_X$.

(d)
$$\Rightarrow$$
 (e). Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy pre β -open cover of a fuzzy set A .

Then by (d), $A \bigwedge [\bigwedge_{\alpha \in \Lambda} (1_X \setminus U_\alpha)] = A \bigwedge [1_X \setminus \bigvee_{\alpha \in \Lambda} U_\alpha] = 0_X$. If for some $\alpha \in \Lambda$, $1_X \setminus p\beta clU_\alpha = 0_X$, then we are done. If $1_X \setminus p\beta clU_\alpha$ (= B_α , say) $\neq 0_X$, then for each $\alpha \in \Lambda$, $\mathcal{B} = \{B_\alpha : \alpha \in \Lambda\}$ is a family of non-null fuzzy sets. We show that $\bigwedge_{\alpha \in \Lambda} p\beta clB_\alpha \leq \bigwedge_{\alpha \in \Lambda} (1_X \setminus U_\alpha)$. In fact, let x_t ($0 < t \leq 1$) be a fuzzy point such that $x_t \in$ $p\beta clB_\alpha = p\beta cl(1_X \setminus p\beta clU_\alpha)$. If x_tqU_α , then $p\beta clU_\alpha q(1_X \setminus p\beta clU_\alpha)$, which is absurd. Hence $x_t \not dU_\alpha \Rightarrow x_t \in 1_X \setminus U_\alpha$. Then $[\bigwedge_{\alpha \in \Lambda} p\beta clB_\alpha] \bigwedge A \leq A \bigwedge_{\alpha \in \Lambda} [\bigwedge_{\alpha \in \Lambda} (1_X \setminus U_\alpha)] = 0_X$. By (d), there exists a finite subset Λ_0 of Λ such that $[\bigwedge B_\alpha] \bigwedge A = 0_X$, i.e.,

$$A \leq 1_X \setminus \bigwedge_{\alpha \in \Lambda_0} B_\alpha = \bigvee_{\alpha \in \Lambda_0} (1_X \setminus B_\alpha) = \bigvee_{\alpha \in \Lambda_0} p\beta clU_\alpha$$
 and (e) follows

Definition 4.6. A fuzzy set A in an fts (X, τ) is said to be fuzzy regularly pre β open if $A = p\beta int(p\beta clA)$. The complement of such a set is called fuzzy regularly
pre β -closed.

Definition 4.7. A fuzzy point x_{α} in X is said to be a fuzzy $p\beta$ -cluster point of a prefilterbase \mathcal{B} if $x_{\alpha} \in p\beta clB$, for all $B \in \mathcal{B}$. If, in addition, $x_{\alpha} \in A$, for a fuzzy set A, then \mathcal{B} is said to have a fuzzy $p\beta$ -cluster point in A.

Theorem 4.8. A fuzzy set A in an fts (X, τ) is fuzzy pre β -compact if and only if for each prefilterbase \mathcal{F} in X which is such that for each set of finitely many members $F_1, F_2, ..., F_n$ from \mathcal{F} and for any fuzzy regularly pre β -closed set C containing A, one has $(F_1 \wedge ... \wedge F_n)qC$, \mathcal{F} has a fuzzy $p\beta$ -cluster point in A.

Proof. Let A be fuzzy pre β -compact set and suppose \mathcal{F} be a prefilterbase in X such that $[\bigwedge \{p\beta clF : F \in \mathcal{F}\}] \bigwedge A = 0_X...(1)$. Let $x \in suppA$. Consider any $n \in \mathcal{N}$ (the set of all natural numbers) such that 1/n < A(x), i.e., $x_{1/n} \in A$. By (1), $x_{1/n} \notin p\beta clF_x^n$, for some $F_x^n \in \mathcal{F}$. Then there exists a fuzzy pre β -open q-nbd U_x^n of $x_{1/n}$ such that $p\beta clU_x^n \not| qF_x^n$. Now $U_x^n(x) > 1 - 1/n \Rightarrow sup\{U_x^n(x) : 1/n < A(x), n \in \mathcal{N}\} = 1 \Rightarrow \mathcal{U} = \{U_x^n : x \in suppA, n \in \mathcal{N}\}$ forms a fuzzy pre β -open cover of A such that for U_x^n , there exists $F_x^n \in \mathcal{F}$ with $U_x^n \not| qF_x^n$. Since A is fuzzy pre β -compact, there exist finitely many members $U_{x_1}^{n_1}, \ldots, U_{x_k}^{n_k}$ of \mathcal{U} such that $A \leq \bigvee_{i=1}^k p\beta clU_{x_i}^{n_i} = p\beta cl(\bigvee_{x_i}^k)$ (by Result 3.7) (=U, say). Now $F_{x_1}^{n_1}, \ldots, F_{x_k}^{n_k} \in \mathcal{F}$ such that $p\beta clU \not| q(F_{x_1}^{n_1} \bigwedge \ldots \bigwedge F_{x_k}^{n_k}) \Rightarrow U \not| q(F_{x_1}^{n_1} \bigwedge \ldots \bigwedge F_{x_k}^{n_k})$.

Conversely, let \mathcal{B} be a prefilterbase in X having no fuzzy $p\beta$ -cluster point in A.

Then by hypothesis, there is a fuzzy regularly pre β -closed set C containing A such that for some finite subcollection \mathcal{B}_0 of \mathcal{B} , $(\bigwedge \mathcal{B}_0) \not A C$. Then $(\bigwedge \mathcal{B}_0) \not A A$. By Theorem 4.4 (b) \Rightarrow (a), A is fuzzy pre β -compact set.

From Theorem 4.4, Theorem 4.5 and Theorem 4.8, we have the characterizations of fuzzy pre β -compact space as follows.

Theorem 4.9. For an fts X, the following statements are equivalent :

(a) X is fuzzy pre β -compact,

(b) every fuzzy net in X $p\beta$ -adheres at some fuzzy point in X,

- (c) every fuzzy net in X has a $p\beta$ -convergent fuzzy subnet,
- (d) every prefilterbase in X $p\beta$ -adheres at some fuzzy point in X,
- (e) for every family $\{B_{\alpha} : \alpha \in \Lambda\}$ of non-null fuzzy sets with $[\bigwedge p\beta clB_{\alpha}] = 0_X$,

there is a finite subset Λ_0 of Λ such that $(\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}) = 0_X$,

(f) for every prefilterbase \mathcal{B} in X with $\bigwedge \{p\beta clB : B \in \mathcal{B}\} = 0_X$, there is a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $\bigwedge \{p\beta intB : B \in \mathcal{B}_0\} = 0_X$,

(g) for any family \mathcal{F} of fuzzy pre β -closed sets in X with $\bigwedge \mathcal{F} = 0_X$, there exists a finite subcollection \mathcal{F}_0 of \mathcal{F} such that $\bigwedge \{p\beta intF : F \in \mathcal{F}_0\} = 0_X$.

Theorem 4.10. An fts X is fuzzy pre β -compact if and only if for any collection $\{F_{\alpha} : \alpha \in \Lambda\}$ of fuzzy pre β -open sets in X having finite intersection property $\bigwedge \{p\beta clF_{\alpha} : \alpha \in \Lambda\} \neq 0_X.$

Proof. Let X be fuzzy pre β -compact space and $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a collection of fuzzy pre β -open sets in X with finite intersection property. Suppose $\bigwedge \{p\beta clF_{\alpha} : \alpha \in \Lambda\} = 0_X$. Then $\{1_X \setminus p\beta clF_{\alpha} : \alpha \in \Lambda\}$ is a fuzzy pre β -open cover of X. By hypothesis, there exists a finite subset Λ_0 of Λ such that $1_X = \bigvee \{p\beta cl(1_X \setminus p\beta clF_{\alpha}) : \alpha \in \Lambda_0\} = \bigvee \{1_X \setminus p\beta int(p\beta clF_{\alpha}) : \alpha \in \Lambda_0\} \leq \bigvee \{1_X \setminus F_{\alpha} : \alpha \in \Lambda_0\} = 1_X \setminus \bigwedge_{\alpha \in \Lambda_0} F_{\alpha} \Rightarrow \bigwedge_{\alpha \in \Lambda_0} F_{\alpha} = 0_X$ which contradicts the fact

that \mathcal{F} has finite intersection property.

Conversely, suppose that X is not fuzzy pre β -compact space. Then there is a fuzzy pre β -open cover $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ of X such that for every finite subset Λ_0 of Λ , $\bigvee \{p\beta clF_{\alpha} : \alpha \in \Lambda_0\} \neq 1_X$. Then $1_X \setminus \bigvee \{p\beta clF_{\alpha} : \alpha \in \Lambda_0\} \neq 0_X \Rightarrow \bigwedge_{\alpha \in \Lambda_0} (1_X \setminus p\beta clF_{\alpha}) \neq 0_X$, for every finite subset Λ_0 of Λ . Thus $\{1_X \setminus p\beta clF_{\alpha} : \alpha \in \Lambda\}$

is a collection of fuzzy pre β -open sets with finite intersection property. By hypothesis, $\bigwedge_{\alpha \in \Lambda} p\beta cl(1_X \setminus p\beta clF_{\alpha}) \neq 0_X$, i.e., $1_X \setminus \bigvee_{\alpha \in \Lambda} p\beta int(p\beta clF_{\alpha}) \neq 0_X \Rightarrow$ $\bigvee_{\alpha \in \Lambda} p\beta int(p\beta clF_{\alpha}) \neq 1_X. \text{ Hence } \bigvee_{\alpha \in \Lambda} F_{\alpha} \neq 1_X, \text{ a contradiction as } \mathcal{F} \text{ is a fuzzy}$ pre β -open cover of X.

Definition 4.11. Let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net of fuzzy pre β -open sets in X, i.e., for each member n of a directed set (D, \geq) , S_n is a fuzzy pre β -open set in X. A fuzzy point x_{α} in X is said to be a fuzzy $p\beta$ -cluster point of the fuzzy net if for every $n \in D$ and every fuzzy pre β -open q-nbd V of x_{α} , there exists $m \in D$ with $m \geq n$ such that $S_m qV$.

Theorem 4.12. An fts X is fuzzy pre β -compact if and only if every fuzzy net of fuzzy pre β -open sets in X has a fuzzy $p\beta$ -cluster point in X.

Proof. Let $\mathcal{U} = \{S_n : n \in (D, \geq)\}$ be a fuzzy net of fuzzy pre β -open sets in a fuzzy pre β -compact space X. For each $n \in D$, let us put $F_n = p\beta cl[\bigvee\{S_m : m \in D \text{ and } m \geq n\}]$. Then $\mathcal{F} = \{F_n : n \in D\}$ is a family of fuzzy pre β -closed sets in X with the condition that for every finite subcollection \mathcal{F}_0 of \mathcal{F} , $\bigwedge\{p\beta intF : F \in \mathcal{F}_0\} \neq 0_X$. By Theorem 4.9 (a) \Rightarrow (g), $\bigwedge_{n \in D} F_n \neq 0_X$. Let $x_\alpha \in \bigwedge_{n \in D} F_n$. Then $x_\alpha \in F_n$, for all $n \in D$. Thus for any fuzzy pre β -open q-nbd A of x_α and any

 $x_{\alpha} \in F_n$, for all $n \in D$. Thus for any fuzzy pre β -open q-nbd A of x_{α} and any $n \in D, Aq[\bigvee\{S_m : m \ge n\}]$ and so there exists some $m \in D$ with $m \ge n$ and $AqS_m \Rightarrow x_{\alpha}$ is a fuzzy $p\beta$ -cluster point of \mathcal{U} .

Conversely, let \mathcal{F} be a collection of fuzzy pre β -closed sets in X with the condition that for every finite subcollection \mathcal{F}_0 of \mathcal{F} , $\bigwedge \{p\beta intF : F \in \mathcal{F}_0\} \neq 0_X$. Let \mathcal{F}^* denote the family of all finite intersections of members of \mathcal{F} directed by the relation ' \gg ' such that for $F_1, F_2 \in \mathcal{F}^*$, $F_1 \gg F_2$ if and only if $F_1 \leq F_2$. Let $F^* = p\beta intF$, for each $F \in \mathcal{F}^*$. Then $F^* \neq 0_X$. Consider the fuzzy net $\mathcal{U} = \{F^* : F \in (\mathcal{F}^*, \gg)\}$ of non-null fuzzy pre β -open sets of X. By hypothesis, \mathcal{U} has a fuzzy $p\beta$ -cluster point, say x_α . We claim that $x_\alpha \in \bigwedge \mathcal{F}$. In fact, let $F \in \mathcal{F}$ be arbitrary and A be any fuzzy pre β -open q-nbd of x_α . Since $F \in \mathcal{F}^*$ and x_α is a fuzzy $p\beta$ -cluster point of \mathcal{U} , there exists $G \in \mathcal{F}^*$ such that $G \gg F$ (i.e., $G \leq F$) and $G^*qA \Rightarrow GqA \Rightarrow FqA \Rightarrow x_\alpha \in p\beta clF = F$, for each $F \in \mathcal{F} \Rightarrow x_\alpha \in \bigwedge \mathcal{F} \Rightarrow \bigwedge \mathcal{F} \neq 0_X$. By Theorem 4.9 (g) \Rightarrow (a), X is fuzzy pre β -compact space.

Definition 4.13. A fuzzy cover \mathcal{U} by fuzzy pre β -closed sets of an fts (X, τ) will be called a fuzzy $p\beta$ -cover of X if for each fuzzy point x_{α} ($0 < \alpha < 1$) in X, there exits $U \in \mathcal{U}$ such that U is a fuzzy pre β -open nbd of x_{α} .

Theorem 4.14. An fts (X, τ) is fuzzy pre β -compact if and only if every fuzzy $p\beta$ -cover of X has a finite subcover.

Proof. Let X be fuzzy pre β -compact space and \mathcal{U} be any fuzzy $p\beta$ -cover of X.

Then for each $n \in \mathcal{N}$ (the set of all natural numbers) with n > 1, there exist $U_x^n \in \mathcal{U}$ and a fuzzy pre β -open set V_x^n in X such that $x_{1-1/n} \leq V_x^n \leq U_x^n$. Then $V_x^n(x) \geq 1 - 1/n \Rightarrow \sup\{V_x^n(x) : n \in \mathcal{N}\} = 1 \Rightarrow \mathcal{V} = \{V_x^n : x \in X, n \in \mathcal{N}, n > 1\}$ is a fuzzy pre β -open cover of X. As X is fuzzy pre β -compact, there exist finitely many points $x_1, x_2, ..., x_m \in X$ and $n_1, n_2, ..., n_m \in N \setminus \{1\}$ such that

$$1_X = \bigvee_{k=1} p\beta cl V_{x_k}^{n_k} \le \bigvee_{k=1} p\beta cl U_{x_k}^{n_k} = \bigvee_{k=1} U_{x_k}^{n_k}$$

Conversely, let \mathcal{U} be fuzzy pre β -open cover of X. For any fuzzy point x_{α} ($0 < \alpha < 1$) in X, as $\sup_{U \in \mathcal{U}} U(x) = 1$, there exists $U_{x_{\alpha}} \in \mathcal{U}$ such that $U_{x_{\alpha}}(x) \ge \alpha$ ($0 < \alpha < 1$). Then \mathcal{V}_{α} ($\pi^{\alpha} \otimes \mathcal{U}_{\alpha}$) is a fuzzy $\pi^{\beta} \otimes \mathcal{U}_{\alpha}$ and the part is clear

Then $\mathcal{V} = \{p\beta clU : U \in \mathcal{U}\}$ is a fuzzy $p\beta$ -cover of X and the rest is clear.

The following theorem gives a necessary condition for an fts to be fuzzy pre β -compact.

Theorem 4.15. If an fts X is fuzzy pre β -compact, then every prefilterbase on X with at most one $p\beta$ -adherent point is $p\beta$ -convergent.

Proof. Let \mathcal{F} be a prefilterbase with at most one $p\beta$ -adherent point in a fuzzy pre β -compact fts X. Then by Theorem 4.9, \mathcal{F} has at least one $p\beta$ -adherent point in X. Let x_{α} be the unique $p\beta$ -adherent point of \mathcal{F} and if possible, let \mathcal{F} do not $p\beta$ converge to x_{α} . Then for some fuzzy pre β -open q-nbd U of x_{α} and for each $F \in \mathcal{F}$, $F \not\leq p\beta clU$, so that $F \bigwedge \{1_X \setminus p\beta clU\} \neq 0_X$. Then $\mathcal{G} = \{F \land (1_X \setminus p\beta clU) : F \in \mathcal{F}\}$ is a prefilterbase in X and hence has a $p\beta$ -adherent point y_t (say) in X. Now $p\beta clU \not AG$, for all $G \in \mathcal{G}$ so that $x_{\alpha} \neq y_t$. Again, for each fuzzy pre β -open q-nbd V of y_t and each $F \in \mathcal{F}$, $p\beta clVq(F \land (1_X \setminus p\beta clU)) \Rightarrow p\beta clVqF \Rightarrow y_t$ is a fuzzy $p\beta$ -adherent point of \mathcal{F} , where $x_{\alpha} \neq y_t$. This contradicts the fact that x_{α} is the only fuzzy $p\beta$ -adherent point of \mathcal{F} .

Some results on fuzzy pre $\beta\text{-compactness}$ of an fts are given by the following theorem.

Theorem 4.16. Let (X, τ) be an fts and $A \in I^X$. Then the following statements are true :

(a) If A is fuzzy pre β -compact, then so is $p\beta clA$,

(b) Union of two fuzzy pre β -compact sets is also so,

(c) If X is fuzzy pre β -compact, then every fuzzy regularly pre β -closed set A in X is fuzzy pre β -compact.

Proof. (a). Let \mathcal{U} be a fuzzy pre β -open cover of $p\beta clA$. Then \mathcal{U} is also a fuzzy pre β -open cover of A. As A is fuzzy pre β -compact, there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $A \leq \bigvee \{p\beta clU : U \in \mathcal{U}_0\} = p\beta cl\{\bigvee U : U \in \mathcal{U}_0\} \Rightarrow p\beta clA \leq p\beta cl\{p\beta cl[\bigvee \{U : U \in \mathcal{U}_0\}]\} = p\beta cl\{\bigvee U : U \in \mathcal{U}_0\} = \bigvee \{p\beta clU : U \in \mathcal{U}_0\}$. Hence

the proof.

(b). Obvious.

(c). Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy pre β -open cover of a fuzzy regularly pre β -closed set A in X. Then for each $x \notin suppA$, $A(x) = 0 \Rightarrow (1_X \setminus A)(x) =$ $1 \Rightarrow \mathcal{U} \setminus \{(1_X \setminus A)\}$ is a fuzzy pre β -open cover of X. Since X is fuzzy pre β -compact, there are finitely many members $U_1, U_2, ..., U_n$ in \mathcal{U} such that $1_X =$ $(p\beta clU_1 \bigvee ... \bigvee p\beta clU_n) \bigvee p\beta cl(1_X \setminus A)$. We claim that $p\beta intA \leq p\beta clU_1 \bigvee ... \bigvee p\beta clU_n$. If not, there exists a fuzzy point $x_t \in p\beta intA$, but $x_t \notin (p\beta clU_1 \bigvee ... \bigvee p\beta clU_n)$, i.e., $t > max\{(p\beta clU_1)(x), ..., (p\beta clU_n)(x)\}$. As $1_X = (p\beta clU_1 \bigvee ... \bigvee p\beta clU_n) \bigvee p\beta cl(1_X \setminus A), [p\beta cl(1_X \setminus A)](x) = 1 \Rightarrow 1 - p\beta intA(x) = 1 \Rightarrow p\beta intA(x) = 0 \Rightarrow x_t \notin p\beta intA,$ a contradiction. Hence $A = p\beta cl(p\beta intA) \leq p\beta cl(p\beta clU_1 \bigvee ... \bigvee p\beta clU_n) =$ $p\beta clU_1 \bigvee ... \bigvee p\beta clU_n$ (by Result 3.6 and Result 3.7) $\Rightarrow A$ is fuzzy pre β -compact set.

5. Mutual Relationship

Here we establish the mutual relationship between fuzzy almost compactness [3] and fuzzy pre β -compactness. Then it is shown that fuzzy pre β -compactness implies fuzzy almost compactness, but converse is true in fuzzy pre β -regular space [1]. It is also established that fuzzy pre β -compactness remains invariant under fuzzy pre β -irresolute function [1].

Since for any fuzzy set A in an fts X, $p\beta clA \leq clA$ (as every fuzzy closed set is fuzzy pre β -closed [1]), we can state the following theorem easily.

Theorem 5.1. Every fuzzy pre β -compact space is fuzzy almost compact.

To get the converse we have to recall the following definition and theorem for ready references.

Definition 5.2. [1] An fts (X, τ) is said to be fuzzy pre β -regular if for each fuzzy pre β -closed set F in X and each fuzzy point x_{α} in X with $x_{\alpha}q(1_X \setminus F)$, there exists a fuzzy open set U in X and a fuzzy pre β -open set V in X such that $x_{\alpha}qU$, $F \leq V$ and $U \not qV$.

Theorem 5.3. [1] An fts (X, τ) is fuzzy pre β -regular iff every fuzzy pre β -closed set is fuzzy closed.

Theorem 5.4. A fuzzy pre β -regular, fuzzy almost compact space X is fuzzy pre β -compact.

Proof. Let \mathcal{U} be a fuzzy pre β -open cover of a fuzzy pre β -regular, fuzzy almost compact space X. Then by Theorem 5.3, \mathcal{U} is a fuzzy open cover of X. As X is fuzzy almost compact, there is a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\bigvee \{ clU : U \in \mathcal{U}_0 \} = \bigvee \{ p\beta clU : U \in \mathcal{U}_0 \}$ (by Theorem 5.3) = $1_X \Rightarrow X$ is fuzzy pre β -compact. Next we recall the following definition and theorem for ready references.

Definition 5.5. [1] A function $f : X \to Y$ is said to be fuzzy pre β -irresolute if the inverse image of every fuzzy pre β -open set in Y is fuzzy pre β -open in X.

Theorem 5.6. [1] For a function $f : X \to Y$, the following statements are equivalent :

(i) f is fuzzy pre β -irresolute,

(ii) $f(p\beta clA) \leq p\beta cl(f(A))$, for all $A \in I^X$,

(iii) for each fuzzy point x_{α} in X and each fuzzy pre β -open q-nbd V of $f(x_{\alpha})$ in Y, there exists a fuzzy pre β -open q-nbd U of x_{α} in X such that $f(U) \leq V$.

Theorem 5.7. Fuzzy pre β -irresolute image of a fuzzy pre β -compact space is fuzzy pre β -compact.

Proof. Let $f: X \to Y$ be fuzzy pre β -irresolute surjection from a fuzzy pre β compact space X to an fts Y, and let \mathcal{V} be a fuzzy pre β -open cover of Y. Let $x \in X$ and f(x) = y. Since $\sup\{V(y) : V \in \mathcal{V}\} = 1$, for each $n \in \mathcal{N}$ (the set of all natural
numbers), there exists some $V_x^n \in \mathcal{V}$ with $V_x^n(y) > 1 - 1/n$ and so $y_{1/n}qV_x^n$. By fuzzy
pre β -irresoluteness of f, by Theorem 5.6 (i) \Rightarrow (iii), $f(U_x^n) \leq V_x^n$, for some fuzzy
pre β -open set U_x^n in X q-coincident with $x_{1/n}$. Since $U_x^n(x) > 1 - 1/n$, $\sup\{U_x^n(x) :$ $n \in \mathcal{N}\} = 1$. Then $\mathcal{U} = \{U_x^n : n \in \mathcal{N}, x \in X\}$ is a fuzzy pre β -open cover of X.

By fuzzy pre β -compactness of X, $\bigvee_{i=1}^{n} p\beta cl U_{x_i}^{n_i} = 1_X$, for some finite subcollection

$$\{U_{x_1}^{n_1}, ..., U_{x_k}^{n_k}\}$$
 of \mathcal{U} . Then $1_Y = f(\bigvee_{i=1}^k p\beta clU_{x_i}^{n_i}) = \bigvee_{i=1}^k f(p\beta clU_{x_i}^{n_i}) \le \bigvee_{i=1}^k p\beta cl(f(U_{x_i}^{n_i}))$

(by Theorem 5.6 (i) \Rightarrow (ii)) $\leq \bigvee_{i=1}^{n} p\beta cl V_{x_i}^{n_i} \Rightarrow Y$ is fuzzy pre β -compact space.

References

- [1] Bhattacharyya, Anjana, Fuzzy pre β -open set and its applications, J. of Ramanujan Society of Mathematics and Mathematical Sciences, 10 (2) (2023), 187-198.
- [2] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [3] DiConcillio, A. and Gerla, G., Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 13 (1984), 187-192.

- [4] Fath Alla, M. A., On fuzzy topological spaces, Ph.D. Thesis, Assiut Univ., Sohag, Egypt, 1984.
- [5] Ganguly, S. and Saha, S., A note on compactness in fuzzy setting, Fuzzy Sets and Systems, 34 (1990), 117-124.
- [6] Lowen, R., Convergence in fuzzy topological spaces, General Topology and Its Appl., 10 (1979), 147-160.
- [7] Mukherjee, M. N. and Sinha, S. P., Almost compact fuzzy sets in fuzzy topological spaces, Fuzzy Sets and Systems, 38 (1990), 389-396.
- [8] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
- [9] Zadeh, L. A.; Fuzzy Sets, Inform. Control, 8 (1965), 338-353.