South East Asian J. of Mathematics and Mathematical Sciences Vol. 19, No. 2 (2023), pp. 403-416

DOI: 10.56827/SEAJMMS.2023.1902.30 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

FUZZY PRE β-COMPACT SPACE

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, INDIA E-mail : anjanabhattacharyya@hotmail.com

(Received: Feb. 08, 2023 Accepted: Aug. 18, 2023 Published: Aug. 30, 2023)

Abstract: This paper deals with a new type of compactness, viz., fuzzy pre β compactness by using fuzzy pre β -open set [1] as a basic tool. We characterize this newly defined compactness by fuzzy net and prefilterbase. It is shown that this compactness implies fuzzy almost compactness [3] and the converse is true only on fuzzy pre β-regular space [1]. Afterwards, it is shown that this compactness remains invariant under fuzzy pre β -irresolute function [1].

Keywords and Phrases: Fuzzy pre β -open set, fuzzy pre β -regular space, fuzzy regularly pre β-closed set, fuzzy pre β-compact set (space), pre β-adherent point of a prefilterbase, pre β -cluster point of a fuzzy net.

2020 Mathematics Subject Classification: 54A40, 03E72.

1. Introduction

After introducing fuzzy compactness by Chang [2], many mathematicians have engaged themselves to introduce different types of fuzzy compactness. In [3], fuzzy almost compactness is introduced. In this paper we introduce fuzzy pre β -compactness which is weaker than fuzzy almost compactness. Here we use fuzzy net [8] and prefilterbase [6] to characterize fuzzy pre β-compactness.

2. Preliminaries

Throughout this paper, (X, τ) or simply by X we shall mean an fts. In 1965, L.A. Zadeh introduced fuzzy set [9] A which is a function from a non-empty set X

into the closed interval $I = [0, 1]$, i.e., $A \in I^X$. The support [9] of a fuzzy set A, denoted by suppA and is defined by $supp A = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t \ (0 \leq t \leq 1)$ will be denoted by x_t . O_X and 1_x are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [9] of a fuzzy set A in an fts X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A, B in X, $A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [9] while AqB means A is quasi-coincident (q-coincident, for short) [8] with B, i.e., there exists $x \in X$ such that $A(x) + B(x) > 1$. The negation of these two statements will be denoted by $A \nmid \mathcal{B}$ and A $\hat{\beta}$ respectively. For a fuzzy set A, clA and intA will stand for fuzzy closure $[2]$ and fuzzy interior $[2]$ of A respectively. A fuzzy set A in X is called a fuzzy neighbourhood (fuzzy nbd, for short) [8] of a fuzzy point x_t if there exists a fuzzy open set G in X such that $x_t \in G \leq A$. If, in addition, A is fuzzy open, then A is called fuzzy open nbd of x_t . A fuzzy set A is said to be a fuzzy q-nbd of a fuzzy point x_t in an fts X if there is a fuzzy open set U in X such that $x_t qU \leq A$. If, in addition, A is fuzzy open, then A is called a fuzzy open q-nbd $[8]$ of x_t .

A fuzzy set A in an fts (X, τ) is called fuzzy β -open [4] if $A \leq cl(int(clA))$. The complement of a fuzzy β -open set is called fuzzy β -closed [4]. The union (intersection) of all fuzzy β -open (resp., fuzzy β -closed) sets contained in (resp., containing) a fuzzy set A is called fuzzy β -interior [4] (resp., fuzzy β -closure [4]) of A, denoted by $\beta intA$ (resp., βcA).

Let (D, \geq) be a directed set and X be an ordinary set. Let J denote the collection of all fuzzy points in X. A function $S: D \to J$ is called a fuzzy net in X [8]. It is denoted by $\{S_n : n \in (D, \geq)\}\$. A non empty family F of fuzzy sets in X is called a prefilterbase on X if (i) $0_X \notin \mathcal{F}$ and (ii) for any $U, V \in \mathcal{F}$, there exists $W \in \mathcal{F}$ such that $W \leq U \bigcap V$ [6].

3. Fuzzy Pre β-Open Sets : Some Results

In this section we recall some definitions and results from [1, 2, 3, 5, 7] for ready references.

Definition 3.1. [1] A fuzzy set A in an fts (X, τ) is called fuzzy pre β -open if $A \leq \beta int(clA)$. The complement of this set is called fuzzy pre β -closed set. The union (resp., intersection) of all fuzzy pre β -open (resp., fuzzy pre β -closed)

sets contained in (containing) a fuzzy set A is called fuzzy pre β -interior (resp., fuzzy pre β -closure) of A, denoted by $p\beta intA$ (resp., $p\beta cIA$).

Definition 3.2. [1] A fuzzy set A in an fts (X, τ) is called fuzzy pre β -nbd of a fuzzy point x_α in X if there exists a fuzzy pre β -open set U in X such that $x_\alpha \in U \leq A$. If, in addition, A is fuzzy pre β-open, then A is called fuzzy pre β-open nbd of x_α .

Definition 3.3. [1] A fuzzy set A in an fts (X, τ) is called fuzzy pre β -q-nbd of a fuzzy point x_{α} in X if there exists a fuzzy pre β -open set U in X such that $x_{\alpha}qU \leq A$. If, in addition, A is fuzzy pre β-open, then A is called fuzzy pre β-open q-nbd of x_α .

Result 3.4. [1] Union (resp., intersection) of any two fuzzy pre β -open (resp., fuzzy pre β-closed) sets is also so.

Result 3.5. [1] $x_{\alpha} \in p\beta c A$ if and only if every fuzzy pre β -open q-nbd U of x_{α} , UqA .

Result 3.6. [1] $p\beta cl(p\beta clA) = p\beta clA$ for any fuzzy set A in an fts (X, τ) .

Result 3.7. $p\beta cl(A \bigvee B) = p\beta clA \bigvee p\beta clB$, for any two fuzzy sets A, B in X. Proof. It is clear that

$$
p\beta clA \bigvee p\beta clB \subseteq p\beta cl(A \bigvee B)...(1)
$$

Conversely, let $x_{\alpha} \in p\beta cl(A \bigvee B)$. Then for any fuzzy pre β -open q-nbd U of x_{α} , $Uq(A \vee B) \Rightarrow$ there exists $y \in X$ such that $U(y) + max\{A(y), B(y)\} > 1 \Rightarrow$ either $U(y) + A(y) > 1 \Rightarrow UqA$ or $U(y) + B(y) > 1 \Rightarrow UqB \Rightarrow$ either $x_\alpha \in p\beta cA$ or $x_{\alpha} \in p\beta clB \Rightarrow x_{\alpha} \in p\beta clA \bigvee p\beta clB.$

Result 3.8. For any fuzzy set A in an fts (X, τ) ,

(i) $p\beta cl(1_X \setminus A) = 1_X \setminus p\beta intA$,

(ii) $p\beta int(1_X \setminus A) = 1_X \setminus p\beta cIA.$

Proof. (i). Let $x_t \in p\beta cl(1_X \setminus A)$ for any $A \in I^X$. If possible, let $x_t \notin 1_X \setminus p\beta int A$. Then $x_t q p \beta int A$. Then there exists a fuzzy pre β -open set B in X with $B \leq A$ such that $x_t qB$. Then B is a fuzzy pre β -open q-nbd of x_t . By assumption, $Bq(1_X \setminus A) \Rightarrow Aq(1_X \setminus A)$, which is absurd.

Conversely, let $x_t \in 1_X \setminus p\beta intA$ for any $A \in I^X$. Then x_t $\text{dp}\beta intA$ and so x_t $\text{dp}U$ for any fuzzy pre β-open set U in X with $U \leq A \Rightarrow x_t \in 1_X \setminus U$ which is fuzzy pre β-closed set in X with $1_X \setminus A \le 1_X \setminus U$. So $x_t \in p\beta cl(1_X \setminus A)$.

(ii) Writing $1_X \setminus A$ for A in (i), we get the result.

Definition 3.9. Let A be a fuzzy set in an fts (X, τ) . A collection U of fuzzy sets in X is called a fuzzy cover of A if $sup{U(x) : U \in U} = 1$, for each $x \in suppA$ [5]. If each member of U is fuzzy open (resp., fuzzy pre β-open), we call U is fuzzy open [5] (resp., fuzzy pre β-open) cover of A. In particular, if $A = 1_X$, we get the definition of fuzzy cover of X [2].

Definition 3.10. A fuzzy cover U of a fuzzy set A in an fts (X, τ) is said to have a finite (resp., finite proximate) subcover \mathcal{U}_0 if \mathcal{U}_0 is a finite subcollection of $\mathcal U$ such that $\bigvee \mathcal{U}_0 \geq A$ [5] (resp., $\bigvee \{ \text{cl} U : U \in \mathcal{U}_0 \} \geq A$ [7]). In particular, if $A = 1_X$, we $get \bigvee U_0 = 1_X [2]$ (resp., $\bigvee \{clU : U \in \mathcal{U}_0\} = 1_X [3]$).

Definition 3.11. [3] An fts (X, τ) is called fuzzy almost compact space if every fuzzy open cover has a finite proximate subcover.

4. Fuzzy Pre β -compact Space : Some Characterizations

In this section fuzzy pre β -compactness is introduced and studied by fuzzy pre β-open and fuzzy regularly pre β-open sets and characterize this space via fuzzy net and prefilterbase.

Definition 4.1. A fuzzy set A in an fts (X, τ) is said to be a fuzzy pre β -compact set if every fuzzy pre β-open cover U of A has a finite pβ-proximate subcover, i.e., there exists a finite subcollection \mathcal{U}_0 of U such that $\bigvee \{p\beta clU : U \in \mathcal{U}_0\} \geq A$. If, in addition, $A = 1_X$, we say that the fts X is fuzzy pre β -compact space.

Definition 4.2. Let x_{α} be a fuzzy point in an fts (X, τ) . A prefilterbase F on X is called

(a) pβ-adhere at x_α , written as $x_\alpha \in p\beta$ -ad \mathcal{F} , if for each fuzzy pre β -open q-nbd U of x_{α} and each $F \in \mathcal{F}$, $Fqp\beta cll$, i.e., $x_{\alpha} \in p\beta clr$, for each $F \in \mathcal{F}$;

(b) $p\beta$ -converge to x_{α} , written as $\mathcal{F}_{p\beta}$ βx_{α} , if to each fuzzy pre β -open q-nbd U of x_{α} , there corresponds some $F \in \mathcal{F}$ such that $F \leq p\beta c l U$.

Definition 4.3. Let x_{α} be a fuzzy point in an fts (X, τ) . A fuzzy net $\{S_n : n \in \mathbb{R}\}$ (D, \geq) is said to

(a) pβ-adhere at x_{α} , denoted by $x_{\alpha} \in p\beta$ -ad(S_n), if for each fuzzy pre β-open q-nbd U of x_{α} and each $n \in D$, there exists $m \in D$ with $m \geq n$ such that $S_{m}qp\beta c l U$;

(b) $p\beta$ -converge to x_{α} , denoted by $S_n \overrightarrow{p} x_{\alpha}$, if for each fuzzy pre β -open q-nbd U of x_{α} , there exists $m \in D$ such that $S_n q p \beta c l U$, for all $n \geq m(n \in D)$.

Theorem 4.4. For a fuzzy set A in an fts X, the following statements are equivalent:

(a) A is a fuzzy pre β -compact set,

(b) for every prefilterbase B in X, $[\Lambda{p\beta clB : B \in B}] \Lambda A = 0_X \Rightarrow$ there exists a finite subcollection \mathcal{B}_0 of $\mathcal B$ such that $\bigwedge \{p\beta int B : B \in \mathcal{B}_0\}$ $\not\!\!\!\!/\,A$,

(c) for any family F of fuzzy pre β -closed sets in X with $\bigwedge \{F : F \in \mathcal{F}\}\bigwedge A = 0_X$, there exists a finite subcollection \mathcal{F}_0 of \mathcal{F} such that $\Lambda\{p\beta int F : F \in \mathcal{F}_0\}$ $\oint A$,

(d) every prefilterbase on X, each member of which is q-coincident with A, $p\beta$ adheres at some fuzzy point in A.

Proof. (a) \Rightarrow (b). Let B be a prefilterbase in X such that $\bigwedge \{p\beta c \mid B : B \in$ $\mathcal{B}[\bigwedge A = 0_X$. Then for any $x \in supp A$, $[\bigwedge \{p\beta clB : B \in \mathcal{B}\}](x) = 0 \Rightarrow 1 -$

 $F \in \mathcal{F}$

 $[\bigwedge \{p\beta clB(x) : B \in \mathcal{B}\}] = 1 \Rightarrow \bigvee [(1_X \setminus p\beta clB)(x) : B \in \mathcal{B}] = 1 \Rightarrow sup\{p\beta int(1_X \setminus p\beta clB)(x) : B \in \mathcal{B}\}]$ $B(x): B \in \mathcal{B}$ = 1 \Rightarrow {p $\beta int(1_X \setminus B): B \in \mathcal{B}$ } is a fuzzy pre β -open cover of A. By (a), there exists a finite pβ-proximate subcover $\{p\beta int(1_X \setminus B_1), p\beta int(1_X \setminus B_2)\}$ B_2 , ..., $p\beta int(1_X \setminus B_n)$ (say) of it for A. Thus $A \leq \bigvee^n$ $i=1$ $p\beta cl(p\beta int(1_X\setminus B_i))$ $=\bigvee^n$ $\frac{i=1}{i}$ $[1_X \setminus p\beta int(p\beta clB_i)] = 1_X \setminus \bigwedge^n$ $\frac{i=1}{i}$ $p\beta int(p\beta clB_i) \Rightarrow \bigwedge^n$ $i=1$ $p\beta int(p\beta c l B_i) \leq 1_X \setminus A \Rightarrow$ $A \notin \bigwedge^n$ $\frac{i=1}{i}$ $p\beta int(p\beta clB_i) \Rightarrow A \not q \bigwedge^n$ $i=1$ $p\beta int B_i.$ (b) \Rightarrow (a). Let the condition (b) hold, and suppose that there exists a fuzzy pre β-open cover U of A having no finite $pβ$ -proximate subcover for A. Then for every finite subcollection \mathcal{U}_0 of \mathcal{U} , there exists $x \in supp A$ such that $sup\{p\beta clU(x)$: $U \in \mathcal{U}_0$ } < $A(x)$, i.e., $1 - \sup\{(p\beta c lU)(x) : U \in \mathcal{U}_0\} > 1 - A(x) \geq 0 \Rightarrow \inf\{(1_X \setminus$ $p\beta clU)(x): U \in \mathcal{U}_0$ > 0. Thus { $\bigwedge (1_X \setminus p\beta clU) : \mathcal{U}_0$ is a finite subcollection of \mathcal{U} } U ∈ \mathcal{U}_0 $(=\mathcal{B}, \text{say})$ is a prefilterbase in X. If there exists a finite subcollection $\{U_1, U_2, ..., U_n\}$ (say) of U such that \bigwedge^n $i=1$ $p\beta int(1_X \setminus p\beta cl U_i)$ /qA, then $A \leq 1_X \setminus \bigwedge^n$ $\frac{i=1}{i}$ $p\beta int(1_X \setminus$ $p\beta cl U_i) = \bigvee^n$ $i=1$ $[1_X \setminus p\beta int(1_X \setminus p\beta cl U_i)] = \bigvee^n$ $\frac{i=1}{i}$ $p\beta cl(p\beta cl U_i) = \bigvee^n$ $i=1$ $p\beta c l U_i$ (by Result 3.6). Thus \mathcal{U} has a finite p β -proximate subcover for A, contradicts our hypothesis. Hence for every finite subcollection $\{\Lambda\}$ $U\in\mathcal{U}_1$ $(1_X \setminus p\beta clU), ..., \bigwedge$ U∈ \mathcal{U}_k $(1_X \setminus p\beta clU)$ of \mathcal{B} , where $\mathcal{U}_1, ..., \mathcal{U}_k$ are finite subset of U, we have $[\begin{array}{cc} \bigwedge & p\beta int(1_X \setminus p\beta clU) \end{array}] qA$. U ∈ U_1 $\bigvee ... \bigvee U_k$ By(b), $[\bigwedge p\beta cl(1_X \setminus p\beta clU)]\bigwedge A \neq 0_X$. Then there exists $x \in supp A$, such U∈U that $\inf_{U \in \mathcal{U}} [p\beta cl(1_X \setminus p\beta clU)](x) > 0 \Rightarrow 1 - \inf_{U \in \mathcal{U}} [p\beta cl(1_X \setminus p\beta clU)](x) < 1 \Rightarrow$ sup $\sup_{U \in \mathcal{U}} [1_X \setminus p\beta cl(1_X \setminus p\beta clU)](x) < 1 \Rightarrow \sup_{U \in \mathcal{U}}$ $U(x) \leq \sup$ U∈U $p\beta int(p\beta clU)(x) < 1$ which contradicts that $\mathcal U$ is a fuzzy pre β -open cover of A. (a) \Rightarrow (c). Let F be a family of fuzzy pre β -closed sets in X such that $\bigwedge \{F :$ $F \in \mathcal{F} \setminus \bigwedge A = 0_X$. Then for each $x \in supp A$ and for each positive integer n, there exists some $F_n \in \mathcal{F}$ such that $F_n(x) < 1/n \Rightarrow 1 - F_n(x) > 1 - 1/n \Rightarrow$ $\sup[(1_X \setminus F)(x)] = 1$ and so $\{1_X \setminus F : F \in \mathcal{F}\}$ is a fuzzy pre β -open cover of A. By

(a), there exists a finite subcollection \mathcal{F}_0 of F such that $A \leq \bigvee p\beta cl(1_X \setminus F) \Rightarrow$ $F \in \mathcal{F}_0$ $1_X \setminus A \geq 1_X \setminus \bigvee$ $_{F \in \mathcal{F}_0}$ $p\beta cl(1_X \setminus F) = \bigwedge$ $F{\in}\mathcal{F}_0$ $(1_X \setminus p\beta cl(1_X \setminus F)) = \bigwedge$ $_{F \in \mathcal{F}_0}$ $p\beta int F$. Hence A \cancel{q} (\bigwedge $F{\in}\mathcal{F}_0$ $p\beta int F$, where \mathcal{F}_0 is a finite subcollection of \mathcal{F} . (c) \Rightarrow (b). Let B be a prefilterbase in X such that $[\Lambda\{p\beta clB : B \in \mathcal{B}\}] \Lambda A = 0_X$. Then the family $\mathcal{F} = \{p\beta c lB : B \in \mathcal{B}\}\$ is a family of fuzzy pre β -closed sets in X with $(\bigwedge F)\bigwedge A=0_X$. By (c), there is a finite subcollection \mathcal{B}_0 of $\mathcal B$ such that $[\bigwedge \{p\beta int(p\beta clB) : B \in \mathcal{B}_0\}] \not\!A \Rightarrow (\bigwedge$ $p\beta intB)$ $\oint A$.

 $B \in \mathcal{B}_0$ (a) \Rightarrow (d). Let F be a prefilterbase in X, each member of which is q-coincident with A. If possible, let F do not p β -adhere at any fuzzy point in A. Then for each $x \in supp A$, there exists $n_x \in \mathcal{N}$ (the set of all natural numbers) such that $x_{1/n_x} \in A$. Then there are a fuzzy pre β -open set $U_{n_x}^x$ and a member $F_{n_x}^x$ of F such that $x_{1/n_x} qU_{n_x}^x$ and $p\beta cUV_{n_x}^x$ /qF_{n_x}. Thus $U_{n_x}^x(x) > 1 - 1/n_x$ so that $sup\{U_n^x(x) : n \in \mathcal{N}, n \ge n_x\} = 1$. Thus $\{U_n^x : n \in \mathcal{N}, n \ge n_x, x \in supp A\}$ forms a fuzzy pre β -open cover of A. By (a), there exist finitely many points $x_1, x_2, ..., x_k \in supp A$ and $n_1, n_2, ..., n_k \in \mathcal{N}$ such that $A \leq \bigvee$ k $i=1$ $p\beta cl U_{n_{x_i}}^{x_i}$. Choose

 $F \in \mathcal{F}$ such that $F \leq \bigwedge$ k $i=1$ $F_{n_i}^{x_i}$. Then $F \notin \big[\bigvee$ k $i=1$ $p\beta cl U_{n_{x_i}}^{x_i}],$ i.e., $F \not\!{q} A$, a contradiction. (d) \Rightarrow (a). If possible, let there exist a fuzzy pre β-open cover U of A such that for every finite subset \mathcal{U}_0 of $\mathcal{U}, \ \forall \{p\beta clU : U \in \mathcal{U}_0\} \not\geq A$. Then $\mathcal{F} =$

 $\{1_X\setminus\bigvee p\beta clU : U_0$ is a finite subset of $\mathcal{U}\}\$ is a prefilterbase on X such that $F qA$, $U \in \mathcal{U}_0$

for each $F \in \mathcal{F}$. By (d), \mathcal{F} p β -adheres at some fuzzy point $x_{\alpha} \in A$. As U is a fuzzy cover of A, $\text{sup}U(x) = 1 \Rightarrow$ there exists $U_0 \in \mathcal{U}$ such that $U_0(x) > 1 - \alpha \Rightarrow x_\alpha q U_0$. U∈U As $x_{\alpha} \in p\beta$ -ad $\mathcal F$ and $1_X \setminus p\beta c l U_0 \in \mathcal F$, we have $p\beta c l U_0 q(1_X \setminus p\beta c l U_0)$, a contradiction.

Theorem 4.5. For a fuzzy set A in an fts X, the following implications hold : (a) every fuzzy net in A p β -adheres at some fuzzy point in A, \Leftrightarrow (b) every fuzzy net in A has a pβ-convergent fuzzy subnet, \Leftrightarrow (c) every prefilterbase in A p β -adheres at some fuzzy point in A, \Rightarrow (d) for every family $\{B_\alpha:\alpha\in\Lambda\}$ of non-null fuzzy sets with $[\,\bigwedge p\beta clB_\alpha]\bigwedge A=0$ α∈Λ

 0_X , there is a finite subset Λ_0 of Λ such that $(\bigwedge B_\alpha)\bigwedge A=0_X,$ $\alpha \in \Lambda_0$

 \Rightarrow (e) A is fuzzy pre β-compact set.

Proof. (a) \Rightarrow (b). Let a fuzzy net $\{S_n : n \in (D, \geq)\}\$ in A where (D, \geq) is a directed set, pβ-adhere at a fuzzy point $x_{\alpha} \in A$. Let $Q_{x_{\alpha}}$ denote the set of the fuzzy $p\beta$ -closures of all fuzzy pre β -open q-nbds of x_{α} . For any $B \in Q_{x_{\alpha}}$, we can choose some $n \in D$ such that $S_n qB$. Let E denote the set of all ordered pairs (n, B) with the property that $n \in D$, $B \in Q_{x_{\alpha}}$ and $S_n qB$. Then (E, \gg) is a directed set where $(m, C) \gg (n, B)$ if and only if $m \geq n$ in D and $C \leq B$. Then $T: (E, \gg) \to (X, \tau)$ given by $T(n, B) = S_n$, is a fuzzy subnet of $\{S_n : n \in (D, \geq)\}\$. Let V be any fuzzy pre β -open q-nbd of x_{α} . Then there is $n \in D$ such that that $(n, p\beta c)V$ \in E and hence $S_nqp\beta cV$. Now, for any $(m, U) \gg (n, p\beta cV)$, $T(m, U) = S_m qU \leq p\beta cW \Rightarrow T(m, U)qp\beta cW$. Hence $T_{p\beta} \hat{\beta} x_{\alpha}$.

(b) \Rightarrow (a). If a fuzzy net $\{S_n : n \in (D, \geq)\}\)$ does not p β -adhere at a fuzzy point x_α , then there is a fuzzy pre β-open q-nbd U of x_α and an $n \in D$ such that S_m $\hat{q}p\beta c l U$, for all $m \geq n$. Then obviously no fuzzy subnet of the fuzzy net can p β -converge to x_{α} .

(a) \Rightarrow (c). Let $\mathcal{F} = \{F_\alpha : \alpha \in \Lambda\}$ be a prefilterbase in A. For each $\alpha \in \Lambda$, choose a fuzzy point $x_{F_\alpha} \in F_\alpha$ and construct the fuzzy net $S = \{x_{F_\alpha} : F_\alpha \in \mathcal{F}\}\$ in A with (\mathcal{F}, \gg) as domain, where for two members $F_{\alpha}, F_{\beta} \in \mathcal{F}, F_{\alpha} \gg F_{\beta}$ if and only if $F_{\alpha} \leq F_{\beta}$. By (a), the fuzzy net S p β -adheres at some fuzzy point x_t $(0 < t \leq 1) \in A$. Then for any fuzzy pre β -open q-nbd U of x_t and any $F_\alpha \in \mathcal{F}$, there exists $F_\beta \in \mathcal{F}$ such that $F_\beta \gg F_\alpha$ and $x_{F_\beta}qp\beta clU$. Then $F_\beta qp\beta clU$ and hence $F_{\alpha}qp\beta clU$. Thus \mathcal{F} p β -adheres at x_t .

(c) \Rightarrow (a). Let $\{S_n : n \in (D, \geq)\}\$ be a fuzzy net in A. Consider the prefilterbase $\mathcal{F} = \{T_n : n \in D\}$ generated by the net, where $T_n = \{S_m : m \in D, m \geq n\}$. By (c), there exists a fuzzy point $a_{\alpha} \in A$ such that \mathcal{F} p β -adheres at a_{α} . Then for each fuzzy pre β-open q-nbd U of a_{α} and each $F \in \mathcal{F}$, $Fqp\beta cIU$, i.e., $p\beta cIU$ qT_n , for all $n \in D$. Hence the given fuzzy net pβ-adheres at a_{α} .

(c) \Rightarrow (d). Let $\mathcal{B} = \{B_\alpha : \alpha \in \Lambda\}$ be a family of fuzzy sets in X such that for every finite subset Λ_0 of Λ , (Λ $\alpha \in \Lambda_0$ B_{α}) $\bigwedge A \neq 0_X$. Then $\mathcal{F} = \{(\bigwedge$ $\alpha \in \Lambda_0$ B_α) $\bigwedge A$: Λ_0

is a finite subset of Λ is a prefilterbase in A. By (c), \mathcal{F} p β -adheres at some fuzzy point $a_t \in A$ ($0 < t \leq 1$). Then for each $\alpha \in \Lambda$ and each fuzzy pre β open q-nbd U of a_t , $B_\alpha qp\beta clU$, i.e., $a_t \in p\beta clB_\alpha$, for each $\alpha \in \Lambda$. Consequently, $\left(\bigwedge p\beta cl B_{\alpha}\right) \bigwedge A \neq 0_X.$

$$
\alpha \in \Lambda
$$

\n
$$
\alpha \in \Lambda
$$

(d) \Rightarrow (e). Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy pre β -open cover of a fuzzy set A.

Then by (d), $A \wedge [\wedge]$ α∈Λ $(1_X \setminus U_\alpha)] = A \bigwedge [1_X \setminus \bigvee$ α∈Λ $[U_{\alpha}] = 0_X$. If for some $\alpha \in \Lambda$, $1_X \setminus p\beta c l U_\alpha = 0_X$, then we are done. If $1_X \setminus p\beta c l U_\alpha (=B_\alpha, \text{say}) \neq 0_X$, then for each $\alpha \in \Lambda$, $\mathcal{B} = \{B_{\alpha} : \alpha \in \Lambda\}$ is a family of non-null fuzzy sets. We show that $\bigwedge p\beta c l B_{\alpha} \leq \bigwedge (1_X \backslash U_{\alpha})$. In fact, let x_t ($0 < t \leq 1$) be a fuzzy point such that $x_t \in$ α∈Λ α∈Λ $p\beta c l B_{\alpha} = p\beta c l (1_X \backslash p\beta c l U_{\alpha})$. If $x_t q U_{\alpha}$, then $p\beta c l U_{\alpha} q (1_X \backslash p\beta c l U_{\alpha})$, which is absurd. Hence x_t $\hat{A}U_\alpha \Rightarrow x_t \in 1_X \setminus U_\alpha$. Then $[\bigwedge$ α∈Λ $p\beta cl B_{\alpha}$] $\bigwedge A \leq A \bigwedge [\bigwedge$ α∈Λ $(1_X \setminus U_\alpha)]=0_X.$ By (d), there exists a finite subset Λ_0 of Λ such that $\left[\bigwedge B_\alpha\right]\bigwedge A = 0_X$, i.e., $\alpha \in \Lambda_0$

 $A \leq 1_X \setminus \bigwedge$ $\alpha \in \Lambda_0$ $B_\alpha = \sqrt{}$ $\alpha \in \Lambda_0$ $(1_X \setminus B_\alpha) = \bigvee$ $\alpha \in \Lambda_0$ $p\beta c l U_{\alpha}$ and (e) follows.

Definition 4.6. A fuzzy set A in an fts (X, τ) is said to be fuzzy regularly pre β open if $A = p\beta int(p\beta cA)$. The complement of such a set is called fuzzy regularly pre β-closed.

Definition 4.7. A fuzzy point x_{α} in X is said to be a fuzzy p β -cluster point of a prefilterbase B if $x_\alpha \in p\beta c \in B$, for all $B \in \mathcal{B}$. If, in addition, $x_\alpha \in A$, for a fuzzy set A, then B is said to have a fuzzy p β -cluster point in A.

Theorem 4.8. A fuzzy set A in an fts (X, τ) is fuzzy pre β-compact if and only if for each prefilterbase $\mathcal F$ in X which is such that for each set of finitely many members $F_1, F_2, ..., F_n$ from F and for any fuzzy regularly pre β -closed set C containing A, one has $(F_1 \wedge ... \wedge F_n) qC$, F has a fuzzy p β -cluster point in A.

Proof. Let A be fuzzy pre β -compact set and suppose F be a prefilterbase in X such that $[\Lambda\{p\beta clF : F \in \mathcal{F}\}] \Lambda A = 0_X...(1)$. Let $x \in supp A$. Consider any $n \in \mathcal{N}$ (the set of all natural numbers) such that $1/n < A(x)$, i.e., $x_{1/n} \in A$. By (1), $x_{1/n} \notin p\beta cl F_x^n$, for some $F_x^n \in \mathcal{F}$. Then there exists a fuzzy pre β -open q-nbd U_x^n of $x_{1/n}$ such that $p\beta c l U_x^n$ $\oint F_x^n$. Now $U_x^n(x) > 1 - 1/n \Rightarrow sup{U_x^n(x) : 1/n}$ $A(x), n \in \mathcal{N}$ } = 1 $\Rightarrow \mathcal{U} = \{U_x^n : x \in supp A, n \in \mathcal{N}\}\)$ forms a fuzzy pre β -open cover of A such that for U_x^n , there exists $F_x^n \in \mathcal{F}$ with U_x^n $\oint F_x^n$. Since A is fuzzy pre β -compact, there exist finitely many members $U_{x_1}^{n_1}, \ldots, U_{x_k}^{n_k}$ of U such that $A \leq \bigvee$ k $i=1$ $p\beta cl U_{x_i}^{n_i} = p\beta cl(\bigvee$ k $i=1$ $U_{x_i}^{n_i}$) (by Result 3.7) (=U, say). Now $F_{x_1}^{n_1}, ..., F_{x_k}^{n_k} \in \mathcal{F}$ such that $U_{x_i}^{n_i}$ $\acute{H}F_{x_i}^{n_i}$ for $i = 1, 2, ..., k$. Now U is a fuzzy regularly pre β -closed set containing A such that $p\beta c l U \not\!{A} (F_{x_1}^{n_1} \wedge \ldots \wedge F_{x_k}^{n_k}) \Rightarrow U \not\!{A} (F_{x_1}^{n_1} \wedge \ldots \wedge F_{x_k}^{n_k}).$

Conversely, let B be a prefilterbase in X having no fuzzy $p\beta$ -cluster point in A.

Then by hypothesis, there is a fuzzy regularly pre β -closed set C containing A such that for some finite subcollection \mathcal{B}_0 of \mathcal{B} , $(\bigwedge \mathcal{B}_0)$ $\not\!\!q C$. Then $(\bigwedge \mathcal{B}_0)$ $\not\!\!q A$. By Theorem 4.4 (b) \Rightarrow (a), A is fuzzy pre β -compact set.

From Theorem 4.4, Theorem 4.5 and Theorem 4.8, we have the characterizations of fuzzy pre β -compact space as follows.

Theorem 4.9. For an fts X , the following statements are equivalent :

(a) X is fuzzy pre β -compact,

- (b) every fuzzy net in X p β -adheres at some fuzzy point in X,
- (c) every fuzzy net in X has a p β -convergent fuzzy subnet,
- (d) every prefilterbase in X p β -adheres at some fuzzy point in X,
- (e) for every family ${B_\alpha : \alpha \in \Lambda}$ of non-null fuzzy sets with $\left[\bigwedge p\beta c l B_\alpha\right] = 0_X$,

there is a finite subset Λ_0 of Λ such that $(A \cap B_\alpha) = 0_X$, $\alpha \in \Lambda_0$

(f) for every prefilterbase B in X with $\Lambda\{p\beta c lB : B \in \mathcal{B}\}=0_X$, there is a finite subcollection \mathcal{B}_0 of $\mathcal B$ such that $\bigwedge \{p\beta int B : B \in \mathcal{B}_0\} = 0_X$,

(g) for any family F of fuzzy pre β -closed sets in X with $\bigwedge \mathcal{F} = 0_X$, there exists a finite subcollection \mathcal{F}_0 of $\mathcal F$ such that $\bigwedge \{p\beta int F : F \in \mathcal{F}_0\} = 0_X$.

Theorem 4.10. An fts X is fuzzy pre β -compact if and only if for any collection ${F_\alpha : \alpha \in \Lambda}$ of fuzzy pre β-open sets in X having finite intersection property $\bigwedge \{p\beta cl F_\alpha : \alpha \in \Lambda\} \neq 0_X.$

Proof. Let X be fuzzy pre β -compact space and $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a collection of fuzzy pre β -open sets in X with finite intersection property. Suppose $\Lambda\{p\beta cl F_\alpha : \alpha \in \Lambda\} = 0_X$. Then $\{1_X \setminus p\beta cl F_\alpha : \alpha \in \Lambda\}$ is a fuzzy pre β open cover of X. By hypothesis, there exists a finite subset Λ_0 of Λ such that $1_X = \sqrt{\{p\beta cl(1_X \setminus p\beta cl F_\alpha) : \alpha \in \Lambda_0\}} = \sqrt{\{1_X \setminus p\beta int(p\beta cl F_\alpha) : \alpha \in \Lambda_0\}} \le$ $\bigvee \{1_X \setminus F_\alpha : \alpha \in \Lambda_0\} = 1_X \setminus \bigwedge F_\alpha \Rightarrow \bigwedge F_\alpha = 0_X$ which contradicts the fact $\alpha \in \Lambda_0$ $\alpha \in \Lambda_0$

that $\mathcal F$ has finite intersection property.

Conversely, suppose that X is not fuzzy pre β -compact space. Then there is a fuzzy pre β-open cover $\mathcal{F} = \{F_\alpha : \alpha \in \Lambda\}$ of X such that for every finite subset Λ_0 of Λ , $\bigvee \{p\beta cl F_\alpha : \alpha \in \Lambda_0\} \neq 1_X$. Then $1_X \setminus \bigvee \{p\beta cl F_\alpha : \alpha \in \Lambda_0\} \neq 0_X \Rightarrow$ $\bigwedge (1_X \setminus p\beta cl F_\alpha) \neq 0_X$, for every finite subset Λ_0 of Λ . Thus $\{1_X \setminus p\beta cl F_\alpha : \alpha \in \Lambda\}$ $\alpha \in \Lambda_0$

is a collection of fuzzy pre β -open sets with finite intersection property. By hypothesis, $\bigwedge p\beta cl(1_X \setminus p\beta cl F_\alpha) \neq 0_X$, i.e., $1_X \setminus \bigvee p\beta int(p\beta cl F_\alpha) \neq 0_X \Rightarrow$ α∈Λ α∈Λ

α∈Λ

 \setminus α∈Λ $p\beta int(p\beta cl F_{\alpha}) \neq 1_X$. Hence \bigvee α∈Λ $F_{\alpha} \neq 1_X$, a contradiction as $\mathcal F$ is a fuzzy pre β -open cover of X.

Definition 4.11. Let $\{S_n : n \in (D, \geq)\}\$ be a fuzzy net of fuzzy pre β -open sets in X, i.e., for each member n of a directed set (D, \geq) , S_n is a fuzzy pre β -open set in X. A fuzzy point x_{α} in X is said to be a fuzzy p β -cluster point of the fuzzy net if for every $n \in D$ and every fuzzy pre β -open q-nbd V of x_{α} , there exists $m \in D$ with $m \geq n$ such that $S_m qV$.

Theorem 4.12. An fts X is fuzzy pre β -compact if and only if every fuzzy net of fuzzy pre β-open sets in X has a fuzzy p β -cluster point in X.

Proof. Let $\mathcal{U} = \{S_n : n \in (D, \geq)\}\$ be a fuzzy net of fuzzy pre β -open sets in a fuzzy pre β -compact space X. For each $n \in D$, let us put $F_n = p\beta cl[\bigvee \{S_m : m \in D\}$ and $m \geq n$. Then $\mathcal{F} = \{F_n : n \in D\}$ is a family of fuzzy pre β -closed sets in X with the condition that for every finite subcollection \mathcal{F}_0 of $\mathcal{F}, \bigwedge \{p\beta int F : F \in$ $\{\mathcal{F}_0\} \neq 0_X$. By Theorem 4.9 (a) \Rightarrow (g), \bigwedge n∈D $F_n \neq 0_X$. Let $x_\alpha \in \bigwedge$ n∈D F_n . Then $x_{\alpha} \in F_n$, for all $n \in D$. Thus for any fuzzy pre β -open q-nbd A of x_{α} and any

 $n \in D$, $Aq[\sqrt{\{S_m : m \geq n\}}]$ and so there exists some $m \in D$ with $m \geq n$ and $AgS_m \Rightarrow x_\alpha$ is a fuzzy p β -cluster point of U.

Conversely, let F be a collection of fuzzy pre β -closed sets in X with the condition that for every finite subcollection \mathcal{F}_0 of \mathcal{F} , $\bigwedge \{p\beta int F : F \in \mathcal{F}_0\} \neq 0_X$. Let \mathcal{F}^* denote the family of all finite intersections of members of $\mathcal F$ directed by the relation ' \gg ' such that for $F_1, F_2 \in \mathcal{F}^*, F_1 \gg F_2$ if and only if $F_1 \leq F_2$. Let $F^* = p\beta int F$, for each $F \in \mathcal{F}^*$. Then $F^* \neq 0_X$. Consider the fuzzy net $\mathcal{U} = \{F^* : F \in (\mathcal{F}^*, \gg)\}\$ of non-null fuzzy pre β -open sets of X. By hypothesis, U has a fuzzy p β -cluster point, say x_{α} . We claim that $x_{\alpha} \in \Lambda \mathcal{F}$. In fact, let $F \in \mathcal{F}$ be arbitrary and A be any fuzzy pre β -open q-nbd of x_{α} . Since $F \in \mathcal{F}^*$ and x_α is a fuzzy p β -cluster point of U, there exists $G \in \mathcal{F}^*$ such that $G \gg F$ (i.e., $G \leq F$) and $G^*qA \Rightarrow GqA \Rightarrow FqA \Rightarrow x_\alpha \in p\beta cl F = F$, for each $F \in \mathcal{F} \Rightarrow x_\alpha \in \mathcal{F} \Rightarrow \mathcal{F} \neq 0_X$. By Theorem 4.9 (g) \Rightarrow (a), X is fuzzy pre β -compact space.

Definition 4.13. A fuzzy cover U by fuzzy pre β -closed sets of an fts (X, τ) will be called a fuzzy p β -cover of X if for each fuzzy point x_{α} $(0 < \alpha < 1)$ in X, there exits $U \in \mathcal{U}$ such that U is a fuzzy pre β -open nbd of x_{α} .

Theorem 4.14. An fts (X, τ) is fuzzy pre β-compact if and only if every fuzzy $p\beta$ -cover of X has a finite subcover.

Proof. Let X be fuzzy pre β-compact space and U be any fuzzy $p\beta$ -cover of X.

Then for each $n \in \mathcal{N}$ (the set of all natural numbers) with $n > 1$, there exist U_x^n ∈ U and a fuzzy pre β-open set V_x^n in X such that $x_{1-1/n}$ ≤ V_x^n ≤ U_x^n . Then $V_x^n(x) \ge 1 - 1/n \Rightarrow \sup\{V_x^n(x) : n \in \mathcal{N}\} = 1 \Rightarrow \mathcal{V} = \{V_x^n : x \in X, n \in \mathcal{N}, n > 1\}$ is a fuzzy pre β -open cover of X. As X is fuzzy pre β -compact, there exist finitely many points $x_1, x_2, ..., x_m \in X$ and $n_1, n_2, ..., n_m \in N \setminus \{1\}$ such that \bigvee^m \bigvee^m \bigvee^m n_k .

$$
1_X = \bigvee_{k=1}^{\infty} p\beta c l V_{x_k}^{n_k} \le \bigvee_{k=1}^{\infty} p\beta c l U_{x_k}^{n_k} = \bigvee_{k=1}^{\infty} U_{x_k}^{n_k}
$$

Conversely, let U be fuzzy pre β -open cover of X. For any fuzzy point x_{α} ($0 < \alpha <$ 1) in X, as $\sup U(x) = 1$, there exists $U_{x_\alpha} \in \mathcal{U}$ such that $U_{x_\alpha}(x) \ge \alpha \ (0 < \alpha < 1)$. U∈U

Then $V = \{p\beta c l U : U \in \mathcal{U}\}\$ is a fuzzy $p\beta$ -cover of X and the rest is clear.

The following theorem gives a necessary condition for an fts to be fuzzy pre β -compact.

Theorem 4.15. If an fts X is fuzzy pre β -compact, then every prefilterbase on X with at most one $p\beta$ -adherent point is p β -convergent.

Proof. Let F be a prefilterbase with at most one $p\beta$ -adherent point in a fuzzy pre β-compact fts X. Then by Theorem 4.9, F has at least one $p\beta$ -adherent point in X. Let x_α be the unique p β -adherent point of F and if possible, let F do not p β converge to x_α . Then for some fuzzy pre β -open q-nbd U of x_α and for each $F \in \mathcal{F}$, $F \nleq p\beta clU$, so that $F \wedge \{1_X \pedge p\beta clU\} \neq 0_X$. Then $\mathcal{G} = \{F \wedge (1_X \pedge p\beta clU) : F \in \mathcal{F}\}\$ is a prefilterbase in X and hence has a $p\beta$ -adherent point y_t (say) in X. Now $p\beta c l U \not{q} G$, for all $G \in \mathcal{G}$ so that $x_{\alpha} \neq y_t$. Again, for each fuzzy pre β -open q-nbd V of y_t and each $F \in \mathcal{F}$, $p\beta c V q(F \wedge (1_X \setminus p\beta c l U)) \Rightarrow p\beta c V q F \Rightarrow y_t$ is a fuzzy pβ-adherent point of F, where $x_{\alpha} \neq y_t$. This contradicts the fact that x_{α} is the only fuzzy $p\beta$ -adherent point of $\mathcal F$.

Some results on fuzzy pre β -compactness of an fts are given by the following theorem.

Theorem 4.16. Let (X, τ) be an fts and $A \in I^X$. Then the following statements are true :

(a) If A is fuzzy pre β -compact, then so is p β clA,

(b) Union of two fuzzy pre β -compact sets is also so,

(c) If X is fuzzy pre β-compact, then every fuzzy regularly pre β-closed set A in X is fuzzy pre β-compact.

Proof. (a). Let U be a fuzzy pre β -open cover of $p\beta cA$. Then U is also a fuzzy pre β-open cover of A. As A is fuzzy pre β-compact, there exists a finite subcollection \mathcal{U}_0 of U such that $A \leq \bigvee \{p\beta clU : U \in \mathcal{U}_0\} = p\beta cl\{\bigvee U : U \in \mathcal{U}_0\} \Rightarrow p\beta clA \leq \emptyset$ $p\beta cl\{p\beta cl[\bigvee U: U \in \mathcal{U}_0\}] = p\beta cl\{\bigvee U: U \in \mathcal{U}_0\} = \bigvee \{p\beta clU: U \in \mathcal{U}_0\}.$ Hence the proof.

(b). Obvious.

(c). Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy pre β -open cover of a fuzzy regularly pre β-closed set A in X. Then for each $x \notin supp A$, $A(x) = 0 \Rightarrow (1_X \setminus A)(x) =$ $1 \Rightarrow \mathcal{U} \bigvee \{(1_X \setminus A)\}\$ is a fuzzy pre β -open cover of X. Since X is fuzzy pre β-compact, there are finitely many members $U_1, U_2, ..., U_n$ in U such that $1_X =$ $(p\beta c l U_1 \bigvee ... \bigvee p\beta c l U_n) \bigvee p\beta c l(1_X \setminus A)$. We claim that $p\beta int A \leq p\beta c l U_1 \bigvee ... \bigvee p\beta c l U_n$. If not, there exists a fuzzy point $x_t \in p\beta int A$, but $x_t \notin (p\beta cl U_1 \setminus ... \setminus p\beta cl U_n)$, i.e., $t > max\{(p\beta clU_1)(x), ..., (p\beta clU_n)(x)\}\)$. As $1_X = (p\beta clU_1 \bigvee ... \bigvee p\beta clU_n) \bigvee p\beta cl(1_X \setminus ...)$ A), $[p\beta cl(1_X \setminus A)](x) = 1 \Rightarrow 1 - p\beta intA(x) = 1 \Rightarrow p\beta intA(x) = 0 \Rightarrow x_t \notin p\beta intA$, a contradiction. Hence $A = p\beta cl(p\beta int A) \leq p\beta cl(p\beta cl U_1 \setminus ... \setminus p\beta cl U_n) =$ $p\beta c l U_1 \bigvee \dots \bigvee p\beta c l U_n$ (by Result 3.6 and Result 3.7) $\Rightarrow A$ is fuzzy pre β -compact set.

5. Mutual Relationship

Here we establish the mutual relationship between fuzzy almost compactness [3] and fuzzy pre β-compactness. Then it is shown that fuzzy pre β-compactness implies fuzzy almost compactness, but converse is true in fuzzy pre β -regular space [1]. It is also established that fuzzy pre β -compactness remains invariant under fuzzy pre β -irresolute function [1].

Since for any fuzzy set A in an fts X, $p\beta cA \leq cA$ (as every fuzzy closed set is fuzzy pre β -closed [1]), we can state the following theorem easily.

Theorem 5.1. Every fuzzy pre β -compact space is fuzzy almost compact.

To get the converse we have to recall the following definition and theorem for ready references.

Definition 5.2. [1] An fts (X, τ) is said to be fuzzy pre β -regular if for each fuzzy pre β-closed set F in X and each fuzzy point x_α in X with $x_\alpha q(1_X \backslash F)$, there exists a fuzzy open set U in X and a fuzzy pre β-open set V in X such that $x_{\alpha}qU, F \leq V$ and $U \not\!\! qV$.

Theorem 5.3. [1] An fts (X, τ) is fuzzy pre β-regular iff every fuzzy pre β-closed set is fuzzy closed.

Theorem 5.4. A fuzzy pre β -regular, fuzzy almost compact space X is fuzzy pre β -compact.

Proof. Let U be a fuzzy pre β-open cover of a fuzzy pre β-regular, fuzzy almost compact space X. Then by Theorem 5.3, U is a fuzzy open cover of X. As X is fuzzy almost compact, there is a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\bigvee \{c U : U \in$ \mathcal{U}_0 } = \bigvee { $p\beta cIU : U \in \mathcal{U}_0$ } (by Theorem 5.3) = 1 $_X \Rightarrow X$ is fuzzy pre β -compact.

Next we recall the following definition and theorem for ready references.

Definition 5.5. [1] A function $f: X \to Y$ is said to be fuzzy pre β-irresolute if the inverse image of every fuzzy pre β -open set in Y is fuzzy pre β -open in X.

Theorem 5.6. [1] For a function $f : X \rightarrow Y$, the following statements are equivalent :

(i) f is fuzzy pre β -irresolute,

(ii) $f(p\beta cIA) \leq p\beta c l(f(A))$, for all $A \in I^X$,

(iii) for each fuzzy point x_α in X and each fuzzy pre β-open q-nbd V of $f(x_\alpha)$ in Y, there exists a fuzzy pre β -open q-nbd U of x_{α} in X such that $f(U) \leq V$.

Theorem 5.7. Fuzzy pre β -irresolute image of a fuzzy pre β -compact space is fuzzy pre β-compact.

Proof. Let $f: X \to Y$ be fuzzy pre β -irresolute surjection from a fuzzy pre β compact space X to an fts Y, and let V be a fuzzy pre β -open cover of Y. Let $x \in X$ and $f(x) = y$. Since $sup{V(y) : V \in V} = 1$, for each $n \in \mathcal{N}$ (the set of all natural numbers), there exists some $V_x^n \in \mathcal{V}$ with $V_x^n(y) > 1-1/n$ and so $y_{1/n}qV_x^n$. By fuzzy pre β-irresoluteness of f, by Theorem 5.6 (i) \Rightarrow (iii), $f(U_x^n) \leq V_x^n$, for some fuzzy pre β-open set U_x^n in X q-coincident with $x_{1/n}$. Since $U_x^n(x) > 1-1/n$, $sup{U_x^n(x)}$: $n \in \mathcal{N}$ } = 1. Then $\mathcal{U} = \{U_x^n : n \in \mathcal{N}, x \in X\}$ is a fuzzy pre β -open cover of X. k

By fuzzy pre β -compactness of X, \bigvee $i=1$ $p\beta c l U_{x_i}^{n_i} = 1_X$, for some finite subcollection

$$
\{U_{x_1}^{n_1}, ..., U_{x_k}^{n_k}\} \text{ of } U. \text{ Then } 1_Y = f(\bigvee_{i=1}^k p\beta c l U_{x_i}^{n_i}) = \bigvee_{i=1}^k f(p\beta c l U_{x_i}^{n_i}) \le \bigvee_{i=1}^k p\beta c l(f(U_{x_i}^{n_i}))
$$

(by Theorem 5.6 (i) \Rightarrow (ii)) $\leq \bigvee$ $\frac{i=1}{i}$ $p\beta c l V_{x_i}^{n_i} \Rightarrow Y$ is fuzzy pre β -compact space.

References

- [1] Bhattacharyya, Anjana, Fuzzy pre β-open set and its applications, J. of Ramanujan Society of Mathematics and Mathematical Sciences, 10 (2) (2023), 187-198.
- [2] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [3] DiConcillio, A. and Gerla, G., Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 13 (1984), 187-192.
- [4] Fath Alla, M. A., On fuzzy topological spaces, Ph.D. Thesis, Assiut Univ., Sohag, Egypt, 1984.
- [5] Ganguly, S. and Saha, S., A note on compactness in fuzzy setting, Fuzzy Sets and Systems, 34 (1990), 117-124.
- [6] Lowen, R., Convergence in fuzzy topological spaces, General Topology and Its Appl., 10 (1979), 147-160.
- [7] Mukherjee, M. N. and Sinha, S. P., Almost compact fuzzy sets in fuzzy topological spaces, Fuzzy Sets and Systems, 38 (1990), 389-396.
- [8] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
- [9] Zadeh, L. A.; Fuzzy Sets, Inform. Control, 8 (1965), 338-353.