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Abstract: In this paper, we shall make use of Bailey’s transform and fourier
transform, in order to establish summations formulae for basic hypergeometric se-
ries.
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1. Introduction, Notations and Definitions

We employ the usual notations

[a:q]l, = (1 —a)(1—aq)..(1 —ag™™"), n=1,23,..,

la;qlo =1,
a1, ag, ..., ar; qln = [a1; qlnlaz; qln-..[ar; q]n.

and for |¢| < 1,

o0

(a3 qloo = [ (1 — ag")

r=0
la1, as, ..., ar; @loo = [a1; qloo[@2; Gloo---[0r; @loo-

The basic hypergeometric series is defined as,
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where for convergence (|z|,|g|) < 1,if 1+ s=r and for 1 +s >, |z| < 0.
W.N. Bailey [1] in 1944 established a simple but a very useful transform called
as Bailey transform: if

n
Bn = § Oy Up—rUpir
r=0
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and
)
= § 6rur7nvr+n y
r=0

where, .., d,,u, and v, be any functions of r only. Such that the series 7, exists,

then . -
n=0 n=0

If we take, u, = v, = 1, in the above lemma, then it take the following form

n [o¢]
= E Q. and vy, = g Orin
r=0 r=0

then under suitable convergence conditions

n=0 n=0

Let,
2 [ _
= \/j/ sinrzf(z)dr = F,(r)
T Jo
and
0 = \/2/ cosra f(x)dr = F.(r)
T Jo
then

Z\f/ sinraf(z Z ().

— ;\/g/ooo cos(r +n)xf(x)dr =Y F.(r+n).

Putting the value of ay,, v, 8, and §,, in (1.3), we get

S RMEG+n) =Y (Z Fs<r>) F.(n) (1.4)
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